ebook img

Cross-sections of multibrot sets PDF

0.14 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cross-sections of multibrot sets

MindaConferenceProceedingsmanuscriptNo. (willbeinsertedbytheeditor) Cross-sections of multibrot sets LineBaribeau · ThomasRansford DedicatedtoDavidMindaontheoccasionofhisretirement Received:date/Accepted:date 7 1 0 Abstract We identify the intersection of the multibrot set of zd+c with the rays 2 R+ω,whereωd−1=±1. n a Keywords Mandelbrotset·Multibrotset J MathematicsSubjectClassification(2010) 37F45 9 1 ] 1 Introduction S D Letd beanintegerwithd≥2.Givenc∈C,wedefine . h at pc(z):=zd+c and p[cn]:=pc◦···◦pc (ntimes). m ThecorrespondinggeneralizedMandelbrotset,ormultibrotset,isdefinedby [ (cid:110) (cid:111) 1 Md := c∈C:sup|p[cn](0)|<∞ . v n≥0 5 OfcourseM isjusttheclassicalMandelbrotset.Computer-generatedimagesofM 3 2 3 andM arepicturedinFigure1.Multibrotsetshavebeenextensivelystudiedinthe 5 4 5 literature.Schleicher’sarticle[5]containsawealthofbackgroundmaterialonthem. 0 . TRsupportedbygrantsfromNSERCandtheCanadaresearchchairsprogram 1 0 LineBaribeau 7 De´partementdemathe´matiquesetdestatistique,Universite´Laval, 1 1045avenuedelaMe´decine,Que´bec(QC),CanadaG1V0A6 : E-mail:[email protected] v i ThomasRansford X De´partementdemathe´matiquesetdestatistique,Universite´Laval, r 1045avenuedelaMe´decine,Que´bec(QC),CanadaG1V0A6 a Tel.:+14186562131ext2738 Fax:+14186565902 E-mail:[email protected] 2 LineBaribeau,ThomasRansford Fig.1 ThemultibrotsetsM3andM4 Wementionheresomeelementarypropertiesofmultibrotsets.Firstofall,they exhibit(d−1)-foldrotationalinvariance,namely M =ωM (ω ∈C, ωd−1=1). (1) d d Indeed, for these ω, writing φ(z):=ωz, we have φ−1◦p ◦φ = p , so p[n](0) c c/ω c [n] remains bounded if and only if p (0) does. (In fact, the rotations in (1) are the c/ω only rotational symmetries of M . The paper of Lau and Schleicher [1] contains an d elementaryproofofthisfact.) Also,writingD(0,r)forthecloseddiskwithcenter0andradiusr,wehavethe inclusions D(0,α(d))⊂M ⊂D(0,β(d)), d where α(d):=(d−1)d−d/(d−1) and β(d):=21/(d−1). The first inclusion follows from the fact that, if |c| ≤ α(d), then the closed disk D(0,d−1/(d−1))ismappedintoitselfby p ,andconsequentlythesequence p[n](0)is c c bounded.Forthesecondinclusion,weobservethat,if|c|>β(d),thenbyinduction |p[n+2](0)|≥(2d)n(|c|d−2|c|)foralln≥0,andtheright-handsideofthisinequality c tendstoinfinitywithn. Whend isodd,wehave M ∩R=[−α(d),α(d)]. (2) d This equality was conjectured by Parise´ and Rochon in [3], and proved by them in [4].Also,whend iseven,wehave M ∩R=[−β(d),α(d)]. (3) d This equality was also conjectured in [3], and subsequently proved in [2]. When d=2,itreducestothewell-knownequalityM ∩R=[−2,1]. 2 4 Cross-sectionsofmultibrotsets 3 Byvirtueoftherotation-invarianceproperty(1),theequalities(2)and(3)yield informationabouttheintersectionofM withcertainraysemanatingfromzero.In- d deed,ifωd−1=1,then M ∩R+ω ={tω :0≤t≤α(d)}, d andifωd−1=−1andd iseven,then M ∩R+ω ={tω :0≤t≤β(d)}. d Thisleavesopenthecasewhenωd−1=−1andd isodd.Thepurposeofthisnoteis tofillthegap.Thefollowingtheoremisourmainresult. Theorem1.1. Ifωd−1=−1andd isodd,then M ∩R+ω ={tω :0≤t≤γ(d)}, d where γ(d):=d−d/(d−1)(cid:0)sinh(dξ )+dsinh(ξ )(cid:1), (4) d d andξ istheuniquepositiverootoftheequationcosh(dξ )=dcosh(ξ ). d d d Whend=3,onecanusetherelationcosh(3x)=4cosh3x−3coshxtoderivethe (cid:112) exactformulaγ(3)= 32/27,whichyields Corollary1.2. M ∩iR={iy:|y|≤(cid:112)32/27}. 