ebook img

Critical exponents for the homology of Fortuin-Kasteleyn clusters on a torus PDF

0.47 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Critical exponents for the homology of Fortuin-Kasteleyn clusters on a torus

Critical exponents for the homology of Fortuin-Kasteleyn clusters on a torus 9 Alexi Morin-Duchesne∗, 0 De´partementdephysique 0 2 Universite´ deMontre´al,C.P.6128,succ.centre-ville,Montre´al n Que´bec,Canada,H3C3J7 a J Yvan Saint-Aubin† 1 De´partementdemathe´matiquesetdestatistique 2 Universite´ deMontre´al,C.P.6128,succ.centre-ville,Montre´al ] Que´bec,Canada,H3C3J7 h c e m January21,2009 - t a t s . Abstract t a m AFortuin-Kasteleynclusteronatorusissaidtobeoftype{a,b},a,b∈Z,ifitpossibletodrawacurve d- belongingtotheclusterthatwindsatimesaroundthefirstcycleofthetorusasitwinds−btimesaround n thesecond. EventhoughtheQ-Pottsm√odelsmakesenseonlyforQintegers,theycanbeincludedintoa o familyofmodelsparametrizedbyβ= QforwhichtheFortuin-Kasteleynclusterscanbedefinedforany c realβ ∈ (0,2]. Forthisfamily,westudytheprobabilityπ({a,b})ofagiventypeofclustersasafunction [ of the torus modular parameter τ = τr +iτi. We compute the asymptotic behavior of some of these probabilitiesasthetorusbecomesinfinitelythin. Forexample,thebehaviorofπ({1,0})isstudiedalong 2 v thelineτr =0andτi →∞.Exponentsdescribingthesebehaviorsaredefinedandrelatedtoweightshr,s 5 oftheextendedKactableforr,sintegers,butalsohalf-integers.Numericalsimulationsarealsopresented. 2 Possiblerelationshipwithrecentworksandconformalloopensemblesisdiscussed. 9 Keywords:Fortuin-Kasteleynclusters,torus,homologyprobabilities,homotopyprobabilities,percolation, 2 Isingmodel,logarithmicminimalmodels,SLE. . 2 1 8 0 : v i X r a ∗[email protected][email protected] 1 Contents 1 Introduction 2 2 Theprobabilityπ({1,0})inthelimitτ =0,τ →∞ 5 r i 3 Probabilitiesπ({a,b})inthelimitτ =c/d,τ →0 9 r i 4 ThelimitQ→0 11 5 MonteCarlosimulations 13 5.1 ModelswithrationalandirrationalQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.2 Behaviorofπτ({1,2})closetoτ= 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1 Introduction One of the main observables of two-dimensional percolation is the crossing probability between two dis- jointsubsetsoftheboundaryofadomain. Thisdomainisusuallytakenhomeomorphictoadisk. AsLang- landsandhiscolleagues[11]werefinishingtheirnumericalstudyofuniversalityandconformalinvariance of crossing probabilities, I. Gelfand suggested to explore percolation on compact Riemann surfaces. The simplestsurfacetostudyisthetorusandthemostnaturalobservableisthenthehomologicpropertiesof thepercolatingcluster,ormoreprecisely,theprobabilitythataconfigurationcontainsahomologicallynon- trivialcluster. (Sincetheseclustersaregeometricobjects,itmightbeeasiertothinkabouttheirhomotopic propertiesinsteadoftheirhomologicalones.) Letω1andω2bethetwo-dimensionallinearlyindependent vectorsalongthetwosidesoftheparallelogramdefiningthetorus. Inthefollowingthesewillbeidentified topointsinthecomplexplane. Ifanon-trivialclusterexistsandifitwindsatimesalongω1 ofthetorus whileitwrapsbtimesalong−ω2,theclusterissaidtobeoftype{a,b}.Allothernon-trivialclustersofthat configuration,ifany,willbeofthesametype.