ebook img

Criteria for Finite Difference Groebner Bases of Normal Binomial Difference Ideals PDF

0.21 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Criteria for Finite Difference Groebner Bases of Normal Binomial Difference Ideals

Criteria for Finite Difference Gröbner Bases of Normal Binomial Difference Ideals ∗ Yu-AoChen andXiao-Shan Gao KLMM,UCAS, Academy ofMathematicsand SystemsScience 7 TheChineseAcademy ofSciences, Beijing 100190,China 1 0 2 n a Abstract J 3 Inthispaper,we givedecisioncriteriafornormalbinomialdifferencepolynomialidealsintheunivariate 2 difference polynomial ring F y to have finite difference Gröbner bases and an algorithm to compute the finite difference Gröbner b{as}es if these criteria are satisfied. The novelty of these criteria lies in the ] C factthatcomplicatedpropertiesaboutdifferencepolynomialidealsarereducedtoelementarypropertiesof S univariatepolynomialsinZ[x]. . s Keywords.Differencealgebra,binomialdifferenceideal,Gröbnerbasis,differenceGröbnerbasis. c [ 1 1 Introduction v 8 4 DifferencealgebrafoundedbyRittandCohnaimstostudyalgebraicdifferenceequationsinasimilarwaythat 2 6 polynomialequationsarestudiedincommutativealgebraandalgebraicgeometry [5,14,18,21]. TheGröbner 0 basis invented by Buchberger is a powerful tool for solving many mathematical problems [4]. The concepts . 1 of difference Gröbner bases was extended to linear difference polynomial ideals in [11,14,15] and nonlinear 0 difference polynomialidealsin[11]. Manyapplications ofdifference Gröbnerbasesweregiven[9,14–16]. 7 1 Sincedifferencepolynomialidealscanbeinfinitelygenerated,theirdifferenceGröbnerbasesaregenerally : v infinite. Even for finitely generated difference polynomial ideals, their difference Gröbner bases could be i infiniteasshownbyExample2.2inthispaper. Thismakesitimpossible tocomputedifferenceGröbnerbases X forgeneraldifference polynomial idealsandthusitisacrucial issuetogivecriteria fordifference polynomial r a idealstohavefinitedifference Gröbnerbases. Let F be a difference field and y a difference indeterminate. In this paper, we will give decision criteria for normal binomial difference polynomial ideals in F y to have finite difference Gröbner bases and an { } algorithmtocomputethesefinitedifferenceGröbnerbasesunderthesecriteria. AdifferenceidealI inF y { } is called normal if MP I implies P I for any difference monomial M in F y and P F y . I is ∈ ∈ { } ∈ { } calledbinomialifitisgenerated bydifference polynomials withatmosttwoterms[6,7]. For f Z[x], let f+,f N[x] bethe positive part and the negative part of f such that f = f+ f . For − − ∈ ∈ − h=(cid:229) mi=0aixi ∈N[x], denote yh =(cid:213) mi=0(s iy)ai, where s is the difference operator of F. Then any difference monomial in F y can be written as yg for some g N[x]. For a given f Z[x] with a positive leading { } ∈ ∈ coefficient, weconsider thefollowingbinomialdifference polynomial idealinF y : { } If =sat(yf+ yf−)=[ yh+ yh− h=gf,g Z[x] ] − { − | ∈ } PartiallysupportedbyagrantfromNSFC11101411. ∗ 1 wheresatisthedifference saturation idealtobedefinedinSection2ofthispaper. Let F , h Z[x] lt(h)=h+ . 0 F , {h∈Z[x]|hg F fo}rsomemonicpolynomial g Z[x] . 