ebook img

Critical slowing down and fading away of the piston effect in porous media PDF

0.15 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Critical slowing down and fading away of the piston effect in porous media

Criti al slowing down and fading away of the piston e(cid:27)e t in porous media Bernard Zappoli * * CNRS-PMMH, ESPCI, 10 rue Vauquelin 75005 Paris, Fran e 6 Raphaël Cherrier** and Didier Lasseux** 0 ** CNRS-TREFLE, ENSAM, Esplanade des Arts et Métiers, 33405 Talen e Fran e 0 2 Jalil Ouazzani*** and Yves Garrabos*** n ***ESEME - ICMCB - CNRS - Université Bordeaux I - 87, a J avenue du Do teur S hweitzer, F 33608 Pessa Cedex Fran e. (Dated: 6th February 2008) 0 1 We investigatethe riti al speeding upof heatequilibration bythepistone(cid:27)e t (PE)ina nearly super riti alvanderWaals(vdW)(cid:29)uid on(cid:28)nedinahomogeneousporousmedium. Weperforman ] h asymptoti analysis of the averaged linearized mass, momentum and energy equations to des ribe c the response of the medium to a boundary heat (cid:29)ux. While nearing the riti al point (CP), we e (cid:28)nd two universal rossovers depending on porosity, intrinsi permeability and vis osity. Closer to m the CP than the (cid:28)rst rossover, a pressure gradient appears in the bulk due to vis ous e(cid:27)e ts, the PE hara teristi times ale stops de reasing and tendsto a onstant. Inin(cid:28)nitlylong samples the - t temperature penetration depth is larger than the di(cid:27)usion one indi ating that the PE in porous a mediais nota (cid:28)nitesize e(cid:27)e tas itis in pure(cid:29)uids. Closer to theCP, a se ond ross over appears t s whi h is hara terized by a pressure gradient in the thermal boundary layer (BL). Beyond this t. se ond rossover, the PE time remains onstant, the expansion of the (cid:29)uid in the BL drops down a and thePE ultimately fades away. m - PACSnumbers: 65.40.De,47.10.ad,47.15.G-,65.20.+w d n o Near riti al pure (cid:29)uids are Newtonian, vis ous and in in(cid:28)nite media but ultimately vanishes. The on(cid:28)g- c heat ondu ting (cid:29)uids. Their diverging ompressibility uration under study is that of two parallel and in(cid:28)nite [ L allows a fourth energy transport me hanism, alled the planesdistant by limiting a homogeneousrigidporous 1 piston e(cid:27)e t (PE), to be ome prominent [1, 2, 3℄. The mediumsaturatedbyanear riti al(cid:29)uidinitiallyatrest, v ρc (cid:29)uid ontained in thermal boundary layers (BL) formed at thermodynami equilibrium, at its riti al density 6 τ 1 9 along heated walls expands, generates a ousti ompres- and set just above its riti al temperaturet′s>o t0hat hh . 