(Theintegersaandbarecoprimes.Types{a,b}and{−a,−b} areconsideredidentical.) Forthatreason,thehomologypropertyofaconfigurationmaybedefinedasthe typeofitsnon-trivialclusters. Iftheconfigurationcontainsnonon-trivialcluster,itissaidtobeoftype{0}. Finally,iftheconfigurationcontainsaclusterthathasbothapatharoundthefirstcycle,thatisalongω1, andapathalongω2,thisconfigurationisoftypeZ×Z.Withthatnotation,eachconfigurationisassociated withoneofthesubgroupsHofthehomologygroupZ×Zofthetorus: {0},Z×Zand{a,b}witha,bco- primes. Thesamenotation{a,b}isusedforthetypeofaconfigurationandthesubgroupgeneratedbyan elementofthattype. Langlandsetalmeasuredtheprobabilityofafewofthesesubgroupsforpercolation andgavesomenumericalevidencefortheirconformalinvariance. Pinson [17] obtained analytic expressions for the probability of these various subgroups as functions ofthequotientτofthefundamentalperiodsω1,ω2 ∈ Cofthetorus. Hiscomputationreliesonaclever argument giving an orientation to the curves bounding clusters. (See [14, 9].) This is done in a way that doesnotchangethepartitionfunction,butdoesallowfortheidentificationofthehomologypropertiesof interveningclusters. Hiscomputationismathematicallyrigorous,exceptforthesteptakingthelimitasthe meshgoestozero;forthis,heusedNienhuis’renormalizationgroupargument[14]thattiesthequantities understudytoknownresultsfortheCoulombgas. Amorerigoroustreatmentofthisstepremainsopen. Arguin [1] extended Pinson’s argument to Q-Potts models, Q = 1,2,3,4. To do so, he considered the Fortuin-Kasteleyngraphsorclustersofconfigurations. Thesearethenaturalextensionsoftheclustersof percolation,thePottsmodelwithQ=1. ArguinshowedthatPinson’sformulaeneedonlyasmallchange fortheQ-PottsmodelwithQ ≥ 2. Healsosupportedhisnewexpressionwithnumericaldataforthefour integervaluesofQ. WorksonorusingprobabilitiesofhomologysubgroupsofFKclustershasnotbeenlimitedtothethe- oreticalpredictions. Ziff,Lorenz,Kleban[23]werethefirsttoprovidenumericalsupportfortheiruniver- sality. Later Newman and Ziff [13] used them to give a precise estimate of the critical probability for site percolation on a square lattice. It was then the most precise available estimate. And recently they were 2 againusedtoobtainpreciseestimatesforcriticalprobabilityforpercolationonseverallattices[7]. (These probabilitiesarecalledwrappingprobabilitiesintheseworks.) InthedefinitionofPottsmodels,Qgivesthenumberofstatesaccessibletothebasicrandomvariables, often called spins. As such, Q must be an integer. When the partition function is rewritten in terms of Fortuin-Kasteleyngraphs(hereafterFKgraphs),theparameterQappearsintheBoltzmannweightasQNc whereNc isthenumberofFKconnectedcomponentsintheconfiguration. Inthisformulation,thecondi- tionthatQbeanintegermayberelaxed. Onethengetsaone-parameterfamilyofmodels,usuallystudied for the values of Q in the interval (0,4]. It is between this family of models and the family of stochastic Loewnerprocessesthataclosetieseemstoexist,andhasbeenestablishedforsomeparticularcases. The stochasticLoewnerequationwithparameterκ(SLEκ)isbelievedtodescribethegrowthoftheboundary ofaFKgraph. TheexactrelationshipbetweenthetwoparametersQandκis 4π Q=4cos2 κ withκ ∈ [4,8)and,again,Q ∈ (0,4]. Percolationcorrespondstoκ = 6(andQ = 1)andtheIsingmodelto κ = 16 (Q = 2). ThemathematicaltoolstodescribenotonlytheboundaryofasingleFKcluster, butthe 3 setofloopsdescribedbytheboundaryofallclustersinaconfigurationarenowemerging. Conformalloop ensembles,definedbyCamiaandNewmanforpercolation[4]andmoregenerallybyWerner[22](seealso [3]),mightallowfortherigorousstudyofhomologicalpropertiesofconfigurations,asdefinedandstudied byLanglandsetal,PinsonandArguin. Thegoalofthepresentpaperistoextractfromtheknownexpressionsoftheprobabilitiesforthevari- oushomologysubgroupstheirasymptoticbehaviorfortwolimitingcases. Thefirstiswhenthequotientτ oftheperiodsgoestoinfinityortoarealrationalnumber. ThesecondiswhenQgoestozero. Thereason tostudythelatterismostlycuriosity. Fortheformer,thereasonistwofold. ManyresultsprovedusingSLE techniquesdescribeasymptoticbehavior.Thefirstreasonisthereforetoseekexponentstodescribelimiting behaviorthatmightbeeasiertoobtainwithSLE(orCLE).Thesecondreasonistoprobedeepertherela- tionshipbetweenSLEandconformalfieldtheory(CFT).Severalcriticalexponentsappearing(rigorously) inthecontextofSLEhadbeenpredictedwithinCFT,andalargesubsetoftheseappearedintheKactable oftheassociatedminimalconformalmodel. Itisagreed,butnotproved,thatSLEκ describespropertiesof theconformaltheorywithcentralcharge (cid:18) (cid:19) κ 4 c(κ)=13−6 + . 4 κ Minimalmodelsappearwhencandκarerational. Letκberationalandoftheform4p(cid:48)/pwithp(cid:48) >p≥1, coprimeintegers.Theconformalspectrumoftheminimalmodelwithcentralchargec=c(κ)isconstructed fromtheVirasorohighestweights (κr−4s)2−(κ−4)2 hr,s = 16κ , 1≤r≤p−1, 1≤s≤p(cid:48)−1. (1) Ithasbeenrecognizedhoweverthattheminimalmodels,constructedoutoffinitesetsofprimaryfieldsand thereforeofhighestweightshr,s,areprobablytoorestrictiveandmightnotcaptureallphysicalobservables. Half-integersrandshavebeenconsidered[20]andseveralworksaboutlogarithmicminimalmodelshave shownthattheupperboundsonrandsneedtoberelaxed.(See,forexample,[12,15]forrecentarguments.) Maybe one of the most striking examples of this fact is Cardy’s formula that describes the probability of crossing within a rectangle for percolation. For limiting geometries, that is for rectangles very wide or narrow,theprobabilitiesapproach0or1withthepowerofh1,3 = 13,anexponentthatdoesnotbelongto theminimalset. Anotherexampleisrelatedtotheproblemstudiedinthepresentnote. In[2],Arguinand Saint-Aubinshowedthat,whenthequotientτofthefundamentalperiodsofthetorustendstozeroalong theimaginaryaxis,theprobabilityπ({1,0})fortheIsingmodelgoesto1asintuitivelyitshould,butmore preciselyitgoesasπ({1,0})→1−(q2)81f1(q2)−(q2)31f2(q2)−... whereq=eiπτandf1andf2areanalytic inaneighborhoodofq = 0. Theexponentsaretwicethehighestweightsh1,2 = 116 andh3,3 = 16;thefirst belongstothespectrumoftheminimalmodel,theseconddoesnot. Itisthisobservationthatledustoask 3 2 5 3 4 3 Τ Τ(cid:43)1 1 2 3 Ω 2 1 3 Ω 1 (cid:45)5 (cid:45)4 (cid:45)1 (cid:45)2 (cid:45)1 1 2 1 4 5 3 3 3 3(cid:45)1 3 3 3 3 3 Figure1: Thetorusinthecomplexplane,withτ=−2/3+i whetherexponentsobtainedbytakinglimitsofthegeometrywouldalwaysbeintheextendedKactableof thecorrespondingmodelswhenκisrational. (Everyconformalweighthr,s isrepeatedaninfinitenumber oftimesintheextendedKactable. ArguinandSaint-Aubinchose(r,s) = (1,2)and(3,3)fortheleading exponents of the Ising model. We shall come back to this choice after determining the exponents for the generalcase.) Ournotationsarethefollowing. ThetorusisidentifiedwiththequotientC/{ω1,ω2}where{ω1,ω2}is the integral lattice generated by ω1,ω2 ∈ C such that 0,ω1,ω2 are not colinear. We choose ω1 = 1 and Imω2 >0. Theirquotientτ=ω2/ω1isthemodulusofthetoruswithτrandτi >0itsrealandimaginary parts. Figure 1 shows these basic elements for a torus with τ = −2 +i. We follow the convention set in 3 [17, 1] for the winding numbers: they are positive in the direction of ω1 and −ω2. Figure 2 shows FK configurationsofthreedifferenttypesdrawnonthetorusτ = i. Configuration(c),forexample,isoftype {2,−1}accordingtotheaboveconvention. Itisnaturaltobreakthepartitionfunctionintosumsoverconfigurationsofagiventypeorgenerating (a) (b) (c) Figure2: ExamplesofFKconfigurationsoftype(a){0},(b)Z×Zand(c){2,−1}groups,drawnonthetorus withτ=i 4 agivensubgroupH. Ifa∧bdenotesthegreatestcommondivisorofaandb(witha∧0=aforalla),the partitionfunctionis (cid:88) Z=Z({0})+Z(Z×Z)+ Z({a,b}). (2) a∧b=1 The observables under study are the probability of a given subgroup H, namely π(H) = Z(H). All these Z quantitiesdependonthesizeofthelatticecoveringthetorusandthemodellabelledbyQ. (Forclaritywe sometimesaddanindex,Qorτ,toquantitiesunderstudy,e.g.Z=ZQ.) Theirthermodynamiclimit,when themeshsizegoestozero,areknownatthecriticaltemperature. TheexpressionsobtainedbyPinson[17] forQ=1andgeneralizedbyArguin[1]forQ∈{1,2,3,4}are (cid:88) Z({a,b})= Zbk,ak(g/4)(cos[πe0k]−cos[πk]) (3) k(cid:15)Z(cid:88) Z({0})= 12 Zm,m(cid:48)(g/4)cos[π(m∧m(cid:48))] (4) m,m(cid:48)(cid:15)Z Z(Z×Z)=Q×Z({0}) (5) where (cid:114) 1 g Zm,m(cid:48)(g)= |η(q)|2 τ e−πg|mτ−m(cid:48)|2/τi (6) i and Q=4cos2[πe0/2], g=4−2e0, e0 =2−8/κ, Q∈(0,4], e0 ∈[0,1), κ∈[4,8). (7) TheparametersQ,g,e0andκareallinone-to-onecorrespondencetooneanotherintheirrespectiverange. (We u(cid:81)se them in the way historical developments have introduced them.) Dedekind function is η(q) = q1/24 (1−qn). Pinson’sandArguin’sargumentsextendtriviallytothemodelsofFortuin-Kasteleyn n∈Z clusterwitharealQintheinterval(0,4]. Weusetheseexpressionsasourstartingpoint. The paper is organized as follows. In the next three sections, we study the following three limits: of π({1,0})whenτ = iτi andτi → ∞,ofπ({a,b})whenτ = dc +iτi withτi → 0andfinallyofπ(H)forany H⊂Z×ZwhenQ→0. ThelastsectionisdevotedtoMonteCarloverificationsofsomeoftheresults. 2 The probability π({1,0}) in the limit τ = 0, τ → ∞ r i The first limit to be studied is when τ = iτi with τi → ∞, i.e. the limit when the torus becomes a very thin ring. The corresponding parallelogram in the complex plane becomes an infinitely tall rectangle of constantwidthequalto1. Curveswindingoncealongω1 becomeverylikely. Infacttheirrelativelength with respect to those winding once in the direction ω2 becomes negligible and it is therefore expected that,inthislimit,allconfigurationswillhavecurvesoftype{1,0}andnoneoftype{0,1}. Inotherwords, π({1,0}) → 1 and the probability of all other groups goes to 0. What should be the expected behavior of π({1,0}) for finite but very large τi? Cardy’s formula [5] provides a fair guess. This formula gives, for percolation,theprobabilityπh ofhorizontalcrossinginarectangleofwidthHandheightV asafunction oftheaspectratior=V/H. Forlimitinggeometriestheprobabilitybehavesas πh(r)−→c1e−π/3r and 1−πh(r) −→ c2e−πr/3 r→0 r→∞ for known constants c1 and c2. Even though the intersections of a percolating cluster with the left and right edges of the rectangle might be in general at different height, these two intersections are likely to havepointswiththesameverticalcoordinatesiftherectangleisverynarrow,thatiswhenr → 0. Sucha percolatingclusterwouldbeaFKclusteroftype{1,0}, ifoppositeedgesoftherectanglewouldbeglued together. Thereforeonemayexpectthefollowingbehavior (cid:88) π({1,0})=1− cnqγn (8) n 5 withpositiveexponentsγnandthenaturalparameterq=e−2πτi iftherealpartofτvanishes. Notethatq goesto0whenτi →∞. ThegoalofthissectionistodeterminetheleadingexponentsγnasafunctionofQ or,equivalently,e0. (Somecareshouldbeexercisedastheimmediateextensionofqtoaτintheupper-half plane