1 0 { ∈ | ∈ ∈ } WeprovethatI hasafinitedifferenceGröbnerbasisifandonlyif f F . Thiscriterionisthenextendedto f 1 ∈ generalnormalbinomialdifference idealsinF y . { } Thedecision of f F isquitenontrivial andwegivethefollowingcriteriafor f F basedontheroots 1 1 ∈ ∈ of f: 1. if f hasnopositiveroots,then f F ; 1 ∈ 2. if f hasmorethanonepositiveroots(withmultiplicity counted), then f F ; 1 6∈ 3. if f hasonepositiverootx andarootzsuchthat z >x ,then f F ; + + 1 | | 6∈ 4. if f hasonepositiverootx andarootzsuchthat z =x ,thenwecancomputeanother f Z[x]and + + ∗ | | ∈ x R suchthat f (x )=0, f (w)=0and w =x implyw=x ,and f (w)=0and w =x imply ∗ >0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∈ | | | |6 w <x . Furthermore, f F ifandonlyif f F ; ∗ 1 ∗ 1 | | ∈ ∈ 5. if f /F hasauniquepositiverealrootx andx <1,then f F ; 0 + + 1 ∈ 6∈ 6. if f(1)=0andanyotherrootzof f satisfies z <1,then f F ifandonlyif f(x)/(x 1) Z[xd ]for 1 somed N and f(x)(xd 1)/(x 1) F .| | ∈ − ∈ >0 0 ∈ − − ∈ With these criteria, only one case is open: f has a unique positive real root x , x >1, and x > z for any + + + | | other root zof f. Weconjecture that f F in theabove case based onnumerical computations. IfI has a 1 f ∈ finite difference Gröbner basis according to one of the six criteria listed above, we also give an algorithm to computeit. Asfarasweknowtheabovecriteriaarethefirstnon-trivial onesforadifference polynomialidealtohave afinitedifferenceGröbnerbasis. Thenoveltyofthesecriterialiesinthefactthatcomplicatedpropertiesabout difference polynomialidealsarereducedtoelementary properties ofunivariate polynomials inZ[x]. Therest ofthis paper is organized as follows. In Section 2, preliminaries on Gröbner basis for difference polynomialidealsaregiven. InSection3,criteriafornormalbinomialdifferenceidealsinF y tohavefinite { } difference Gröbner bases are given. In Section 4, criteria for f F and an algorithm to compute the finite 1 ∈ difference Gröbnerbasis ofI under these criteria aregiven. InSection5, wepropose anapproach based on f integerprogramming tofindgsuchthat fg F andgivealowerboundfordeg(g)incertain cases. 0 ∈ 2 Preliminaries on Gröbner basis of difference polynomial ideals 2.1 Gröbner basisofadifference polynomialideal Anordinary difference field, or simply a s -field, is a field F with a third unitary operation s satisfying: for anya,b F, s (a+b)=s (a)+s (b), s (ab)=s (a)s (b), and s (a)=0ifandonly ifa=0. Wecalls the ∈ differenceortransformingoperatorofF. Atypicalexampleofs -fieldisQ(l )withs (f(l ))= f(l +1). In thispaper,weuses -astheabbreviation fordifference ortransformally. Forainanys -extensionringofF andn N ,s n(a)iscalledthen-thtransformofaanddenotedbyaxn, >0 ∈ withtheusualassumptiona0=1andx0=1. Moregenerally,forp=(cid:229) si=0cixi∈N[x],denoteap=(cid:213) si=0(s ia)ci. Forinstance, a3x2+x+4=(s 2(a))3s (a)a4. Itiseasytocheckthatap satisfiestheproperties ofpowers[7]. 2 LetS beasubset ofas -fieldG whichcontains F. Wewilldenote Q (S)= s kak N,a S , F S = { | ∈ ∈ } { } F[Q (S)]. Now suppose Y= y ,...,y is a set of s -indeterminates over F. The elements of F Y are 1 n { } { } called s -polynomials over F in Y. A s -polynomial ideal I, or simply a s -ideal, in F Y is a possibly { } infinitely generated ordinary algebraic ideal satisfying s (I) I. If Sisasubset of F Y , weuse (S)and ⊂ { } [S]todenotethealgebraic idealandthes -idealgenerated byS. A monomial order in F Y is called compatible with the s -structure, if yxk1 <yxk2 for k <k . Only { } i j 1 2 compatible monomial orders are considered in this paper. When a monomial order is given, we use LM(P) and LC(P) to denote the largest monomial and its coefficient in P respectively, and LT(P)=LC(P)LM(P) theleadingtermofP. Definition 2.1. G F Y is called a s -Gröbner basis of a s -ideal I if for any P I, there exist m N andG Gsuchtha⊂t(LM{ (}G))xm LM(P). ∈ ∈ ∈ | From the definition, G is a s -Gröbner basis of I if and only if Q (G) is a Gröbner basis of I treated as an algebraic polynomial ideal in F[Q (Y)]. Note that I is generally an infinitely generated ideal and the concept of infinite Gröbner basis [12] is adopted here. From this observation, we may see that a s -Gröbner basissatisfiesmostofthepropertiesoftheusualalgebraicGröbnerbasis. Forinstance,Gisas -Gröbnerbasis ofas -idealI ifandonlyifforanyP I,wehavegrem(P,Q (G))=0,wheregrem(P,Q (G))isthenormal ∈ form of P modulo Q (G) in the theory of Gröbner basis. The concepts of reduced s -Gröbner bases could be similarly introduced. A s -polynomial Q is called s -reduced w.r.t. another s -polynomial P if there does not existak Nsuch that LM(P)xk divides anymonomial inQ. Then, as -Gröbner Gbasis iscalled reduced, if anyP G∈iss -reducedw.r.tG P . Itiseasytoseethatas -idealhasauniquereduced s -Grb¨nerbasis. ∈ \{ } Thefollowingexampleshowsthatevenafinitelygenerated s -idealmayhaveaninfinites -Gröbnerbasis. Asaconsequence, thereexistnogeneralalgorithmstocomputethes -Gröbnerbasis. Example 2.2. Let I = [y yx yxy ,y y 1]. Assume y < y < y . Then under a compatible monomial 1 2− 1 2 1 3− 1 2 3 order,thereduced s -GröbnerbasisofI F y ,y is y yxi yxiy i N . ∩ { 1 2} { 1 2 − 1 2| ∈ >0} 2.2 Characteristicsetfora difference polynomialideal Theelimination ranking R onQ (Y)= s ky 1 i n,k N isused inthis paper: s ky >s ly ifand only i i j { | ≤ ≤ ∈ } ifi> jori= jandk>l,whichisatotalorderoverQ (Y). Byconvention, 1<s ky forallk N. j ∈ Let f be a s -polynomial in F Y . The greatest yxk w.r.t. R which appears effectively in f is called { } j the leader of f, denoted by ld(f) and correspondingly y is called the leading variable of f, denoted by j lvar(f)=y . The leading coefficient of f as a univariate polynomial in ld(f) is called the initial of f and is j denotedbyinit . f Let p and q be two s -polynomials in F Y . q is said to be of higher rank than p if ld(q) >ld(p) or { } ld(q)=ld(p)=yxk and deg(q,yxk)>deg(p,yxk). Suppose ld(p)=yxk. qis said to be Ritt-reduced w.r.t. pif j j j j deg(q,yxk+l)<deg(p,yxk)foralll N. j j ∈ A finite sequence of nonzero s -polynomials A :A ,...,A is said to be a difference ascending chain, or 1 m simplyas -chain,ifm=1andA =0orm>1,A >A andA isRitt-reduced w.r.t. A for1 i< j m. A 1 j i j i 6 ≤ ≤ s -chainA canbewrittenasthefollowingform[8] A :A ,...,A ,...,A ,...,A (1) 11 1k1 p1 pkp where lvar(A )=y for j=1,...,k, ord(A ,y )<ord(A ,y ) and deg(A ,ld(A ))>deg(A ,ld(A )) for ij ci i ij ci il ci ij ij il il 3 j<l. Thefollowingaretwos -chains A : yx 1, y2y2 1, yx 1 1 1− 1 2− 2− (2) A : y2 1, yx y , y2 1, yx+y 2 1− 1− 1 2− 2 2 LetA :A ,A ,...,A be as -chain withI asthe initial ofA, and Pany s -polynomial. Then there exists 1 2 t i i an algorithm, which reduces P w.r.t. A to a s -polynomial R that is Ritt-reduced w.r.t. A and satisfies the relation t (cid:213) Iei P R,mod[A], (3) i · ≡ i=1 wherethee N[x]andR=prem(P,A)iscalledthes -Ritt-remainderofPw.r.t. A [8]. i ∈ A s -chain C contained in a s -polynomial set S is said to be a characteristic set of S, if S does not contain any nonzero element Ritt-reduced w.r.t. C. Any s -polynomial set has a characteristic set. A characteristic setC ofas -idealJ reducestozeroallelementsofJ. Let A : A ,...,A be a s -chain, I = init(A), yxoi = ld(A). A is called regular if for any j N, Ixj 1 t i i li i ∈ i is