9 0 Crosseffect ofCoulombcorrelationandhybridizationintheoccurrence of 0 2 ferromagnetismintwoshiftedband transitionmetals n a C.M. Chavesa,∗,A.Tropera,b J 2 aCentroBrasileiro de Pesquisas F´ısicas, Rua XavierSigaud 150,Rio de Janeiro, 22290-180, RJ, Brazil 2 bUniversidade do Estado do Riode Janeiro, Rua S˜ao Francisco Xavier524, Rio de Janeiro, RJ, Brazil ] l e -Abstract r t sInthisworkwediscusstheoccurrenceofferromagnetism intransition-likemetals.Themetalisrepresentedbytwohybridized(V) . atand shifted (ǫs) bands one of which includes Hubbard correlation whereas the other is uncorrelated. The starting point is to mtransform the original Hamiltonian into an effective one. Only one site retains the full correlation (U) while in the others the correlationsarerepresentedbyaneffectivefield,theself-energy(single-siteapproximation).Thisfieldisself-consistentlydetermined - dby imposing the translational invariance of the problem. Thereby one gets an exchange split quasi-particle density of states and nthen an electron-spin polarization for some values of the parameters (U,V,α,ǫs), α being the ratio of the effective masses of the otwobandsand oftheoccupation numbern. c [ Keywords: Ferromagnetic metal; Correlation;Single-siteapproximation; 1 PACS: 71.10.-w,71.10.Fd, 71.20.Be v 0 0 51. The model wherena =a+a ;σdenotesspin.t denotesthetunnel- iσ iσ iσ ij 3 ing amplitudes betweenneighboring sites i and j , in each . 1 Inrecentyearsthestudyofmagnetisminitinerantferro- band.As in Roth’s approach[4],we reduce the presence of 0magnetssuchasFe,Co,Nihasbeenthesubjectofagreat the correlationto only one site (the origin, say ), while in 9 0dealofeffortsbyseveralapproaches.Examplesarethedy- theothersactsaneffectivespinandenergydependentbut :namical mean field theory (DMFT) [1] and the modified siteindependentfield,theself-energyΣσ.Thisfieldisself- v alloy analogy (MAA)[2]. In an previous work [3] we have consistently determined by imposing the vanishing of the i Xdevelopeda two bandmodel, consisting of a Hubbard like scatteringT matrixassociatedtotheorigin.Wethusarrive rnarrow band( band a) with intrasite Coulomb interaction atthe effectiveHamiltonian a U,hybridizedwithanotherband,whichisbroadanduncor- related (band b), through the hybridization coupling V . ab The two bands had the same center (symmetric regime). Now we treat a more general situation , with a shift be- Heff =Xtaija+iσajσ +Xtbijb+iσbjσ (2) i,j,σ i,j,σ tweenthe centersofthe twobands. Wereviewbrieflythemethod[3]:TheinitialHamiltonian +XnaiσΣσ+Una0↑na0↓+X(Vabb+iσajσ + h.c.) we adoptis then i,σ i,j,σ H=Xtaija+iσajσ +Xtbijb+iσbjσ (1) −Xσ na0σΣσ, i,j,σ i,j,σ +XUni(↑a)ni(↓a)+X(Vabb+iσajσ +Vb+aa+iσbjσ) , i i,j,σ H still includes the difficulty of dealing with the eff Coulombintra-atomictermattheorigin.WeusetheGreen ∗ function method [5] ; the equations of motion for the cor- Corresponding author. Tel: (05521) 2141-7285 fax: (05521) 2141- responding Green functions Gcd (w) =<< c ,d+ >> , 7400 ijσ iσ jσ w Email address: [email protected] (C.M.Chaves). wherec,d=a,b,are Preprintsubmitted toElsevier 22 January 2009 wGaija,σ(w)=δij +XtailGalja,σ(w)+ΣσGaija,σ(w) ǫs is the center of the b band; as the a band is centeredat l the origin, this parameter represents a shift in the bands. +XVab(Ri−Rl)Gblja,σ(w)+δi0[UGa0ja,,σa(w)+ αtheiseaffepchteivneommeanssoelosgoifcathlepaaraanmdettehredbeeslcercitbrionngst.hFerormatinooowf l −ΣσGaa (w)]; (3) on we take kia →ki,i = x,y,z and Vab = Vba ≡ V = real 0j,σ andconstantindependent ofk . i wGbija,σ(w)=XtbilGblja,σ(w)+XVba(Ri−Rl)Galja,σ(w) The vanishing of the T-matrix gives further a self- l l consistentequationfor the self-energy: where Ga0ja,,σa(w) =<< n0−σa0σ;a+jσ >>w≡ Γa0jaσ(w) is a Σσ =U <na0−σ >+(U −Σσ)Fσ(w,Σσ)Σσ, (10) higherorderGreenfunction,whoseequationofmotion,af- with tertheneglectingofthebroadeningcorrection[6,7]reduces to Fσ(w,Σσ)=N−1XGakk,σ (11) k wΓaija,σ(w)=<na0−σ >δij +XtailΓalja,σ(w)+ΣσΓaija,σ(w) l 2. NumericalResults +XVab(Ri−Rl)<<na0−σblσ;a+jσ >> (4) l We perform the self-consistency in both Σσ and in +δ (U −Σσ)Gaa,a(w). <na >,for eachtotaloccupationn=<na >+<nb >. i0 0j,σ 0,σ The total number of electrons per site, is fixed at n = 1.6 The ressonance broadening occurs, in the terminology of (butseebelow),alittlelessthanhalf-filling.Wewantnow the alloy analogy (AA), when the opposite spin direction to exhibit the combined effect of U, V, α, n, and ǫ at s are not kept frozen. Some remarks are in order about T =0K. Eq.(4): The scattering correction is already included; in Infig(1)weplotmagnetizationversusV.Itisclearthat the Hubbard terminology[6,7] of an AA of up and down smallvaluesofV helpstabilizetheferromagneticorderbut spins, this correction would correspond to disorder scat- largeronestendtoinhibitit[2].Thisisbecausehybridiza- tering and produces a damping of the quasi-particles. tion, apart from changing the occupations of the a and b Secondly, the hybridization generates a new function << bands, together with the ǫ increases (small V) and de- na b ;a+ >> and its equation of motion, again after s 0−σ lσ jσ w creases(largeV)thea-densityofstatesattheFermilevel. neglectingthe broadeningcorrection,reducesto Infig(2)themagnetizationisplotversusǫ .Weseethat s the shiftthen tends to favorferromagnetism. w <<na0−σbiσ;a+jσ >>=X(tbil <<na0−σblσ;a+jσ >> Infig(3)weplotthechargetransferencea−>borvice- l versaasfunctionofǫ anditisseenthatfromǫ ≈0.8on, +V (R −R)Γaa (w)) (5) s s ab i l ljσ this transference increases the number of a electrons thus At this point we have an effective impurity problem; the tending tofavorferromagnetism. directionofthe impurityspinis notfixed. We solve explicitly the problem defined by Eq.(3), Eq.(4)and Eq.(5), obtaining, after imposing T = 0, the 0.18 followingGreenfunction forthea band: 0.16 Gakk′,σ(w)= w−˜ǫakδk−k′Σσ(w), (6) ation0.14 Inthis equation netiz0.12 g a0.10 M |V |2(k) ǫ˜a =ǫa+ ab , (7) 0.08 k k w−ǫb k 0.06 is the recursionrelationof the a bandmodified by the hy- 0.04 bridizationV andǫa andǫb denote the barebands,with 0.1 0.2 0.3 0.4 0.5 0.6 k k V t (cos(k a)+cos(k a)+cos(k a)) ǫa = a x y z , (8) k A Fig. 1. Magnetization versus hybridization V for U = 3, α = 1.5, n = 1.6 and ǫs = 1.0. Small values of hybridization tend to favor In this paper we use t = 1 and A = 3, in arbitrary en- a ferromagnetism. ergyunits. All energymagnitudes aretakeninunits oft , a Infig(4)oneexhibits the dependenceofthemagnetiza- makingthemdimensionless.Thebareabandwidthisthen tion on the ratio of the effective masses beween the corre- W =2.Forsimplicity we adopthomothetic bands lated and the uncorrelated bands. We argue that the in- ǫb =ǫ +αǫa. (9) creasingofαisproportionaltoadecreasingoftheeffective k s k 2 of the total occupation n. We notice that small values of nfavorsparamagnetismwhileaftersomeoccupation,here 0.18 n≈1.6,the magnetizationdropsdown. 0.16 0.14 on0.12 0.18 ati etiz0.10 0.16 n ag0.08 0.14 M 0.06 0.12 n o 0.04 ati0.10 0.02 netiz0.08 g a 0.00 M0.06 0.0 0.2 0.4 0.6 0.8 1.0 0.04 0.02 Fig.2.Magnetization versusband shiftforU =3, V =0.4, α=1.5 0.00 andn=1.6.Largervaluesofthebandshifttendtofavorferromag- 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 netism. n Fig.5.Magnetization versustotal occupation nforU =3,V =0.4, α=1.5and ǫs=1.0. 