by q = e2πiτ does not coincide with the usual definition of the nome of elliptic functions which is eπiτ.) The probability π({1,0}) is given in the form ZQ({1,0})/ZQ. The first step is to express the numerator anddenominatorinaformsuitabletoextracttheseexponents. From(3): (cid:88) (cid:114) (cid:88) ZQ({1,0})= Z0k,1k(g/4)(cos[πe0k]−cos[πk])= |η(q1)|2 4gτ e−π4gτki2(cos[πe0k]−cos[πk]). k(cid:15)Z i k(cid:15)Z 1 Torewritetheeτi intermsofq,Poissonsummationformulawillbenecessary: (cid:88) (cid:88) 1 e−πan2+bn = √ e−πa(k+b/2πi)2. (9) a n(cid:15)Z k(cid:15)Z Afterexpandingthecosinesintermsofexponentials,Poissonformulagives (cid:88) 1 ZQ({1,0})= |η(q)|2 (q2(k+e0/2)2/g−q2(k+1/2)2/g). (10) k(cid:15)Z Since the function q−1/24η(q) has a Taylor expansion, the above form allows for the identification of the leading terms in the numerator. Note however that the expansion of |η(q)|2 will not be used, since this samefactorappearsinthedenominator. Thedenominator (cid:88) Z =(Q+1)Z({0})+ Z({a,b}) Q a∧b=1 has two parts, which will be tackled separately. The partition function restricted to configurations with onlytrivialclustersis ZQ({0})= 2|η(1q)|2(cid:114)4gτ (cid:88) e−πg(m4ττ2ii+m(cid:48)) cos[π(m∧m(cid:48))]. i m,m(cid:48)∈Z Togetridofthecos[π(m∧m(cid:48))],wenoticethat (cid:88) (cid:88) (cid:88) (cid:88) (cid:16) (cid:17) = + − (11) m,m(cid:48)∈Z m,m(cid:48)∈2Z m,m(cid:48)∈Z m,m(cid:48)∈2Z In the first sum, both m and m(cid:48) are even which makes m∧m(cid:48) even and cos[π(m∧m(cid:48))] = 1. The other terms,intheparenthesis,aretermsforwhicheithermorm(cid:48)isodd,andcos[π(m∧m(cid:48))]=−1. Therefore: ZQ({0})= 4|η(1q)|2(cid:114)τg(cid:16)2 (cid:88) − (cid:88) (cid:17)e−πg(mτ42iτi+m(cid:48)2). i m,m(cid:48)∈2Z m,m(cid:48)∈Z Sumsovermultiplesofanintegerf∈Nwillappearoftenanditisusefultodefine σ(f,g)=(cid:114)g (cid:88) e−πg(m24ττ2ii+m(cid:48)2) τ i m,m(cid:48)∈fZ (cid:114) (cid:88) (cid:88) = g( e−πgf42τmi (cid:48)2)( e−πgf24m2τi) τ i m(cid:48)∈Z m∈Z (cid:88) 2 2m(cid:48)2+gf2m2 = q gf2 8 (12) f m,m(cid:48)∈Z 6 wherePoissonformula(9)wasusedagaininthelastline. ThepartitionfunctionZQ({0})isthen (cid:88) ZQ({0})= 4|η(1q)|2(2σ(2,g)−σ(1,g))= 2|η(1q)|2 (qm2g(cid:48)2+gm22 −q2mg(cid:48)2+gm82). (13) m,m(cid:48)∈Z TheremainingtermofZQ,thatincludesconfigurationswithnon-trivialFKclustersoftype{a,b}forall aandbcoprimes,ismorecomplicated. Thesum (cid:88) (cid:88) ZQ({a,b})= Zm,m(cid:48)(g/4)(cos[πe0(m∧m(cid:48))]−cos[π(m∧m(cid:48))]) (14) a∧b=1 m,m(cid:48)∈Z contains two terms. The second with cos[π(m∧m(cid:48))] is exactly twice the partition function ZQ({0}) just calculated. The first with cos[πe0(m ∧ m(cid:48))] does not simplify as easily; the sums must be reorganized before(9)isused. Todoso,consider,formfixed,thefunctioncos[πe0(m∧m(cid:48))]. Whenmisnon-zero,itis periodicinm(cid:48)withperiodm. Therefore (cid:88) (cid:88) (cid:88) Zm,m(cid:48)(g/4)cos[πe0(m∧m(cid:48))]= C(d,e0)Zm,m(cid:48)(g/4), m(cid:54)=0 (15) m(cid:48)∈Z d|mm(cid:48)∈dZ with (cid:88) d C(d,e0)= cos(d2πe0)µ(d ) (16) d2|d 2 whereµ(x)istheMo¨biusfunctionofx. (Recallthatµ(1) = 1,µ(n) = 0ifnhasrepeatedprimefactorsand µ(n)=(−1)(cid:96)ifnistheproductof(cid:96)distinctprimes.)Toget(15-16),thesumoverm(cid:48)wasdividedintosums oversubsetswhichhavethesamevalueofcos[πe0(m∧m(cid:48))],inafashionsimilartothesplittingproposed inequation(11). Thesesubsetsarecloselyrelatedtothedivisorsofm,thereforeleadingtothesplittinginto sumsoverthemultiplesofthesedivisors. Wemuststress,however,thattheonlydivisorstobeconsidered