1 sions waves whi h (cid:29)ash ba k and forth in the (cid:28)nite size This de(cid:28)nes the referen e ondition′s. At , the left φ(t) 1 sample(cid:29)uid,andindu esanadiabati heatingofthebulk boundary is heated with a (cid:29)ux while the right one 0 mu hfasterthanitwouldbebyheatdi(cid:27)usion. The har- remains thermally insulated. In the rest of this paper, 6 c 0 a teristi time of heat equilibration tends to zero to 0 as subs ripts and are used to denote quantities in the 0 τ3/2 τ / for a vdW (cid:29)uid, where is the dime(TnsionTles)s/dTis- (cid:29)uid phase at the CP and in the referen e onditions re- t C C a Ttan etothe riti alpoint(CP)de(cid:28)ned as T− , spe tively. m being the temperature of the (cid:29)uid and C its riti- As super riti al (cid:29)uids an be des ribed as ompress- - al temperature. This remarkable (cid:28)nite size me hanism ible, vis ous, heat ondu ting and newtonian van der d ontrasts with the riti al slowing down of heat di(cid:27)u- Waals (cid:29)uids, we onsider the averaged transport equa- n o sion. The homogeneous hara ter of both temperature tionsoveranelementaryvolume ontainingalargenum- c andpressure(ex eptinthethermalBLfortemperature) ber of pores to be identi al to that obtained for an ideal : aretypi al featuresof the PE. Vis ous e(cid:27)e ts arealways gas in a porous medium. The masss onservation equa- v i negligible in bulk super riti al (cid:29)uid although a ounting tion is given in [5℄. The momentum balan e is expressed X fora strong divergen eof the bulk vis osity [4℄ may lead by the unsteady form of the Dar y equation [6℄ whi h r to small s ale thermal boundary layer gradients. needs to be valid that the pressure gradient at the pore a Inthisletter,weaddressthe1Dproblemofheattrans- s aleissmall omparedto thatat the ma ros opi s ale. portinanear riti al(cid:29)uid ontainedinaporousmedium The energy balan e whi h a ounts for the work of pres- . We onsiderthegravityve tororientedperpendi ularly sure for es is similar to that of pure (cid:29)uids, sin e the one totheplanarboundariesofthethinsample(1-Dapprox- temperature model as derived in [7℄ leads to a solid on- imation)orthatgravityisequibratedbyinertiafor esas tribution whi h only modi(cid:28)es the heat apa ity and the in spa e laboratories. We basi ally (cid:28)nd that pressure thermal on′du tivity of the pure (cid:29)uid.′ t = 0 x = 0 gradientswhi h build up progressivelywhile nearing the At time , heat deposited at di(cid:27)uses into CP((cid:28)rstinthebulkandtheninthethermalBL) onsid- themediumandwederivetheasymptoti analysisofthe erably weaken and slow down the PE whi h still exists oupled equations. To this end, we divide the domain 2 δ ε/K iδnto1two sub systems: a thin di(cid:27)usion BL of thi hness , The ratio an v1a0ry−3over1s0e4v)eral ordeεr2s/Kof mag- hh when referred to the sample length, and the bulk. nitude (typi ally from to while is al- The hara teristi heat (cid:29)ux at the wall is su h that the ways mu h smaller than unity. Equation (3) is the in- averaged density, velo ity, pressure ηa˜n,dη˜t,eηm˜ peratuη˜re of ternal energy bala(n e(3e/q2u)aδt−io1nη˜ wu˜h)i h shows the work ρ u P T u z respe tive (cid:28)rst orders of magnitude and in of pressure for es − and heat di(cid:27)usion (ε γ0 δ−2η˜ τ−.05T˜ ) the BL undergo small perturbationsθw=itςhtreςsp1e tθto the Pr0(γ0−1) T zz terms. The near riti al freerfreerden toe aontdimiteions sa.leIfwwhei dhenisotςe−1 time,s lhohng,eritshraen- (cid:29)u(cid:16)id thermal(cid:17) ondu tΛivFity=, ΛΛF′F, is=deΛs ′bri+bedτ−b0y.5th=emτ−e0a.n5 