MindaConferenceProceedingsmanuscriptNo. (willbeinsertedbytheeditor) Cross-sections of multibrot sets LineBaribeau · ThomasRansford DedicatedtoDavidMindaontheoccasionofhisretirement Received:date/Accepted:date 7 1 0 Abstract We identify the intersection of the multibrot set of zd+c with the rays 2 R+ω,whereωd−1=±1. n a Keywords Mandelbrotset·Multibrotset J MathematicsSubjectClassification(2010) 37F45 9 1 ] 1 Introduction S D Letd beanintegerwithd≥2.Givenc∈C,wedefine . h at pc(z):=zd+c and p[cn]:=pc◦···◦pc (ntimes). m ThecorrespondinggeneralizedMandelbrotset,ormultibrotset,isdefinedby [ (cid:110) (cid:111) 1 Md := c∈C:sup|p[cn](0)|<∞ . v n≥0 5 OfcourseM isjusttheclassicalMandelbrotset.Computer-generatedimagesofM 3 2 3 andM arepicturedinFigure1.Multibrotsetshavebeenextensivelystudiedinthe 5 4 5 literature.Schleicher’sarticle[5]containsawealthofbackgroundmaterialonthem. 0 . TRsupportedbygrantsfromNSERCandtheCanadaresearchchairsprogram 1 0 LineBaribeau 7 De´partementdemathe´matiquesetdestatistique,Universite´Laval, 1 1045avenuedelaMe´decine,Que´bec(QC),CanadaG1V0A6 : E-mail:[email protected] v i ThomasRansford X De´partementdemathe´matiquesetdestatistique,Universite´Laval, r 1045avenuedelaMe´decine,Que´bec(QC),CanadaG1V0A6 a Tel.:+14186562131ext2738 Fax:+14186565902 E-mail:[email protected] 2 LineBaribeau,ThomasRansford Fig.1 ThemultibrotsetsM3andM4 Wementionheresomeelementarypropertiesofmultibrotsets.Firstofall,they exhibit(d−1)-foldrotationalinvariance,namely M =ωM (ω ∈C, ωd−1=1). (1) d d Indeed, for these ω, writing φ(z):=ωz, we have φ−1◦p ◦φ = p , so p[n](0) c c/ω c [n] remains bounded if and only if p (0) does. (In fact, the rotations in (1) are the c/ω only rotational symmetries of M . The paper of Lau and Schleicher [1] contains an d elementaryproofofthisfact.) Also,writingD(0,r)forthecloseddiskwithcenter0andradiusr,wehavethe inclusions D(0,α(d))⊂M ⊂D(0,β(d)), d where α(d):=(d−1)d−d/(d−1) and β(d):=21/(d−1). The first inclusion follows from the fact that, if |c| ≤ α(d), then the closed disk D(0,d−1/(d−1))ismappedintoitselfby p ,andconsequentlythesequence p[n](0)is c c bounded.Forthesecondinclusion,weobservethat,if|c|>β(d),thenbyinduction |p[n+2](0)|≥(2d)n(|c|d−2|c|)foralln≥0,andtheright-handsideofthisinequality c tendstoinfinitywithn. Whend isodd,wehave M ∩R=[−α(d),α(d)]. (2) d This equality was conjectured by Parise´ and Rochon in [3], and proved by them in [4].Also,whend iseven,wehave M ∩R=[−β(d),α(d)]. (3) d This equality was also conjectured in [3], and subsequently proved in [2]. When d=2,itreducestothewell-knownequalityM ∩R=[−2,1]. 2 4 Cross-sectionsofmultibrotsets 3 Byvirtueoftherotation-invarianceproperty(1),theequalities(2)and(3)yield informationabouttheintersectionofM withcertainraysemanatingfromzero.In- d deed,ifωd−1=1,then M ∩R+ω ={tω :0≤t≤α(d)}, d andifωd−1=−1andd iseven,then M ∩R+ω ={tω :0≤t≤β(d)}. d Thisleavesopenthecasewhenωd−1=−1andd isodd.Thepurposeofthisnoteis tofillthegap.Thefollowingtheoremisourmainresult. Theorem1.1. Ifωd−1=−1andd isodd,then M ∩R+ω ={tω :0≤t≤γ(d)}, d where γ(d):=d−d/(d−1)(cid:0)sinh(dξ )+dsinh(ξ )(cid:1), (4) d d andξ istheuniquepositiverootoftheequationcosh(dξ )=dcosh(ξ ). d d d Whend=3,onecanusetherelationcosh(3x)=4cosh3x−3coshxtoderivethe (cid:112) exactformulaγ(3)= 32/27,whichyields Corollary1.2. M ∩iR={iy:|y|≤(cid:112)32/27}. 