3 √ Incomparison,notethat(2)givesM ∩R={x:|x|≤2/ 27}.SeeFigure1. 3 Thefirstfewvaluesofα(d),β(d),γ(d)aretabulatedinTable1forcomparison. Table1 Valuesofα(d),β(d),γ(d)for2≤d≤12 d α(d) β(d) γ(d) 2 0.250000000 2.000000000 1.100917369 3 0.384900179 1.414213562 1.088662108 4 0.472470394 1.259921050 1.078336651 5 0.534992244 1.189207115 1.069984489 6 0.582355932 1.148698355 1.063192242 7 0.619731451 1.122462048 1.057591279 8 0.650122502 1.104089514 1.052904317 9 0.675409498 1.090507733 1.048928539 10 0.696837314 1.080059739 1.045514971 11 0.715266766 1.071773463 1.042552690 12 0.731314279 1.065041089 1.039957793 Itcanbeshownthatγ(d)>1foralld,andthat γ(d)=21/d+O((logd)2/d2)) asd→∞. Thesestatementswillbejustifiedlater. 4 LineBaribeau,ThomasRansford 2 ProofofTheorem1.1 Inthissectionwesupposethatd isanoddintegerwithd≥3.Ifωd−1=−1,then, writingφ(z):=ωz,wehaveφ−1◦p ◦φ =q ,where c c/ω q (z):=−zd+c. c ThusM ∩R+ω =ω(N ∩R+),where d d (cid:110) (cid:111) N := c∈C:sup|q[n](0)|<∞ . d c n≥0 WenowseektoidentifyN ∩R+.Weshalldothisintwostages. d Lemma2.1. Letd beanoddintegerwithd≥3.Then N ∩R+=[0, µ(d)], d where µ(d):=max(cid:8)a−bd :a,b≥0, ad+bd =a+b(cid:9). Proof. Considerfirstthecasec∈[0,1].Inthiscasewehaveq (0)=candq (c)= c c −cd+c≥0.Sinceq isadecreasingfunction,itfollowsthatq ([0,c])⊂[0,c],and c c [n] inparticularthatq (0)isbounded.Hencec∈N forallc∈[0,1]. c d Consider now the case c∈[1,∞). Then q (0)=c and q[2](0)=−cd+c≤0. c c [2n] As q is a decreasing function, it follows that q (0) is a decreasing sequence and c c [2n+1] [n] q (0)isanincreasingsequence.If,further,c∈N ,thenq (0)isbounded,and c d c [2n+1] [2n] bothofthesesubsequencesconverge,sayq (0)→aandq (0)→−b,where c c a,b≥0. We then have q (−b)=a and q (a)=−b, in other words bd+c=a and c c ad−c=b. Adding these equations gives ad+bd =a+b. Summarizing what we haveproved:ifc∈N ∩[1,∞),thenc=a−bd,wherea,b≥0andad+bd =a+b. d Conversely, if c is of this form, then q (−b)=a and q (a)=−b, so [−b,a] is a c c q -invariant interval containing 0, which implies that q[n](0) remains bounded, and c hencec∈N .Combiningtheseremarks,wehaveshownthat d N ∩[1,∞)={a−bd :a,b≥0, ad+bd =a+b}∩[1,∞). (5) d Theconditionthatad+bd =a+bcanbere-writtenash(a)=−h(b),whereh(x):= xd−x. Viewed this way, it is more or less clear that the right-hand side of (5) is a closed interval containing 1, so N ∩[1,∞)=[1,µ(d)], where µ(d) is as defined in d thestatementofthelemma. Finally,puttingallofthistogether,wehaveshownthatN ∩R+=[0,µ(d)]. d Nextweidentifyµ(d)moreexplicitly. Lemma2.2. µ(d)=γ(d). Cross-sectionsofmultibrotsets 5 Proof. Wereformulatethemaximizationproblemdefiningµ(d).Set S:={(a,b)∈R2:a,b≥0}, f(a,b):=a−bd, g(a,b):=ad+bd−a−b. Weareseekingtomaximize f overS∩{g=0}.ThesetS∩{g=0}iscompactand f iscontinuous,sothemaximumiscertainlyattained,sayat(a ,b ).Noticealsothat 0 0 ∇g(cid:54)=0ateverypointofS∩{g=0}.Therearetwocasestoconsider. Case1:(a ,b )∈∂S.Theconditionthatg(a ,b )=0thenimpliesthat 0 0 0 0 (a ,b )=(0,0),(0,1)or(1,0). 0 0 Thecorrespondingvaluesof f(a ,b )are0,−1,1respectively.Clearlywecanelim- 0 0 inate the first two points from consideration. As for the third, we remark that the directionalderivativeof f at(1,0)along{g=0}inthedirectionpointingintoS is (cid:112) equalto1/ 1+(d−1)2,whichisstrictlypositive.So(1,0)cannotbeamaximum of f either. Case 2: (a ,b )∈int(S). In this case, by the standard Lagrange multiplier ar- 0 0 gument, we must have ∇f(a ,b )=λ∇g(a ,b ) for some λ ∈R. Writing this out 0 0 0 0 explicitly,weget 1=λ(dad−1−1), 0 −dbd−1=λ(dbd−1−1). 