invertible w.r.t A [8] in the sense that [A ,...,A ,Ixj] contains a nonzero s -polynomial involving no 1 i 1 i yxoi+k,k=0,1,.... Tointroduce the concept of cohere−nt s -chain, weneed to define the D -polynomial first. If Ali and A have distinct leading variables, wedefine D (A,A )=0. IfA and A (i< j) have the same leading i j i j i j variable y ,ld(A)=yxoi,andld(A )=yxoj,theno <o [8]. DefineD (A,A )=prem((A)xoj−oi,A ).ThenA l i l j l i j i j i j iscalled coherent ifprem(D (A,A ),A)=0for alli< j [8]. BothA andA in(2)areregular andcoherent i j 1 2 s -chains. LetA beas -chain. DenoteI tobetheminimalmultiplicative setcontaining theinitials ofelements of A A andtheirtransforms. Thesaturation idealofA isdefinedtobe sat(A)=[A]:I = P F Y : m I ,mP [A] . A A { ∈ { } ∃ ∈ ∈ } Thefollowingresultisneededinthispaper. Theorem2.3. [8,Theorem3.3]As -chainA isacharacteristic setofsat(A)ifandonlyifA isregular and coherent. Wealsoneedtheconceptofalgebraicsaturationideal. LetC beanalgebraictriangularsetinF[x ,...,x ] 1 n andI theproduct oftheinitialsofthepolynomials inC. Thendefine asat(C)= P F[x ,...,x ] k N,IkP (C) . 1 n { ∈ |∃ ∈ ∈ } 2.3 s -Gröbner basisforabinomial s -ideal A s -monomial in Y can be written as Yf =(cid:213) n yfi, where f=(f ,...,f )t N[x]n. A nonzero vector f= (f ,...,f )t Z[x]n is said to be normal if thie=1leaiding coefficien1t of f nis p∈ositive, where s is the largest 1 n s ∈ subscriptsuchthat f =0. Forf Z[x]n,letf+,f Nn[x]denoterespectivelythepositivepartandthenegative s − partoffsuchthatf=6f+ f−. T∈hengcd(Yf+,Yf−)∈=1foranyf Z[x]n. Iff Z[x]nisnormal,thenYf+ >Yf− − ∈ ∈ andLT(Yf+ cYf−)=Yf+ underamonomialordercompatible withthes -structure. − A s -binomial in Y is a s -polynomial with at most two terms, that is, aYa+bYb where a,b F and a,b N[x]n. As -idealinF Y iscalledbinomialifitisgeneratedby,possiblyinfinitelymany,s -b∈inomials ∈ { } [7]. Wehave 4 Proposition 2.4([7]). As -idealI isbinomial ifandonlyifthereduced s -Gröbnerbasis forI consists of s -binomials. Let be the multiplicative set generated by yxj for i=1,...,n,j N. A s -ideal I is called normal if for M m and P F Y , MP I implies P Ii . Normal s -ideals∈in F Y are closely related withthe ∈m ∈ { } ∈ ∈ { } Z[x]-modulesinZ[x]n [7,13],whichwillbeexplained below. Wefirstintroduce anewconcept. Definition 2.5. A partial character r on Z[x]n is a homomorphism from a Z[x]-module Lr in Z[x]n to the multiplicative groupF∗ satisfying r (xf)=(r (f))x =s (r (f))forf Lr . ∈ AZ[x]-module generated byh ,...,h Z[x]n isdenoted as(h ,...,h ) . Letr beapartial character 1 m 1 m Z[x] ∈ over Z[x]n and = f1,...,fs a reduced Gröbner basis of the Z[x]-module Lr =( )Z[x]. For h Z[x]n and f { } f ∈ H Lr , denote Ph =Yh+ r (h)Yh− and PH = Ph h H . Introduce the following notations associated ⊂ − { | ∈ } withr : I+(r ):=[PLr ]=[Yf+−r (f)Yf−|f∈Lr ] (4) A+(r ):=P = Yf+1 r (f1)Yf−1,...,Yf+s r (fs)Yf−s . (5) f { − − } Itisshown that [7]A+(r )is aregular and coherent s -chain and hence is acharacteristic set ofsat(A+(r )) byTheorem2.3. Furthermore, wehave Theorem2.6. Thefollowingconditions areequivalent. 