ind|marethepositiveones. Theremainingsumcanbewrittenwiththehelpof(15)as (cid:88) (cid:88) (cid:88) (cid:88) (cid:88) Zm,m(cid:48)(g/4)cos[πe0(m∧m(cid:48))]= Z0,m(cid:48)(g/4)cos(πe0m(cid:48))+ C(d,e0)Zm,m(cid:48)(g/4) m,m(cid:48)∈Z m(cid:48)∈Z m∈Z∗d|mm(cid:48)∈dZ (cid:88) (cid:88) (cid:88) (cid:88) = Z0,m(cid:48)(g/4)cos(πe0m(cid:48))+ C(d,e0)Zm,dm(cid:48)(g/4) m(cid:48)∈Z m∈Z∗d|mm(cid:48)∈Z where Z∗ = Z \ {0}. In the above expression, the terms with m = 0 get a special treatment because of the particular definition of m∧m(cid:48) when m is 0. These were already encountered in the computation of ZQ({1,0})andareequalto (cid:88) (cid:88) 1 Z0,m(cid:48)(g/4)cos(πe0m(cid:48))= |η(q)|2 q2(k+e0/2)2/g. m(cid:48)∈Z k(cid:15)Z Forthetriplesum,thesumoverdivisorscanberearrangedusing (cid:88) (cid:88) (cid:88) (cid:88) (cid:88) (cid:88) h(m,d)= h(m,d)= h(md,d) m∈Z∗d|m d∈N∗m∈dZ∗ m∈Z∗d∈N∗ andsimilarlyforthesumofd2|dinC(d,e0).Thesemanipulationshavedoubledthenumberofsumsin(14) fromtwo,onmandm(cid:48),tofour,onm,m(cid:48),d,d2. ThisisthepricetopaytousePoissonformulaonthesum overm(cid:48)andcasteverythingintopowersofq. Theresultis (cid:88) Zm,m(cid:48)(g/4)cos[πe0(m∧m(cid:48))] m∈Z∗,m(cid:48)∈Z (cid:88) (cid:88) (cid:88) = C(d,e0)Zdm,dm(cid:48)(g/4) (17) m∈Z∗d∈N∗m(cid:48)∈Z = |η(q1)|2 (cid:88) (cid:88) (cid:88) cos(πed0dd2)µ(d)qg(md8d2)2+g(2dmd(cid:48)22)2 (18) m∈Z∗d,d2∈N∗m(cid:48)∈Z 2 7 andthecompletepartitionfunctionZQis (cid:88) (cid:88) |η(q)|2ZQ = q2(k+e0/2)2/g+ (Q2−1) (qm2g(cid:48)2+gm22 −q2mg(cid:48)2+gm82) k∈Z m,m(cid:48)∈Z + (cid:88) cos(πe0d2)µ(d)qg(md8d2)2+g(2dmd(cid:48)22)2. (19) dd m∈Z∗ 2 d,d2∈N∗ m(cid:48)∈Z Theprobabilityπ({1,0})isthequotientofZQ({1,0})givenin(10)andofZQ. Itisnowstraightforwardtoseethatthelowest-orderterminqis 2eg20 forboththedenominatorZQ and the numerator ZQ({1,0}). After simplification of the common factor qe20/2g, an expansion can be done to obtainthewholesetsofexponents. Anexhaustivelistofpossibleexponentsisgivenbytakingexponents inthenumeratorandinthedenominator,plusanyintegrallinearcombinationsofthemwhicharisefrom higherordertermsintheexpansion. Thepossibilitythatsomeofthemcouldhavevanishingcoefficientsis notexcluded. Itisinterestingtocomparetheleadingexponentswithvalues(1)givenbyCFTintheKactable[8]. In termsofgande0theyare [r−(g/4)s]2−e2/4 hr,s = g 0 (20) forr,spositiveintegers. Notethat e20 ishalfthepowerofqthatwassubstractedtosimplifythenumerator 4g anddenominator. Thefirstexponentsforπ({1,0})aregivenby 1−e2 1−e γ1 = 4(2−e0), γ2 = 2−e0 (21) 0 0 and their integer multiples. On the range of e0, γ2 > γ1. The two exponents become equal in the limit e0 =1(Q=0);thisparticularcasewillbestudiedinsection4. Coincidences of these leading exponents or higher ones with elements from the Kac table, if any, will occurintheformγ=2hr,sforsomer,sbecauseofthecontributionofholomorphicandanti-holomorphic sectors. Such coincidences do occur. The simplest r and s giving γ1 are r = 21,s = 0 and, those giving γ2, r = 0,s = 1. It is somewhat unusual to choose vanishing s or r. Recall however that, for logarithmic minimalmodels,theKactableisextendedandtheperiodicityofelementshr,s = hr+p,s+p(cid:48) forthemodel withκ = 4p(cid:48)/pallowstochooserandspositive. Forsomeminimalmodels, itishoweverimpossibleto accountforγ1 withintegersrands. Half-integersmustbeused. ArguinandSaint-Aubin[2]identifiedthe two leading exponents for the Ising model to 2h1,2 and 2h3,3. Note that, when