thesamplea ousti hatra teristi timewhi hde(cid:28)nesthe (cid:28)eld thΛe′ory [8℄ i.e. Λ′0F Λ′0FΛ′F ∼ non dimensional time as indi ated below. The non- where b isits ba kgroundvalue and 0 its riti alam- dimensional,res aled,governingequationsintheBLare: plitude. ςη˜ ρ˜ +δ−1η˜ u˜ =0 In (3), we have negle ted the solid heat ondu tivity ρ θ u z ςη˜ u˜ +δ−1γ−1η˜ P˜ = (4/3)(ε/K)η˜ u˜ (1) ompared to the diverging one of the near- riti al (cid:29)uid u θ 0 P z − u (2) and the Maxwell approximation [9℄ was used to derive the equivalent heat ondu tivity of the porous medium 2εp ΛF = 2εp τ−0.5 Pr to give 3−εp 3−εp . 0 is an equivalent (ρCv)∗ςη˜TT˜θ = +−23(cid:16)δP−r10η˜(γγu00u˜−z1)(cid:17)εδ−2η˜Tτ−0.5T˜zz (3) Prerfaenredntc l(cid:16)′entuh=merbm(cid:17)eγr0aldrdei(cid:28)(cid:27)nu(cid:16)esdivbityy(cid:17)Pder(cid:28)0n=edεDbpTyν00DwTh0e=re3D2−εεTpp0ρΛcisc′0F′p0a where p0 γ0−1 is the spe i(cid:28) heat at onstant pres- η˜ P˜ = 3 η˜ T˜+ 9τη˜ ρ˜ sure of the ideal gas. P 2 T 4 ρ (4) −δ−ρ˜1=τ−u˜(cid:0)0.=5(cid:1)η˜TT˜T˜=z =P˜ϕ=W0(θ) at zθ ==00 (5) τ−O1ndeivsehrgoeunld enooftethtehhaetatth eapmae aitny(cid:28)aetld otnhsetaonryt pyτri0ee.sl5dsusrae and thus a heat di(cid:27)usivity whi h goest∗o zero as . In at (6) (ρC ) v u˜(z,θ)=0 z =0 thelefthandsideof(3),theterm istheequivalent at (7) Intheseequations,dimensionlesstemperature,density, bnyon(-ρdCimv)e∗ns=ionγa01−l h1e+at1 −εapεppaρ sictsy,awth eornestcavn0t=vocl′vru0m=e gγi0v1−en1 pressureand velo ityarede(cid:28)ned fromthe orresponding is the dimensionless heat apa ity at onstant volume of dimensional quantities denoted with a prime as follows: the near- riti al (cid:29)uid oτn−s0i.d11ered as onstant be ause of • T(x,t)= T′(TxC′,t′) =1+τ +T˜(z,θ)η˜T; iρtsscsρwetchaek=ddiiρmv′secer′sngseino neleasssheat awpah eintynoefartihnegstohliedCdPe(cid:28)annedd ρ(x,t)= ρ′(x′,t′) =1+ρ˜(z,θ)η˜ by s s ρcr . • ρC ρ; Equation (4) is the linearized vdW equation of state. • P(x,t)= P′γ(0xc′20,t′) =P0+η˜PP˜(z,θ) E(zqu=at0i)onwh(5e)reis0t6heWbo(uθ)nd6ar1yi sotnhdeittioimneamt tohdeullaetftiownaolfl where r, γ0, c0 are the ideal gas onstant per unit mass, the (cid:29)ux deϕposited at this boundary. The dimensionless t hoerrerasptioonodfinsgpeid ie(cid:28)a l ghaesa;tsua(xn,dt)th=eus′o(uxc0′n,td′)v=eloη˜ uiu˜ty(zi,nθ)t.he pisatri amheeatetr(cid:29)uxindeb(cid:28)onuenddaarsyϕ o=ndWiTtcm′iΛoa′0nxFL(5w)hiesrtehWe mhaaxrais ttehre- maximum value over time of the deposited (cid:29)ux at the Thze=dimxe′nsiδo−n1les=s bxoδ−un1dary layxer oordinate is given boundary. Equation (6)is the initial onditions. by: L where is the dimensionless (cid:16) (cid:17) Inthebulkregρi¯o(nx,,tθh)eu¯go(vxe,rθn)inPg¯e(xqu,θa)tionsfT¯or(xth,θe)per- spa e variable at the sample length s ale while the time turbedvariables , , and are t x δ varita=blec0t′isεreferred to the a ousti time and is de(cid:28)ned similar to (1-4) ex ept the spa e variable is , is re- by L . is the ratio, far fromL the riti al tempera- pη¯la, η¯ed,η¯by,η¯1, the orders of magnitude are respe tively, ture,ofthesamplea ousti time c0 tothesamplevis ous ρ u P T