0 0 Dividingthesecondequationbythefirstandthensimplifying,weobtain a b =d−2/(d−1). 0 0 Thus a =d−1/(d−1)eξ and b =d−1/(d−1)e−ξ for some ξ ∈R. With this notation, 0 0 theconstraintg(a ,b )=0translatestocosh(dξ)=dcosh(ξ),andthevalueof f at 0 0 (a ,b )is 0 0 f(a ,b )=a −bd = a0−b0 +ad0−bd0 =d−d/(d−1)(cid:0)dsinh(ξ)+sinh(dξ)(cid:1). 0 0 0 0 2 2 Therearepreciselytworootsofcosh(dξ)=dcosh(ξ),onepositiveandonenegative. Necessarilythepositiverootgivesrisetothemaximumvalueof f,therebyshowing thatµ(d)=γ(d). Remark. Clearly f(1,0)=1.ThetreatmentofCase1aboveshowsthat f doesnot attain its maximum over S∩{g=0} at (1,0), and so µ(d)>1. This shows that γ(d)>1,therebyjustifyingastatementmadeintheintroduction. ProofofTheorem1.1. Combiningthevariousresultsalreadyobtainedinthissection, wehave M ∩R+ω =ω(N ∩R+)=ω[0,µ(d)]=ω[0,γ(d)]. d d ThisconcludestheproofofTheorem1.1. 6 LineBaribeau,ThomasRansford 3 Anasymptoticformulaforγ(d). Ouraimistojustifythefollowingstatementmadeintheintroduction. Proposition3.1. Ifγ isdefinedasin(4),then γ(d)=21/d+O((logd)2/d2) asd→∞. (6) Thereisnoneedtosupposethatd isanintegerhere. Proof. We begin by deriving an asymptotic formula for ξ as d →∞. On the one d hand,since edξd ≥cosh(dξ )=dcosh(ξ )≥d, d d we certainly have ξ ≥(logd)/d. On the other hand, since the unimodal function d (coshx)/xtakesthesamevaluesatξ anddξ ,wemusthaveξ ≤η ≤dξ ,where d d d d η isthepointatwhich(coshx)/xassumesitsminimum.Thus edξd ≤cosh(dξ )=dcoshξ ≤dcoshη, d d 2 whence logd (cid:16)1(cid:17) ξ = +O . d d d Thisisnotyetpreciseenough.Substitutingintotheequationcosh(dξ )=dcosh(ξ ), d d weobtain edξd (cid:16)1(cid:17) (cid:16)(logd)2(cid:17) +O =d+O , 2 d d whence log(2d) (cid:16)(logd)2(cid:17) ξ = +O . d d d3 Thisisgoodenoughforourneeds. Wenowestimateγ(d)asd→∞.Firstofall,wehave (cid:16)(logd)3(cid:17) dsinh(ξ )=dξ +O(dξ3)=log(2d)+O . d d d d2 Also (cid:16) (cid:16)(logd)2(cid:17)(cid:17) (cid:16)(logd)2(cid:17) sinh(dξ )=sinh log(2d)+O =d+O . d d2 d Hence (cid:16) (cid:17) d logγ(d)=log dsinh(dξ )+sinh(dξ ) − logd d d d−1 (cid:16) (cid:16)(logd)2(cid:17)(cid:17) (cid:16) 1 (cid:16) 1 (cid:17)(cid:17) =log d+log(2d)+O − 1+ +O logd d d d2 log(2d) (cid:16)(logd)2(cid:17) (cid:16) logd (cid:16)logd(cid:17)(cid:17) =logd+ +O − logd+ +O d d2 d d2 log2 (cid:16)(logd)2(cid:17) = +O . d d2 Finally,takingexponentialsofbothsides,weget(6). Cross-sectionsofmultibrotsets 7 Acknowledgements ThefirstauthorthankstheorganizersoftheConferenceonModernAspectsofCom- plexGeometry,heldattheUniversityofCincinnatiinhonorofTaftProfessorDavidMinda,fortheirkind hospitalityandfinancialsupport. References 1. Lau,E.,Schleicher,D.:Symmetriesoffractalsrevisited.Math.Intelligencer18(1),45–51(1996) 2. Parise´,P.O.,Ransford,T.,Rochon,D.:Tricomplexdynamicalsystemsgeneratedbypolynomialsof odddegree.Preprint(2016) 3. Parise´,P.O.,Rochon,D.:Astudyofdynamicsofthetricomplexpolynomialηp+c.NonlinearDynam. 82(1-2),157–171(2015) 4. Parise´, P.O., Rochon, D.: Tricomplex dynamical systems generated by polynomials of odd degree. Preprint(2015) 5. Schleicher,D.:OnfibersandlocalconnectivityofMandelbrotandMultibrotsets.In:Fractalgeometry andapplications:ajubileeofBenoˆıtMandelbrot.Part1,Proc.Sympos.PureMath.,vol.72,pp.477– 517.Amer.Math.Soc.,Providence,RI(2004)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.