either r or s is zero, then hr,s = h−r,−s. Moreover, if half-integer indices are included, the periodicity property can be refined to hr,s =hr+p/2,s+p(cid:48)/2. TheIsingmodelcorrespondstop=3,p(cid:48) =4andtheirexponentsarerelatedtoours byh1,2 =h−1/2,0 =h1/2,0andh3,3 =h0,−1 =h0,1. These two exponents γ1 and γ2 are related to the fractal dimensions of geometric objects, namely the massandthehullofaclusterrespectively. (See[21,10,20]. Foranextensionofthesegeometricobjectsto loopgasmodels,see[19].) IntheFKformulationoftheQ-Pottsmodels,theFKclustermassattachedtoa siteisthenumberofbondsinthecomponentoftheFKgraphcontainingthissite. Intheplane,thehullofa FKclusteristhesetofbondsthatcanbereachedfrominfinitywithoutcrossinganybondfromthecluster. (Onatorus,eachclusterhasaninnerandanouterhull.) Theirfractaldimensionis2−2∆where∆ish 1/2,0 fortheclustermassandh0,1forthehull. A natural explanation for h in the present context is provided by Cardy [6] (see also [20]). Note 1/2,0 firstthattheonlywaytokeepaconfigurationfromhavingaclusteroftype{1,0}istohaveaclusterinthe verticaldirection. Itislikelythatitstypewillbe{m,1}forsomem∈ZorZ×Z. Cardygivesanexpression fortheprobabilityP(n,k)ofhavingnclustersconnectingthetwoextremitiesofacylinderwhoselengthis ktimestheperimeterofitssection. HefindslogP(n,k) ∼ −2π(n2− 1)kifn ≥ 2. Hepointsoutthatthis 3 4 expressionevaluatedatn = 1isnottheprobabilityofhavingasingleclusterbetweenthetwoextremities, 8 butitistheprobabilityofhavingasingleclusterbetweentheextremitiesthatdoesnotwindintheother direction. Whenallconfigurationswithasingleclusterareconsidered,disregardingtheirbehaviorinthe otherdirection,theprobabilityislargerandgivenbylogP(1,k) ∼ −52π4k. Becausee0 = 23 forpercolation, ourfirstcorrectiontermisqγ1 =e−5πτi/24,inagreementwithhisresult. Inarecentstudyofpercolation,Ridout[18]hasarguedthattheprimaryfieldresponsibleforchanging boundaryconditionsinthecomputationofWatts’formulashouldbeφ . Thisidentificationforceshim 2,5/2 toshift,intheextendedKactable,theadmissiblevaluesofsby 1 whenriseven. Onewouldliketoseea 2 relationshipwithouridentificationofγ1 as2h1/2,0. Howeveritisrthattakesanhalf-integervalueinour case,andsinhiscase. Moreoverthevalueh = 5 doesnotappearinhisshiftedextendedKactable. 1/2,0 96 Theotherexponentsinthenumeratorofπ({1,0})arealsopartoftheextendedKactable. Theyappear withr = k+1,s = 1for 2(k+e0/2)2−e20/4 andr = k+1/2,s = 0for 2(k+1/2)2−e20/4. Notalltheexponents g g ofthedenominatorhoweverappearintheextendedKactable,evenifoneallowshalf-integersrors. For examplethedenominatoroftheexponents g(2dmd(cid:48)22)2 appearinginthelastsumofZQ isnotbounded. There is no hope to find them all in the extended Kac table. Could these terms drop out of the sum because of cancellations? Thegeneralcaseisdifficulttoassess,butthishappensinsimplecases. ItisindeedpossibletofindsimplerformforthedenominatorforthefourintegralvaluesQ = 1,2,3,4 thatcorrespondtoe0 = 32,12,13,0. Ford > 0andtheseparticularvaluesofe0 andfore0 = 1,thefunction C(d,e0)isparticularlysimple: C(d,0)=δd,1 (22) 1 δ 3δ C(d,3)= d2,1 −δd,2− 2d,3 +3δd,6 (23) 1 C(d,2)=2δd,4−δd,2 (24) 2 3δ δ C(d, )= d,3 − d,1 (25) 3 2 2 C(d,1)=2δd,2−δd,1. (26) (cid:80) TheproofoftheseformulaeisgivenintheAppendix.Thecontributionof m,m(cid:48)∈ZZm,m(cid:48)(g/4)cos[πe0(m∧ m(cid:48))]toZQisthenmuchsimpler. Itis (cid:88) (cid:88) 1 (cid:16)qm12(cid:48)2+3m2 −q3m4(cid:48)2+m32(cid:17) forQ=1, 1 (cid:16)qm24(cid:48)2+6m2 −qm6(cid:48)2+3m22(cid:17) forQ=2, 2 2 (cid:88) 1 (cid:16)qm60(cid:48)2+15m2 −qm15(cid:48)2+154m2 −q3m20(cid:48)2+5m32 +q3m5(cid:48)2+51m22(cid:17) forQ=3 2 (cid:88) and qm(cid:48)22+m2 forQ=4. All the sums above are on m,m(cid:48) ∈ Z. It is then straigthforward to show that, upon simplification of the (cid:80) factor qe20/2g, these forms (and therefore ZQ) can be written as a product i,j(q2hifi(q2))(q2hjfj(q2)) of two finite sums where fi,fj are analytic in a neighborhood of 0 and where all the hi,hj belong to the correspondingextendedKactableforsomerandsintegersintherange[0,p]. 3 Probabilities π({a,b}) in the limit τ = c/d, τ → 0 r i Theprobabilitiesπ({a,b})=πτ({a,b})alsohavealimit,either0or1,whenτapproachesarationalnumber on the real line. To see this first intuitively, consider the case {a,b} = {−2,1}. Figure 3 presents two tori whosemodulusparameterisontheline−2+iτi. Foreach,twoneighboringfundamentalparallelograms havebeendrawn. Acurvelinkingtheorigintothevertexatz=2iτi,likethoseshown,isoftype{−2,1}. A curveoftype{−2,1}doesnotneedtostartatavertex,ofcourse,butthosedrawnshowhowthecurvesof thistypewillbeprevailing.Indeed,asthemodulusparameterτslidesdowntheverticallineτr =−2,these 9 2 1 Τ(cid:61)(cid:45)2(cid:43)iΕ,Ε(cid:174)0 (cid:45)2 (cid:45)1 1 2 Figure3: Curvesoftype{−2,1}becomemorelikelyasτapproachesτ∼−2+i0+ curves become very short and likely. Therefore the probability πτ({−2,1}) should converge to a number largerthan0whenτ→−2. Thissectionshowsthatitactuallygoesto1. We have identified a torus with its modulus τ, a complex number in the upper-half plane H. As it is well-known, this correspondence is not unique, since any pair ω1(cid:48) = mω1 +nω2 and ω2(cid:48) = pω1 +qω2 withm,n,p,q ∈ Zandmq−np = 1describesthesametorus,butwithanewmodulusτ(cid:48) = ω(cid:48)/ω(cid:48). The 2 1 speciallineartransformations(q p)withintegercoefficientsanddeterminant1formthemodulargroup nm SL(2,Z). Itisgeneratedbytwomatrices (cid:18) (cid:19) (cid:18) (cid:19) 0 −1 1 1 s= and t= 1 0 0 1 whoseactiononτis τ(cid:55)→s −1/τ and τ(cid:55)→t τ+1. (27) The probabilities π({0}) = πτ({0}) and π(Z×Z) = πτ(Z×Z) are invariant under the change of τ by an elementofSL(2,Z),buttheprobabilitiesπτ({a,b})arenot. Arguin[1]gavetheirtransformationlaws πτ({a,b})=πτ+1({a+b,b})=π−1/τ({−b,a}) (28) or,equivalently πτ({a,b})=πgτ(g·{a,b}), g∈SL(2,Z) (29) whereτ(cid:55)→gτdenotestheactiondefinedby(27)andg·{a,b}standsforthematrixmultiplicationg(a). b Thesetransformationsfollowimmediatelyfromtheform(3)ofthepartitionfunctionZQ({a,b}). Asimpleapplicationofthemodulartransformationgivesπ({0,1})intermsofπ({1,0}),namelyπτ({0,1})= π ({1,0}). Theresultoftheprevioussectionimplieseasilythat −1/τ πτ=0+iτi({0,1})=πτ=0+i/τi({1,0})= ZQ(Z{1,0})(cid:12)(cid:12)(cid:12)(cid:12) Q q(cid:48) wherethepartitionfunctionsareevaluatedatq(cid:48) = e−2π/τi. Thelimitingbehaviorτi → 0+ willtherefore becharacterizedbythesameexponentsobtainedforπ({1,0})whenτi →∞. Letg∈SL(2,Z)andz(cid:55)→gztheassociatedmap. Itisconformal,one-to-oneonHandmapstherealline ontoitself. Theimageundersuchamapoftheimaginaryaxiswillthereforebeacircleintersectingthereal axisatrightangles. Let{a,b}beapairofcoprimeintegers. Thenthereareintegerspandqsuchthatpa+qb=1. Therefore g = (cid:0)ab−pq(cid:1) ∈ SL(2,Z). TheactionofgonHmapsapointτ = iτi,τi > 0,onthepositiveimaginaryaxis intothepoint a(cid:18)1−pq/abτ2(cid:19) i (cid:18) 1 (cid:19) iτi (cid:55)→ b 1+p2/b2τ2i + τ b2 1+p2/b2τ2 . (30) i i i 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.