3 √ Incomparison,notethat(2)givesM ∩R={x:|x|≤2/ 27}.SeeFigure1. 3 Thefirstfewvaluesofα(d),β(d),γ(d)aretabulatedinTable1forcomparison. Table1 Valuesofα(d),β(d),γ(d)for2≤d≤12 d α(d) β(d) γ(d) 2 0.250000000 2.000000000 1.100917369 3 0.384900179 1.414213562 1.088662108 4 0.472470394 1.259921050 1.078336651 5 0.534992244 1.189207115 1.069984489 6 0.582355932 1.148698355 1.063192242 7 0.619731451 1.122462048 1.057591279 8 0.650122502 1.104089514 1.052904317 9 0.675409498 1.090507733 1.048928539 10 0.696837314 1.080059739 1.045514971 11 0.715266766 1.071773463 1.042552690 12 0.731314279 1.065041089 1.039957793 Itcanbeshownthatγ(d)>1foralld,andthat γ(d)=21/d+O((logd)2/d2)) asd→∞. Thesestatementswillbejustifiedlater. 4 LineBaribeau,ThomasRansford 2 ProofofTheorem1.1 Inthissectionwesupposethatd isanoddintegerwithd≥3.Ifωd−1=−1,then, writingφ(z):=ωz,wehaveφ−1◦p ◦φ =q ,where c c/ω q (z):=−zd+c. c ThusM ∩R+ω =ω(N ∩R+),where d d (cid:110) (cid:111) N := c∈C:sup|q[n](0)|<∞ . d c n≥0 WenowseektoidentifyN ∩R+.Weshalldothisintwostages. d Lemma2.1. Letd beanoddintegerwithd≥3.Then N ∩R+=[0, µ(d)], d where µ(d):=max(cid:8)a−bd :a,b≥0, ad+bd =a+b(cid:9). Proof. Considerfirstthecasec∈[0,1].Inthiscasewehaveq (0)=candq (c)= c c −cd+c≥0.Sinceq isadecreasingfunction,itfollowsthatq ([0,c])⊂[0,c],and c c [n] inparticularthatq (0)isbounded.Hencec∈N forallc∈[0,1]. c d Consider now the case c∈[1,∞). Then q (0)=c and q[2](0)=−cd+c≤0. c c [2n] As q is a decreasing function, it follows that q (0) is a decreasing sequence and c c [2n+1] [n] q (0)isanincreasingsequence.If,further,c∈N ,thenq (0)isbounded,and c d c [2n+1] [2n] bothofthesesubsequencesconverge,sayq (0)→aandq (0)→−b,where c c a,b≥0. We then have q (−b)=a and q (a)=−b, in other words bd+c=a and c c ad−c=b. Adding these equations gives ad+bd =a+b. Summarizing what we haveproved:ifc∈N ∩[1,∞),thenc=a−bd,wherea,b≥0andad+bd =a+b. d Conversely, if c is of this form, then q (−b)=a and q (a)=−b, so [−b,a] is a c c q -invariant interval containing 0, which implies that q[n](0) remains bounded, and c hencec∈N .Combiningtheseremarks,wehaveshownthat d N ∩[1,∞)={a−bd :a,b≥0, ad+bd =a+b}∩[1,∞). (5) d Theconditionthatad+bd =a+bcanbere-writtenash(a)=−h(b),whereh(x):= xd−x. Viewed this way, it is more or less clear that the right-hand side of (5) is a closed interval containing 1, so N ∩[1,∞)=[1,µ(d)], where µ(d) is as defined in d thestatementofthelemma. Finally,puttingallofthistogether,wehaveshownthatN ∩R+=[0,µ(d)]. d Nextweidentifyµ(d)moreexplicitly. Lemma2.2. µ(d)=γ(d). Cross-sectionsofmultibrotsets 5 Proof. Wereformulatethemaximizationproblemdefiningµ(d).Set S:={(a,b)∈R2:a,b≥0}, f(a,b):=a−bd, g(a,b):=ad+bd−a−b. Weareseekingtomaximize f overS∩{g=0}.ThesetS∩{g=0}iscompactand f iscontinuous,sothemaximumiscertainlyattained,sayat(a ,b ).Noticealsothat 0 0 ∇g(cid:54)=0ateverypointofS∩{g=0}.Therearetwocasestoconsider. Case1:(a ,b )∈∂S.Theconditionthatg(a ,b )=0thenimpliesthat 0 0 0 0 (a ,b )=(0,0),(0,1)or(1,0). 0 0 Thecorrespondingvaluesof f(a ,b )are0,−1,1respectively.Clearlywecanelim- 0 0 inate the first two points from consideration. As for the third, we remark that the directionalderivativeof f at(1,0)along{g=0}inthedirectionpointingintoS is (cid:112) equalto1/ 1+(d−1)2,whichisstrictlypositive.So(1,0)cannotbeamaximum of f either. Case 2: (a ,b )∈int(S). In this case, by the standard Lagrange multiplier ar- 0 0 gument, we must have ∇f(a ,b )=λ∇g(a ,b ) for some λ ∈R. Writing this out 0 0 0 0 explicitly,weget 1=λ(dad−1−1), 0 −dbd−1=λ(dbd−1−1). 