andtheboundaryandinitial onditionsare: di(cid:27)usiontime Lν02,ν0 being thekinemati vis osityofthe T¯x =0 x=1 at (8) (cid:29)uid in the referen e onditions. ρ¯=u¯=T¯ =P¯ =0 θ =0 ε at (9) 10F−o8rusual riti al(cid:29)uids isasmall parameteroforder u¯(x,θ)=0 x=1 ; largervalues orrespondtomorevis oussuper rit- at (10) K i al (cid:29)uids or to thinner sample′s. The Dar y number K Mat hing onditions between the bulk and the BL re- is the intrinsi permeability divided by the squared gions lose the equations, namely ε hpa:raK t=eriKsti′ leεnpgLt2h.ofKt′hiessparmoppolertaionndalbtyotthheepsqoruoasrietdy zl→im∞η˜FF˜(z,θ)=xli→m0η¯FF¯(x,θ) , (11) hara rterist(cid:14)i (cid:0)pore(cid:1)size and the porosity is the ratio of F the total pore volume to the total volumeof the sample. where is a physi al unknown. 3 Finding an approximate solution of the equations smaτl−le0r.5thantheheatdi(cid:27)usiontimewhi hgoestoin(cid:28)nity (cid:28)rst needs determining the orders of magnitude fun - as . This riti al speeding up of heat equilibration ttihoants.η˜TBδτou0.n5dϕar=y η˜oTn.ditTiohne [ 5o℄ufpolrintgemofpetrhaetutrheerimmpodliyes- I nonottrhaestrswwoirtdhstahsefa rritais a lohnedaittiodni(cid:27)τuisiiτocn1 s=lowεin2/gKdo23wnis. nη˜Tami= vη˜aPria=bleτsη˜ρthrough the equation of state [4℄) gives ful(cid:28)lled, the PE is not τa(cid:27)e ted by the poro(cid:0)us ma(cid:1)trix. gives ςη˜ρ = δ−1η˜uw.hMileortehoevemr,aasss t hoensmeravta thioinngebqeutawteioenn τWc1heanndnaeaprirnegssuthreegCraPd,ientbeb uoimldessu(cid:28)prisnt tohfethbeulkorpdherasoef. di(cid:27)usionandtheworkofpressurefor esintheboundary Therefore, a (cid:28)rst rossoverto porous e(cid:27)e ts arises when layer(di(cid:27)usionmat heswηi˜thδt−h1e=biεgδe−st2τte−r0m.5η˜intheequa- the pressure gradient and the average vis ous stress in u T tion) [10℄ is expressed by , the pre- (16) be ome of the same order of magnitude, i.e. when viousequations(cid:28)nallylinkspa eandtimes alesthrough ςδ2 =ετ0.5 2 the relation and give the order of magnitude ε2 3 η˜ = εϕ τ τ = u of the velo ity in the BL The above orders of ≈ c1 K (17) (cid:18) (cid:19) magnitude allow writing the Dar y equation as ςu˜θ+ε−1τ0.5P˜z/γ0 = 4/3(ε/K)u¯ When written in dimensional parameters, this rossover − (12) K/ε 1 value be omes hh (13) T′ T (ν′/c )4/3 − c = 0 0 If ondition (13) is ful(cid:28)lled, whi hτ wτill b=e suε2p/pKose2d Tc K′2/3 (18) c2 valid throughout the paper, and if ii , τ c1 whi h will be further ommented later in the t(cid:0)ext, th(cid:1)en it thus is a universal value, only depending on the the following hierar hy holds (cid:29)uid and solid matrix prνo′pe=rties0..66.10−7m2s−1 c′ = ς 1 ε/K ε−1τ0.5 3.1F0o2rm .asr−b1on dioxide 0 , 0 hh hh hh (14) K′/ε =10−,14anmd2 for reasonable values of the0.r0a9tKio P˜ =0 P ,the rossovervalueisatabout z and the Dar y equation in the BL redu es to . awayfromthe riti altemperature. Oneshouldnotethat The BL solution shows that all the variables go to a formorevis ous riti al(cid:29)uids,this rossovervaluewould onstant at the outer edge of the BL. Considering the lim η˜ u˜(z,θ)= be