1. I isanormalbinomials -idealinF Y . { } 2. I =I+(r )forapartial characterr overZ[x]n. 3. I =sat(A+(r ))forapartialcharacterr overZ[x]n. Furthermore,forf Z[x]n,Yf+ cYf− I f Lr andc=r (f). ∈ − ∈ ⇔ ∈ Asadirectconsequence ofProposition 2.4andTheorem2.6,wehave Corollary2.7. Letr beapartialcharacter overZ[x]n. ThenP isas -GröbnerbasisofI+(r ). Lr Note that for f Z[x]n, either f or f is normal and we need only consider the normal vectors in the s - ∈ − Gröbner basis. So, for simplicity, we may assume that all given vectors are normal. We have the following criterionforthes -Gröbnerbasisofnormalbinomials -ideals. Corollary2.8. Letr beapartialcharacteroverZ[x]n andH Lr . ThenPH isas -GröbnerbasisofI+(r ) ⊂ ifandonlyifforanynormalg Lr ,thereexisth H and j N,suchthatg+ xjh+ N[x]n. ∈ ∈ ∈ − ∈ Proof: ByCorollary2.7,P isas -GröbnerbasisofI+(r ). ThenP isas -GröbnerbasisofI+(r )ifand Lr H onlyifforanynormal g Lr ,there exist h H and j Nsuch thatLM(xjPh)LM(Pg),whichisequivalent ∈ ∈ ∈ | tog+ xjh+ N[x]n. − ∈ Example 2.9. Let f =[1 x,x 1], L= (f) , and r the trivial partial character on L, that is, r (h)=1 Z[x] − − for h L. Then P =y yx yxy . By Theorem 2.6, I+(r )=sat(P ). By Corollary 2.7, a s -Gröbner basis ofI+∈(r )is Yg+f Y1g−2−g=1h2f,h Z[x],lc(h)>0 . ByExample2f.2,sat(Pf)=[Pf,y1y3 1] Q y1,y2 = [y yxi yxiy {i N− ],an|dareduce∈ds -Gröbnerba}sisofI+(r )is y yxi yxiy i N −. ∩ { } 1 2 − 1 2| ∈ >0 { 1 2 − 1 2| ∈ >0} 5 s 3 Criteria for finite -Gröbner basis In this section, we will give a criterion for the s -Gröbner basis of a normal binomial s -ideal in F y to be { } finite, where yisas -indeterminate. Without loss ofgenerality, weassume r (h)=1for allpartial characters r overZ[x]andh Lr . ∈ 3.1 Case1: characteristic setcontains a singles -polynomial Inthissection,weconsiderthesimplestcase: n=1andLr =(f)Z[x] isgeneratedbyonepolynomial f Z[x]. ∈ Wewillseethateventhiscaseishighlynontrivial. Forg Z[x],weuselc(g),lm(g),andlt(g)torepresentthe ∈ leadingcoefficient, leadingmonomial,andleading termofg,respectively. In the rest of this section, we assume f Z[x] and lc(f)>0. Then Pf =yf+ yf− and LT(Pf)=yf+ under a monomial order compatible with the∈s -structure. By Theorem 2.6, all nor−mal binomial s -ideals in F y whosecharacteristic setconsists ofasingles -polynomialcanbewrittenasthefollowingform: { } If =sat(Pf)=[yh+ yh− h= fg (f)Z[x], (g Z[x],lc(g)>0)]. (6) − | ∈ ∀ ∈ Inthissection, wewillgiveacriterion forI tohaveafinites -Gröbnerbasis. Define f F , f Z[x] lt(f)= f+ . 0 { ∈ | } F , f Z[x] fg F forsomemonicpolynomial g Z[x] . (7) 1 0 { ∈ | ∈ ∈ } Wenowgivethemainresultofthissection, whichcanbededuced fromLemma3.3andLemma3.7. Theorem3.1. I in(6)hasafinites -Gröbnerbasisunderamonomialordercompatiblew.r.tthes -structure f ifandonlyif f F . 1 ∈ For two polynomials h and h Z[x], denote h h if h h N[x]. For h and h N[x], we have 1 2 1 2 1 2 1 2 ∈ (cid:23) − ∈ ∈ h1 h2 ifandonlyifyh2 yh1. (cid:23) | Lemma3.2. If f F ,then P isas -GröbnerbasisofI . 0 f f ∈ { } Proof: For g (f) with lc(g) >0, h Z[x] with lc(h) >0 such that g=fh. Since f F , we have Z[x] 0 ∈ ∃ ∈ ∈ lt(f)= f+. Then, xdeg(h)f+=lt(h)f+/lc(h) lt(h)f+ =lt(h)lt(f)=lt(g) g+. (cid:22) (cid:22) ByCorollary2.8, P isas -GröbnerbasisofI . f f { } Lemma3.3. If f F ,thenI hasafinites -Gröbnerbasis. 1 f ∈ Proof: Let h = fg F , where g is monic. Then lc(h) = lc(f) and lt(h) = lt(f)lm(g) = h+. I = 0 deg(h) ∈ I F[y,yx, ,yxdeg(h)] is apolynomial ideal in a polynomial ring with finitely many variables, which has a f T ··· finite Gröbner basis denoted by G6deg(h). Let Pu If and lc(u)>0. If deg(u)6deg(h), then there exists a ∈ P G suchthatt u. Otherwise,wehavedeg(u)>deg(h)andlc(u) lc(f). Then t 6deg(h) ∈ (cid:22) ≥ xdeg(u) deg(h)h+ = xdeg(u) deg(f) deg(g)lt(f)lm(g) − − − = xdeg(u) deg(f)lt(f)=xdeg(u) deg(f)lc(f)lm(f)=lc(f)lm(u) lt(u) u+. − − (cid:22) (cid:22) SincethatPh Ideg(h),byCorollary2.8,G6deg(s) isafinites -GröbnerbasisofIf. ∈ 6 Corollary 3.4. Let f F , h=gf F , g a monic polynomial in Z[x] , and D=deg(h). Then the Gröbner 1 0 basisofthepolynomia∈lidealI =∈I F[y,yx, ,yxD]isafinites -GröbnerbasisforI . D f f T ··· FromtheproofofLemma3.3,wehave Example 3.5. f = x2+x+1 F , because (x 1)f = x3 1 F . The finite s -Gröbner basis is G = 1 0 ∈ − − ∈ yx2+x+1 1,yx3 y . { − − } LetDbeRorZ. Wewillusethefollowingnewnotation n D>0[x], (cid:229) axi n N, i(a D ) . i i >0 { | ∈ ∀ ∈ } i=0 Lemma3.6. N[x] F . 