0 0 Dividingthesecondequationbythefirstandthensimplifying,weobtain a b =d−2/(d−1). 0 0 Thus a =d−1/(d−1)eξ and b =d−1/(d−1)e−ξ for some ξ ∈R. With this notation, 0 0 theconstraintg(a ,b )=0translatestocosh(dξ)=dcosh(ξ),andthevalueof f at 0 0 (a ,b )is 0 0 f(a ,b )=a −bd = a0−b0 +ad0−bd0 =d−d/(d−1)(cid:0)dsinh(ξ)+sinh(dξ)(cid:1). 0 0 0 0 2 2 Therearepreciselytworootsofcosh(dξ)=dcosh(ξ),onepositiveandonenegative. Necessarilythepositiverootgivesrisetothemaximumvalueof f,therebyshowing thatµ(d)=γ(d). Remark. Clearly f(1,0)=1.ThetreatmentofCase1aboveshowsthat f doesnot attain its maximum over S∩{g=0} at (1,0), and so µ(d)>1. This shows that γ(d)>1,therebyjustifyingastatementmadeintheintroduction. ProofofTheorem1.1. Combiningthevariousresultsalreadyobtainedinthissection, wehave M ∩R+ω =ω(N ∩R+)=ω[0,µ(d)]=ω[0,γ(d)]. d d ThisconcludestheproofofTheorem1.1. 6 LineBaribeau,ThomasRansford 3 Anasymptoticformulaforγ(d). Ouraimistojustifythefollowingstatementmadeintheintroduction. Proposition3.1. Ifγ isdefinedasin(4),then γ(d)=21/d+O((logd)2/d2) asd→∞. (6) Thereisnoneedtosupposethatd isanintegerhere. Proof. We begin by deriving an asymptotic formula for ξ as d →∞. On the one d hand,since edξd ≥cosh(dξ )=dcosh(ξ )≥d, d d we certainly have ξ ≥(logd)/d. On the other hand, since the unimodal function d (coshx)/xtakesthesamevaluesatξ anddξ ,wemusthaveξ ≤η ≤dξ ,where d d d d η isthepointatwhich(coshx)/xassumesitsminimum.Thus edξd ≤cosh(dξ )=dcoshξ ≤dcoshη, d d 2 whence logd (cid:16)1(cid:17) ξ = +O . d d d Thisisnotyetpreciseenough.Substitutingintotheequationcosh(dξ )=dcosh(ξ ), d d weobtain edξd (cid:16)1(cid:17) (cid:16)(logd)2(cid:17) +O =d+O , 2 d d whence log(2d) (cid:16)(logd)2(cid:17) ξ = +O . d d d3 Thisisgoodenoughforourneeds. Wenowestimateγ(d)asd→∞.Firstofall,wehave (cid:16)(logd)3(cid:17) dsinh(ξ )=dξ +O(dξ3)=log(2d)+O . d d d d2 Also (cid:16) (cid:16)(logd)2(cid:17)(cid:17) (cid:16)(logd)2(cid:17) sinh(dξ )=sinh log(2d)+O =d+O . d d2 d Hence (cid:16) (cid:17) d logγ(d)=log dsinh(dξ )+sinh(dξ ) − logd d d d−1 (cid:16) (cid:16)(logd)2(cid:17)(cid:17) (cid:16) 1 (cid:16) 1 (cid:17)(cid:17) =log d+log(2d)+O − 1+ +O logd d d d2 log(2d) (cid:16)(logd)2(cid:17) (cid:16) logd (cid:16)logd(cid:17)(cid:17) =logd+ +O − logd+ +O d d2 d d2 log2 (cid:16)(logd)2(cid:17) = +O . d d2 Finally,takingexponentialsofbothsides,weget(6). Cross-sectionsofmultibrotsets 7 Acknowledgements ThefirstauthorthankstheorganizersoftheConferenceonModernAspectsofCom- plexGeometry,heldattheUniversityofCincinnatiinhonorofTaftProfessorDavidMinda,fortheirkind hospitalityandfinancialsupport. References 1. Lau,E.,Schleicher,D.:Symmetriesoffractalsrevisited.Math.Intelligencer18(1),45–51(1996) 2. Parise´,P.O.,Ransford,T.,Rochon,D.:Tricomplexdynamicalsystemsgeneratedbypolynomialsof odddegree.Preprint(2016) 3. Parise´,P.O.,Rochon,D.:Astudyofdynamicsofthetricomplexpolynomialηp+c.NonlinearDynam. 82(1-2),157–171(2015) 4. Parise´, P.O., Rochon, D.: Tricomplex dynamical systems generated by polynomials of odd degree. Preprint(2015) 5. Schleicher,D.:OnfibersandlocalconnectivityofMandelbrotandMultibrotsets.In:Fractalgeometry andapplications:ajubileeofBenoˆıtMandelbrot.Part1,Proc.Sympos.PureMath.,vol.72,pp.477– 517.Amer.Math.Soc.,Providence,RI(2004)