mu h farther from the riti al temperature. mat hing ondition(11)forthevelo ity,z→∞ u limη¯ u¯(x,θ) The solution of the system of equations when nearing u x→0 , and looking for a temperature homo- the CP is obtained by performing a rossovertype solu- τ geneizationtimes ale(bothtemperatureinthebulkand tion, e.g. by rτ˜ep=eaτti/ngε2t/hKe a2b/o3ve analysis when tends intheBLareofthesameorderofmagnitude)thusgives: to zero while is kept onstant. Doing so leads to the followi(cid:0)ng ord(cid:1)ers of magnitude: η˜T =η¯T =δϕτ0.5 and η˜u =η¯u =εϕ,. (15) η˜T =η˜p =η¯T =η¯P =η¯ρ =τc31/2ϕ , and (19) By arryingthelatterintothebulkenergybalan eand η˜u =η¯u =εϕ mat hing the transient term with the term representing ς =K/ε the work of pressure for es (di(cid:27)usion in the bulk being δ = τ as well as to the following time s ale parameter 2 negligible), we obtain the BςL=tεhτi− k3n/2ess and thus and thermal boundary layer thi kness δ = ε2/K 3. the value of the time s ale . As beyond the rossoverwe have per de(cid:28)(cid:0)nition(cid:1) These orders of magnitude allow writing the Dar y's Equation in the bulk as: τ3/2 ε2/K hh τε32/2 u¯θ+τ3/2 Pγ¯0x =−34(cid:0)ε2/K(cid:1) u¯ (16) whi h implies θ = ε2ε/tKhh εt/τ3/2 . (20) 2 If onditionτiiετc1 =K ε2ε/Kτ33/2isveri(cid:28)ed,thefollowing As θPE = εt/τ3/2 is the time variable orresponding hierar hy holdsτ3/2hhε(cid:0)hhKhh(cid:1)ε aP¯nd=Da0r y's equation tothePE in thepure(cid:29)uid, we an on ludethatthePE x in the bulk phase also redu es to . Under these time s ale in porous media is longer than the one in the onditions, the governingequationsareexa tlythe same pure (cid:29)uid. The e(cid:27)e t of the solid matrix is thus to slow as those for the pure super riti al (cid:29)uid [10, 11℄ and the downthetemperaturehomogenizationwhose harateris- ε/K solution in the bulk displays homogeneoςu−s1temperature, ti time tends to a onstant equal to when referred pressureanddensity. ThePEtimes ale ,i.e. thetime to the a ousti time instead of being shorterand shorter s aleonwhi htemperatureinthesampleishomogenized as in pure (cid:29)uid. We all the phenomenon the porous τ3/2 bythermo-a ousti heatinggoestozeroas . Itisthus saturation of the riti al speeding up. 4 τ 10−5K c2 Combining(1-5)withtherelevantordersofmagnitude ( ≈ for arbon dioxyde for L=10 mm) may leadsto adi(cid:27)usion equationfordensity in the BLwhose suggestseverelimitationstotheNavierStokesapproa h, solution an be written as follows anew rossoveranalysisleadsto adi(cid:27)usion equationfor θ density in the boundary layerwhose solution, 2 ρ˜(θ,z)=−3AZ KT (θ−u,z)W(u)du (21) ρ˜(θ,z)= −23A2(τ˜2)τ˜2−1/2 0 θ K (θ u,z)W (u)du, (25) T2 A(τ˜)= 4(γ /γ 1)Pr−1τ˜0.5 Aτ˜0.5 0 − where 3 0 0− 0 ≡ is the dif- R fusion oe(cid:30) ient and 1 z2 where the asso iated di(cid:27)usion oe(cid:30) ient KT (u)= πA(τ˜)uexp(cid:18)4−A(τ˜)u(cid:19) (22) A2(τ˜2)= 2176γ0τ˜2−3/2+A(τ˜2)−1 −1 (26) p (cid:20) (cid:21) is a normalized Gaussian di(cid:27)usion kernel. Going now to the bulk equations we obtain a di(cid:27)usion equation for and di(cid:27)usion kernel temperature whose