1 ⊆ Proof: Let g = a xn+a xn 1+ +a N[x] with d= max d N xd g the multiplicity of f at 0. n n 1 − 0 Then a >0. Let s=(xn d−+xn d 1·+·· +1∈)g=a x2n d+(a +{a∈ )x|2n |d }1+ +(a + +a )xn+ d − − − n − n n 1 − − n d (a + +a )xn 1+ +a xd. Rew··r·ite s = b x2n d + +b−xd. Then s/·x·d· Z>0[x·]·.· Let M = n 1 d − d 2n d − d ma−x b···/b d+16i·6··2n d +1. Then (x M−)s=b ·x·2·n d+1+(b M∈b )x2n d+ + i 1 i 2n d − 2n d 1 2n d − (⌈b {Mb− )x|d+1 Mb xd −F .}S⌉obothsandg−areinF . − − − − − ··· d d+1 d 0 1 − − ∈ Lemma3.7. If f F ,thenI doesnothaveafinites -Gröbnerbasis. 1 f 6∈ Proof: Supposeotherwise,I hasafinites -GröbnerbasisG=P ,whereH= f , ,f Z[x]witheach f H 1 l { ··· }⊂ lc(f)>0. Since f hasthelowestdegreein(f) ,wehave f H. i Z[x] ∈ Let H , h H lc(h)=lc(f) . Since f / F , we have H F =0/. By Lemmas 3.2 and 3.6, for all c 1 c 1 { ∈ | } ∈ T h H ,h+ hasatleasttwotermsandh hasatleastoneterm. Foru Z[x]withlc(u)>0,defineafunction c − ∈ ∈ deg(u)=deg(u) (deg(u+ lt(u))) (8) − − f which isthe degree gap between the first twohighest monomials ofu+. Suppose h is an element in H such 1 c thatdeg(h )=max deg(h) h H . h existsbecause f H =0/ andH isafiniteset. Denotelt(h ),axn, 1 c 1 c c 1 h˜ ,fh lt(h ),lt(h˜{+f),bx|m,∈andh˜˜}+,h˜+ lt(h˜+). Then∈h =6 axn+bxm+h˜˜+ h . Sinceh F ,wehave 1 1− 1 1 1 1 − 1 1 1 − −1 16∈ 1 ab>0. Letc, b/a 1and ⌈ ⌉≥ s=(xn cxm)h =ax2n+xnh˜˜++cxmh (ac b)xm+n cxmh˜+ xnh . − 1 1 −1 − − − 1 − −1 Wehaves+ s ,ax2n+xnh˜˜++cxmh ,anddeg(s)=deg(s) deg(s+ lt(s)) deg(s )=deg(s ) deg(s+ (cid:22) 0 1 −1 − − ≥ 0 0 − 0− lt(s ))>n m=deg(h )=deg(h ) deg(h+f lt(h )). f 0 − 1 1 − 1 − 1 SinceP isas f-GröbnerbasisofI ,thereexisth H and j Nsuchthatt=s+ xjh+ N[x]. Weclaim H f ∈ ∈ − ∈ lt(t)=lt(s+). Ifh H ,thendeg(s)>deg(h). Notethatdeg(s+)=deg(xjh)impliesthatthecoefficientofthe c ∈ secondlargestmonomialofs+fxjhisnfegativecontradictingtothefacts+ xjh N[x]. Asaconsequence,we − − ∈ musthave deg(s+)>deg(xjh)and theclaim isproved inthis case. Nowleth H H . Sincelc(h)>lc(s)= c ∈ \ lc(f), we have deg(xjh)<deg(s) which implies lt(t)=lt(s+). The claim is proved. The fact lt(t)=lt(s+) implies that when computing the normal form P = grem(P ,Q (P )), we always have lt(u) = lt(s). As a u s H consequence, P =0whichcontradicts tothefactthatP isas -GröbnerbasisofI ands (f) . u H f Z[x] 6 ∈ NotethattheproofofLemma3.7givesamethodtoconstructinfinitelymanyelementsinas -Grb¨nerbasis asshowninthefollowingexample. 7 Example 3.8. Let f =x2 2x+1 / F . In the proof of Lemma 3.7, c= b/a =1 and s =(x2 1)f = 1 1 − ∈ ⌈ ⌉ − x4+2x 2x3 1. Repeat the above procedure to s , weobtain s =(x4 2x)s =x8+3x4+2x 2x7 4x2. 