DungLe CrossDiffusionSystems De Gruyter Series in Nonlinear Analysis and Applications | EditorinChief JürgenAppell,Würzburg,Germany Editors CatherineBandle,Basel,Switzerland ManueldelPino,SantiagodeChile,Chile AvnerFriedman,Columbus,Ohio,USA MikioKato,Tokyo,Japan WojciechKryszewski,Torun,Poland UmbertoMosco,Worcester,Massachusetts,USA VicenţiuD.Rădulescu,Krakow,Poland SimeonReich,Haifa,Israel Volume 40 Dung Le Cross Diffusion Systems | Dynamics, Coexistence and Persistence MathematicsSubjectClassification2020 Primary:35K45,35B65,35J47;Secondary:37C35,37C10 Author Prof.Dr.DungLe UniversityofTexasatSanAntonio DepartmentofMathematics OneUTSACircle SanAntonio,TX78249 USA [email protected] ISBN978-3-11-079498-4 e-ISBN(PDF)978-3-11-079513-4 e-ISBN(EPUB)978-3-11-079517-2 ISSN0941-813X LibraryofCongressControlNumber:2022943613 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2022WalterdeGruyterGmbH,Berlin/Boston Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com | To my parents Thuan Le and Nghia Nguyen who have literally sacrificed their lives forme TomyteacherDucMinhDuongwhofirstintroducedmetothebeautyofmathematics andconsideredmeasoneofhisbrothers Contents 1 Introduction|1 2 Preliminaries|11 2.1 Functionalspaces|11 2.1.1 Lebesguespaces|11 2.1.2 MorreyandCampanatospaces|14 2.1.3 BMOspace|16 2.1.4 Sobolevspaces|18 2.1.5 Compactness|20 2.2 Technicallemmasandvariousinequalities|23 2.3 Fixedpointtheorems|27 2.4 WeightedGagliardo–NirenberginequalityinvolvingBMOnorms–a simplecaseanditsimprovements|28 2.4.1 Notations|29 2.4.2 ThestrongGagliardo–Nirenberginequalityanditsproof|30 2.4.3 ProofofTheorem2.4.1|31 2.4.4 Anew(weak)Gagliardo–Nirenberginequality|34 2.4.5 Parabolicversion|38 3 Existenceresultsforcross-diffusionsystems|44 3.1 Modelsinbiologyandecology|44 3.2 Cross-diffusionmodels|45 3.3 Amoregeneralevolutioncross-diffusionmodel|46 3.4 Theconceptsofstrong,weakandstrongweaksolutions|47 3.5 Theexistenceofstrongweaksolutions|48 3.5.1 Theellipticityandspectralgapconditions|48 𝕃 3.5.2 Themap anditsfixedpoint|49 3.5.3 Mainresults|50 3.6 Uniqueness|52 3.7 Estimatesforthespatialderivatives|53 3.8 Theproofofthemainresult|56 3.8.1 Acompactnesslemma|57 𝕃: → 3.8.2 ThespaceX and X X iscompact|59 3.8.3 Proofofthemaintheorem|63 3.9 Thecorollaries|64 4 Scalartechniquesanddiagonalization|71 4.1 Onscalarequations|72 4.1.1 Globalboundednessandalocalestimate|74 4.1.2 Alocalpropertyoffunctionsinℳ(Ω,T)|77 VIII | Contents 4.1.3 Höldercontinuity|78 4.2 Applicationstosystems|83 4.2.1 Diagonalsystems|83 4.2.2 Fullsystems|85 4.3 Diagonalizationandlocaluniformboundedness|92 4.3.1 Ontheinverseofℋ(w1,w2)|99 4.4 Onconditions(iii)and(iv)ofTheorem4.3.3|102 4.4.1 AnapplicationofthestrongGNBMOinequality|103 4.4.2 AnapplicationoftheweakGNBMOinequality(parabolicversion)|110 4.5 Integrabilityoftemporalderivatives|114 4.6 Dynamicsandattractors|119 5 Existenceofsolutionstogeneralellipticsystems|121 𝕃 5.1 Themap andthespaceX |124 5.2 Estimatesforderivatives|126 5.3 Proofofthemaintheoremanditscorollaries|129 5.3.1 AnapplicationoftheweakGNBMOinequality|133 6 Existenceofsolutionstoellipticsystemsoftwoequations|137 6.1 Onscalarquasilinearellipticequations|139 6.1.1 Globalboundednessandalocalestimate|140 6.1.2 Höldercontinuity|143 6.2 Applicationstosystems|147 6.2.1 Diagonalsystems|148 6.2.2 Fullsystems|150 6.2.3 Triangularsystems|151 = 6.3 Thecasem 2|152 6.3.1 TheBMOsmallconditionandanexampleforSKTsystems|158 6.4 EigenvalueproblemsinorderedBanachspace-Indices|160 6.4.1 OBSsandpositivelinearoperators|160 6.4.2 TopologicalindicesonretractsofaBanachspace|163 6.5 Trivial,semitrivialandnontrivialsolutions|166 6.5.1 AbstracttheoryandindextheoryinorderedBanachspaces|166 6.5.2 Aconcreteexampleincross-diffusionsystems|168 6.5.3 Theindexandeigenvalueproblems|169 6.5.4 Patternformation|178 7 Persistenceinthedynamicsofevolutionprocesses|182 7.1 Persistence|183 7.2 Thedynamicsofevolutionarysolutions|186 7.2.1 Sometechnicalitiesandthegeneralcase|186 > 7.2.2 Differentboundaryconditionswhenτ 1|190 Contents | IX 7.2.3 GeneraldimensionN|194 = > 7.3 Onthenumberτ rL−1Mandtheconditionτ 1|197 λ > 7.3.1 Anapplicationoftheanti-maximumprincipletotheassumptionτ 1in (7.2)|197 7.3.2 Aminmaxformulaforτin(7.11)|203 < 7.4 Theeffectofcross-diffusionwhenτ 1|204 > 7.5 AdiscussionontheconditionthatrL−1M 1|212 λ Bibliography|219 Index|223