solution is: 1 z2 K (u)= exp T2 θ πA2(τ˜2)u! (cid:18)−4A2(τ˜2)u(cid:19) (27) A T¯(θ,x)= ∗ K¯T (θ u,x)W(u)du, p (ρC ) − (23) v Z indi ates that both mole ular di(cid:27)usion and thermo- 0 a ousti energy transfers o ur at the BL s ale. The expresionfor the expansion velo ity whi h generates the where ∞ heating a outi (cid:28)eld, K¯ (u,x)=1+2 ( 1)n T n=1 − u∞(θ) = lim u(z,θ)=u¯(θ,x=0) P ×ceoxsp[n−πn(12π2Bx)(]tildeτ)u (24) =z32→A∞2(τ˜2)τ˜2−1.5W (θ) , (28) × (cid:0) − (cid:1) B(τ˜) = τ˜1/2 is the kernel as∗so iated with temperature and indi atesthatthePEfadesawayas 2 whennearingthe 27/16γ (ρC ) τ˜3/2 0 v is an e(cid:27)e tivedi(cid:27)usion oe(cid:30) ient. riti al point whi h is howeverbeyond any experimental (cid:0)The(cid:28)rst orre ti(cid:1)onbroughtbythepresen eoftheporous apability in normally vis ous super riti al (cid:29)uids. n=1 medium appearsτ˜in1theK¯ term in the series (24). T In the limit hh , be omes the di(cid:27)usion ker- K¯ (u) = 1 exp z2 u nel T √πB(τ˜)u −4B(τ˜) whi h indi- (cid:18) (cid:19) (cid:16) (cid:17) [1℄ A. Onuki, H. Hao, and R. A. Ferrell, Phys. Rev. A 41, ates that there is an e(cid:27)e tive energy penetration depth B(τ˜) 2256 (1990) inanin(cid:28)niteporousmediumsaturatedbyanear [2℄ H. Boukari, J. N. Shaumeyer, M. E. Briggs, and R. W. priti al (cid:29)uid, larger than the heat di(cid:27)usion penetration Gammon, Phys.Rev. A 41 2260 (1990) depth on the same time s ale. An e(cid:27)e tive energy trans- [3℄ B. Zappoli, D. Bailly, Y. Garrabos, B. le Neindre, P. fer pro ess in an in(cid:28)nite bulk thus exists whose penetra- Guenoun,andD.Beysens,Phys.Rev.A41,2264(1990) B(τ˜) tion depth, is longer than the di(cid:27)usion one on [4℄ P. Carlès, Phys.Fluids 10, 2164 (1998) the same timpe s ale. This energy transfer, faster than [5℄ A.S. Altevogt, D.E. Rolston and S. Whitaker, Adv.Wa- ter Res, 26, 695 (2003) di(cid:27)usion in a onve tionfree in(cid:28)nite medium, an be in- [6℄ S. Whitaker, The method of volume averaging, (Kluwer terpreted as due to the partial re(cid:29)e tion of the heating, A ademi Publishers, Dordre ht,1999) boundary layer generated, a ousti waves on the porous [7℄ M. Quintard and S. Whitaker, Int. J. Heat Mass Trans. matrix. Thethermoa ousti originofthis(cid:28)nitesizee(cid:27)e t 38, 2779 (1195) ould be on(cid:28)rmed by looking at the a ousti propaga- [8℄ H.E.Stanley,Introdu tiontoPhaseTransitionsandCrit- tionmodesaswasdoneforthePEinapuresuper riti al i al Phenomena, (Oxford University Press, New York, 1971) (cid:29)uid [11℄. τc1 [9℄ J.Cn.dMaxwellAtreatiseonele tri ityandmagnetismVol. When nearing the CPτ muτ h = losεe2r/Ktha2n , the 1 2 edition, (Clarendon Press, Oxford, 1891, reprinted c2 already-mentioned value ≈ is rea hed byDover,New York, 1954) for whi h a pressure gradient appea(cid:0)rs in(cid:1)the BL (see [10℄ B. Zappoli, Phys. Fluids A 4, 1040 (1992) (12)). Although the small value of the distan e to the [11℄ B.Zappoli andP.Carlès, Eur.J.Me h. B/Fluids14,41 CP of this se ond rossoverfor usual super riti al (cid:29)uids (1995)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.