1 2 1 − − − − − Thendeg(f)<deg(s )<deg(s )andP isinas -Gröbnerbasisforalli. Thusanys -GröbnerbasisofI is 1 2 si f infinitef. Wecanfshowthatfaminimals -Gröbner basisisG= yx2i+1 y2xi i Z yx2i+1+1 yxi+1+xi i >0 { − | ∈ }S{ − | ∈ Z . >0 } 3.2 Finites -Gröbner basesfornormal binomials -ideals In this section, we consider the general normal binomial s -ideals in F y . By Theorem 2.6, all normal { } binomials -idealsinF y canbewrittenasthefollowingform: { } I =sat(P )=[yg+ yg− g (G) ,lc(g)>0] (9) G G Z[x] − |∀ ∈ where G= g ,...,g Z[x] (10) 1 t { }⊂ is a reduced Gröbner basis of the Z[x]-module L=(G) . Gröbner bases in Z[x] have the following special Z[x] structure[7]. Lemma 3.9. Let G= g ,...,g be a reduced Gröbner basis of a Z[x]-module in Z[x], g < <g , and 1 k 1 k { } ··· lt(gi)=cixdi N[x]. Then ∈ 1)0 d <d < <d . 1 2 k ≤ ··· 2)c c c andc =c for1 i k 1. k 2 1 i i+1 |···| | 6 ≤ ≤ − 3) ci g for1 i<k. Ifb istheprimitivepartofg ,thenb g for1<i k. ck| i ≤ 1 1 1| i ≤ e e HerearetwoGröbnerbasesinZ[x]: 4,2x , 15,5x,x2+3 . { } { } Intherestofthissection, letL=(G) forGdefinedin(10)anddefine Z[x] L , f L lc(f)=c =lc(g ) (11) i t t { ∈ | } L , f L f hasminimaldegreeinL . (12) t i i { ∈ | }} Theorem3.10. I hasafinites -GröbnerbasisifandonlyifL F =0/. G i 0 T 6 Proof: Suppose L F = 0/ and let g L F . Then I k[y,yx, ,yxdeg(g)] has a finite Gröbner basis i 0 i 0 G T 6 ∈ T T ··· denoted by G . Let P I and lc(u)>0. If deg(u) deg(g), then there exists a P G such deg(g) u G h deg(g) ≤ ∈ ≤ ∈ ≤ thath u. Otherwise,wehavedeg(u)>deg(g)andlc(u) lc(g). Then (cid:22) ≥ xdeg(u) deg(g)g+ =xdeg(u) deg(g)lt(g)=xdeg(u) deg(g)lc(g)lm(g)=lc(g)lm(u) lt(u) u+. − − − (cid:22) (cid:22) ByCorollary2.8,G isafinites -GröbnerbasisofI ,sinceP isinG . deg(g) G g deg(g) ≤ ≤ We will prove the other direction by contradiction. Suppose that L F = 0/ and I has a finite s - i 0 G ∩ Gröbnerbasis P = P , ,P . LetH = u , ,u ,andH =H L. Sincegrem(P ,Q (P ))=0,we H { u1 ··· uk} { 1 ··· k} c T i gt H have H =0/ and let u be an element of H with maximal deg which is defined in (8). Since L F =0/, by c 1 c i 0 6 ∩ Lemma3.6 u+ contains at least two terms and u =0. Simfilar to the proof of Lemma 3.7, we can construct 1 −1 6 ans Z[x] Lsuchthatdeg(s)>deg(u )andlc(s)=lc(u ). Then,grem(P ,Q (P ))=0contradicting tothe 1 1 s H ∈ ∩ 6 factthatP isas -Gröbnferbasis. f H 8 Corollary3.11. IfI hasafinites -Gröbnerbasis,theng F . G 1 1 ∈ Proof: Letb bethe primitive part ofg . ThenbyLemma3.9,b hfor anyh L. ByTheorem 3.10, b and 1 1 1 1 | ∈ henceg isienF . e e 1 1 Corollary3.12. IfL F =0/ andinparticular g F ,thenI hasfinites -GröbnerBasis. t 1 t 1 G T 6 ∈ Thefollowingexampleshowsthatg F isnotanecessaryconditionforthes -Gröbnerbasistobefinite. t 1 ∈ Example3.13. LetG= 2(x2 2),(x2 2)(x+1) . Then(x2 2)(x+1)(x 1)+2(x2 2)=x4 x2 2 { − − } − − − − − ∈ F F ,andhence I has afinite s -Gröbner basis. Ontheother hand, wewillshow (x2 2)(x+1) / F 0 1 G 1 ⊂ − ∈ inExample4.10. Inordertogiveanothercriterion, weneedthefollowingeffectivePolyaTheorem. n Lemma3.14([17]). Supposethat f(x)= (cid:229) a xn R[x]ispositiveon[0,¥ )andF(x,y)thehomogenization n ∈ j=0 of f. Then for Nf > n(n2−l1)L −n, (1+x)Nf f(x) ∈ R>0[x], where l = min{F(x,1−x)|x ∈ [0,1]} and L = max{k!(nn−!k)!|ak|}. Corollary3.15. Ifthereexistsanh Lwithnopositiverealroots,thenI hasafinites -Gröbnerbasis. G ∈ Proof: Writeh=xm1h1suchthath1(0)=0. ByLemma3.14,thereexistsanN Nsuchthath2=(x+1)Nh 6 ∈ ∈ Z>0[x]. Take a sufficiently large N such that deg(h )>d =deg(g ). Then there exists a sufficiently large 2 t t M N, such that g=xm1(xdeg(h2)−deg(gt)+1gt Mh2) F 0. Since g Li, by Lemma 3.10, I has a finite ∈ − ∈ ∈ s -GröbnerBasis. F s 4 Membership decision for and -Gröbner basis computation 1 InSection 3,weprovethatsat(P )hasafinites -Gröbner basis ifandonlyif f F . Inthissection, wewill f 1 ∈ givecriteriaandanalgorithmfor f F . If f F ,wealsogiveanalgorithmtocomputethefinites -Gröbner 1 1 ∈ ∈ basis. From the definition of F , a necessarily condition for f F is lc(f)>0. Also, it is easy to show that 1 1 ∈ f F ifandonlyifcxmf F forpositiveintegerscandm. Sointherestofthispaper, weassume 1 1 ∈ ∈ n f = (cid:229) a xi Z[x] n ∈ i=0 suchthatn>0,lc(f)=a >0, f(0)=a =0,andgcd(a ,a ,...,a )=1. n 0 0 1 n 6 4.1 Decisioncriteria Inthissubsection, wewillstudywhether f F byexaminingproperties oftherootsof f(x)=0. 