ebook img

Cross Diffusion Systems: Dynamics, Coexistence and Persistence PDF

236 Pages·2022·4.096 MB·English
by  Dung Le
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cross Diffusion Systems: Dynamics, Coexistence and Persistence

DungLe CrossDiffusionSystems De Gruyter Series in Nonlinear Analysis and Applications | EditorinChief JürgenAppell,Würzburg,Germany Editors CatherineBandle,Basel,Switzerland ManueldelPino,SantiagodeChile,Chile AvnerFriedman,Columbus,Ohio,USA MikioKato,Tokyo,Japan WojciechKryszewski,Torun,Poland UmbertoMosco,Worcester,Massachusetts,USA VicenţiuD.Rădulescu,Krakow,Poland SimeonReich,Haifa,Israel Volume 40 Dung Le Cross Diffusion Systems | Dynamics, Coexistence and Persistence MathematicsSubjectClassification2020 Primary:35K45,35B65,35J47;Secondary:37C35,37C10 Author Prof.Dr.DungLe UniversityofTexasatSanAntonio DepartmentofMathematics OneUTSACircle SanAntonio,TX78249 USA [email protected] ISBN978-3-11-079498-4 e-ISBN(PDF)978-3-11-079513-4 e-ISBN(EPUB)978-3-11-079517-2 ISSN0941-813X LibraryofCongressControlNumber:2022943613 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2022WalterdeGruyterGmbH,Berlin/Boston Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com | To my parents Thuan Le and Nghia Nguyen who have literally sacrificed their lives forme TomyteacherDucMinhDuongwhofirstintroducedmetothebeautyofmathematics andconsideredmeasoneofhisbrothers Contents 1 Introduction|1 2 Preliminaries|11 2.1 Functionalspaces|11 2.1.1 Lebesguespaces|11 2.1.2 MorreyandCampanatospaces|14 2.1.3 BMOspace|16 2.1.4 Sobolevspaces|18 2.1.5 Compactness|20 2.2 Technicallemmasandvariousinequalities|23 2.3 Fixedpointtheorems|27 2.4 WeightedGagliardo–NirenberginequalityinvolvingBMOnorms–a simplecaseanditsimprovements|28 2.4.1 Notations|29 2.4.2 ThestrongGagliardo–Nirenberginequalityanditsproof|30 2.4.3 ProofofTheorem2.4.1|31 2.4.4 Anew(weak)Gagliardo–Nirenberginequality|34 2.4.5 Parabolicversion|38 3 Existenceresultsforcross-diffusionsystems|44 3.1 Modelsinbiologyandecology|44 3.2 Cross-diffusionmodels|45 3.3 Amoregeneralevolutioncross-diffusionmodel|46 3.4 Theconceptsofstrong,weakandstrongweaksolutions|47 3.5 Theexistenceofstrongweaksolutions|48 3.5.1 Theellipticityandspectralgapconditions|48 𝕃 3.5.2 Themap anditsfixedpoint|49 3.5.3 Mainresults|50 3.6 Uniqueness|52 3.7 Estimatesforthespatialderivatives|53 3.8 Theproofofthemainresult|56 3.8.1 Acompactnesslemma|57 𝕃: → 3.8.2 ThespaceX and X X iscompact|59 3.8.3 Proofofthemaintheorem|63 3.9 Thecorollaries|64 4 Scalartechniquesanddiagonalization|71 4.1 Onscalarequations|72 4.1.1 Globalboundednessandalocalestimate|74 4.1.2 Alocalpropertyoffunctionsinℳ(Ω,T)|77 VIII | Contents 4.1.3 Höldercontinuity|78 4.2 Applicationstosystems|83 4.2.1 Diagonalsystems|83 4.2.2 Fullsystems|85 4.3 Diagonalizationandlocaluniformboundedness|92 4.3.1 Ontheinverseofℋ(w1,w2)|99 4.4 Onconditions(iii)and(iv)ofTheorem4.3.3|102 4.4.1 AnapplicationofthestrongGNBMOinequality|103 4.4.2 AnapplicationoftheweakGNBMOinequality(parabolicversion)|110 4.5 Integrabilityoftemporalderivatives|114 4.6 Dynamicsandattractors|119 5 Existenceofsolutionstogeneralellipticsystems|121 𝕃 5.1 Themap andthespaceX |124 5.2 Estimatesforderivatives|126 5.3 Proofofthemaintheoremanditscorollaries|129 5.3.1 AnapplicationoftheweakGNBMOinequality|133 6 Existenceofsolutionstoellipticsystemsoftwoequations|137 6.1 Onscalarquasilinearellipticequations|139 6.1.1 Globalboundednessandalocalestimate|140 6.1.2 Höldercontinuity|143 6.2 Applicationstosystems|147 6.2.1 Diagonalsystems|148 6.2.2 Fullsystems|150 6.2.3 Triangularsystems|151 = 6.3 Thecasem 2|152 6.3.1 TheBMOsmallconditionandanexampleforSKTsystems|158 6.4 EigenvalueproblemsinorderedBanachspace-Indices|160 6.4.1 OBSsandpositivelinearoperators|160 6.4.2 TopologicalindicesonretractsofaBanachspace|163 6.5 Trivial,semitrivialandnontrivialsolutions|166 6.5.1 AbstracttheoryandindextheoryinorderedBanachspaces|166 6.5.2 Aconcreteexampleincross-diffusionsystems|168 6.5.3 Theindexandeigenvalueproblems|169 6.5.4 Patternformation|178 7 Persistenceinthedynamicsofevolutionprocesses|182 7.1 Persistence|183 7.2 Thedynamicsofevolutionarysolutions|186 7.2.1 Sometechnicalitiesandthegeneralcase|186 > 7.2.2 Differentboundaryconditionswhenτ 1|190 Contents | IX 7.2.3 GeneraldimensionN|194 = > 7.3 Onthenumberτ rL−1Mandtheconditionτ 1|197 λ > 7.3.1 Anapplicationoftheanti-maximumprincipletotheassumptionτ 1in (7.2)|197 7.3.2 Aminmaxformulaforτin(7.11)|203 < 7.4 Theeffectofcross-diffusionwhenτ 1|204 > 7.5 AdiscussionontheconditionthatrL−1M 1|212 λ Bibliography|219 Index|223

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.