0.4 a->b Infig(6)wepresentthedensityofstates(DOS)ofthea- 0.3 bandforU =3,V =0.4andǫ =1.0.TheFermilevelisat s 0.2 EF =0.443andamagnetizationof0.174arises.Thecom- >b bined effect of hybridization and the band shift produces a- ns 0.1 a band broadening[2]. The DOS here obtained exhibits a a Tr bimodalstructurecaracterizingaHubbardstronglycorre- 0.0 latedregime. b->a -0.1 In fig (7) we show the density ofstate (DOS) of the un- correlatedb band, for the same set of parameters,namely -0.2 U =3, V =0.4,α =1.5 andǫ =1.0 . We verify that the 0.0 0.2 0.4 0.6 0.8 1.0 s renormalized band remains almost unchanged when com- paredwith the bare one.Infact, hybridizationaffects this Fig. 3. Charge transference versus band shift for U = 3, V = 0.4 band,enlargingit,butno noticeablebmagneticmoment α=1.5andn=1.6 arises. Moreover,it does not present a bimodal structure. Forthesakeofcompletenesswedisplayinfig(8)asituation massofthecorrelatedabandwithrespecttothefreeelec- envolving the weak correlation regime, U/W << 1. Now tron b band and hence the magnetization should also de- crease.Infig(5)onedisplaysthemagnetizationasfunction down 0.7 up 0.6 0.5 0.16 0.4 a ation0.12 DOS 0.3 etiz agn0.08 0.2 M 0.1 0.04 0.0 -4 -2 0 2 4 0.00 1.6 2.0 2.4 2.8 3.2 Energy Fig.6.DensityofstatesofthecorrelatedabandforU =3,V =0.4 Fig. 4. Magnetization versus α, the band width relation for U =3, ,α= 1.5, n = 1.6 and ǫs = 1.0. The Fermi level is at EF = 0.443 V =0.4,n=1.6andǫs=1.0.Smallvaluesofhybridizationtendto and a magnetization of 0.174 develops. The combined effect of hy- favor ferromagnetism. bridizationand theband shiftproduces aband broadening. 3 Fermi Level 0.070 0.6 0.5 0.068 0.4 Re 0.066 b OS 0.3 D 0.064 0.2 HF 0.1 0.062 0.0 0.060 -4 -2 0 2 4 -2 0 2 Energy Energy Fig. 7. Density of states of the b band for U =3, V =0.4, α=1.5 Fig.9.Realpartoftheself-energyΣσ forU =0.1,V =0.4,α=1.5, and ǫs=1.0.The Fermilevel is atEF =0.443. n=1.6 and ǫs =1.0. In this regime Σσ shows a very weak depen- dence on theenergy. the abandisrenormalizedasatypicalHartree-Fock(HF) band without exhibiting the Hubbard bimodal structure. Moreover, from fig (9), where we plot the real part of the 2.0 self-energy,weseeatrendoftheusualHFregime,namely analmostconstantvalueoftheself-energy.Forcomparison we show in fig (10) the self-energy for a strong correlated 1.5 limit. e 1.0 R 0.8 0.5 0.7 0.6 0.0 0.5 -6 -4 -2 0 2 4 6 Energy a 0.4 S DO 0.3 Fig.10.Realpartoftheself-energyΣσ forU =3,V =0.4,α=1.5, 0.2 n=1.6andǫs=1.0. 0.1 4. Acknowledgement 0.0 -0.1 -2 0 2 CMCandATaknowledgethesupportfromthebrazilian Energy agenciesPCI/MCT andCNP . q Fig.8.Densityofstates oftheabandintheweakcouplingregime, U = 0.1, for V = 0.4, α = 1.5, n = 1.6 and ǫs = 1.0. Notice the absence ofbimodal structure. References 3. Final comments [1] AGeorges,GKotliar,W.KrauthandMRozenberg,Rev.Mod. Phys. 68 (1996) 13. [2] S Schwieger and WNolting, Phys. Rev. B64(2001) 144415 . The traditional view of the origin of ferromagnetism in [3] C. M. Chaves, A. Gomes and A. Troper, Physica B403 metals has been under intense scrutiny recently [1,2,8,9]. (2008)1459. [4] L.M.Roth, in AIP Conference Proceedings 18 Magnetism and Conventionalmean-fieldcalculationsfavorferromagnetism Magnetic Materials, (1973) 668. butcorrectionstendtoreducetherangeofvalidityofthat [5] Zubarev D N 1960 Sov. Phys.-Usp3 320. ground state [9]. In this paper, using the single site ap- [6] Hubbard J1964 Proc. Royal Soc. A281 401-419 . proximation,we obtain ferromagnetic solution for a set of [7] Herrmann T and Nolting W 1996-II Phys. Rev. B53 10579- parameters (e.g. U/W = 1.5 ,V/W = 0.2, ǫ = 1.0 and 10588. s [8] C. D.Batista etal, Phys.Rev. Letters 88 (2002) 187203-1. α=1.5). [9] D. Vollhardtetal, Adv. SolidState Phys.38 (1999) 383. Asacontinuationofthissystematicstudy,thegeneration [10]C. M.Chaves andA. Troper,to bepublished. ofthe phasediagram[10]forthe modelis inprogress. 4