1 ∈ Lemma4.1. If f Z[x]hasnopositiverealroots,then f F . 1 ∈ ∈ Proof: By Lemma 3.14, there exists an N N, such that (x+1)Nf Z>0[x] N[x]. By Lemma 3.6, (x+ ∈ ∈ ⊆ 1)Nf N[x] F ,andthus f F . 1 1 ∈ ⊆ ∈ ByLemma4.1,weneedonlyconsiderthosepolynomials whichhavepositiveroots. 9 Lemma4.2. Let f =a xn+ +a F . Then f hasasimpleandunique positive realrootx ,andforany n 0 0 + ··· ∈ rootzof f,wehave z x . + | |≤ Proof: Since f F Z, the number of sign differences of f is one. Then by Descartes’ rule of signs [1], 0 ∈ \ thenumber ofpositive realroots of f (withmultiplicities counted) isoneorlessthanonebyanevennumber. Then f has a simple and unique positive real root x . Forany root z of f, since a 0 for i=0,...,n 1, + i − ≥ − wehave a zn= a zn = a zn 1 a a zn 1 a . (13) n n n 1 − 0 n 1 − 0 | | | | |− − −···− |≤− − | | −···− Thus f(z)60andhence f hasatleastonerealrootin[z,¥ ). Since f hasauniquepositiverealrootx ,we + | | | | have z 6x . + | | Wenowconsider those f whichhasarootz=x and z =x . Suchazmustbeeither x oracomplex + + + 6 | | − root. Lemma 4.3. Let f =a xn+ +a F and x the unique positive root of f. If f has a root z=x but n 0 0 + + ··· ∈ 6 z =x ,thenwehave + | | 1. zd f R>0 andzisasimplerootof f,whered f =gcd i ai =0 >1. ∈ { | 6 } d d 2. f is apolynomial in x f: f = f x f, where isthe function composition. Furthermore, f(w)=0and d d ◦ ◦ w =x f implyw=x f. b b + + | | 2pi 3. f hasexactlyd f rootswithabsolute valuex+: z f(z)=0, z =x+ = z kx+ z =edf ,k=1,...,d f , { | | | } { | } wherei=√ 1. − Proof: Letz=x bearootof f suchthat z =x . Then f(z)= f(x )=a zn+a zn 1+ +a =0, + + + n n 1 − 0 which, combi6ning with(13),implies a | |zn 1 a |=| a zn 1 | | a .−T|he| above··e·quation is n 1 − 0 n 1 − 0 possibleifandonlyif azi R for|e−ach−i n −1·a·n·d−a =| 0.−Also−n|o|te,zn−=··(·−a zn 1 a )/a i >0 i n 1 − 0 n R . Then, zi R −for ea∈ch i n and a =≤0.−Note that6 zm R and zk R− i−mp|l|y zm−k···−R . As∈a >0 >0 i >0 >0 − >0 consequence, z∈d f R>0 ford f =≤gcd i ai =6 0 . Sincez=x+,w∈ehaved f >1∈. Part1ofthelemm∈aisproved. ∈ { | 6 } 6 From the definition of d f, f is a polynomial of xd f: f(x)= f(x) (xd f). It is easy to see that f(x) F 0. ◦ d ∈ Let f(x)=b xk+ +b x+b . Thengcd j b =0 =1. Bythbefirstpartofthislemma,weknowbx f isthe onlybroot of kf who·s·e· abs1olute0value is xd f{. S|injce6 zd }f and xd f are both the unique positive real roots o+f f(x), + + wehavezd f =xd f andhencezisasimplerootof f. Part2ofthelemmaisproved. Part3ofthelemmacobmes + fromthefactzd f =xd f istheuniquepositiverealrootof f and f(z)= f(zd f)=0. + b Corollary 4.4. If f F has at least one positive real root x , then x is the unique positive real root of f, 1 + + ∈ x is simple and for any root z of f, x > z. If f has a root z=x satisfying z =x , then z is simple, and + + + + zd R forsomed N ,orequivalentl|y,|theargumentofzs6atisfies Arg(z)/p| | Q. >0 >1 ∈ ∈ ∈ Example4.5. f =(x2 5)(x2 2x+5) / F ,because therootz=1+2isatisfies z =√5butzd / R for 1 >0 − − ∈ | | ∈ anyd N. ∈ Thefollowingexampleshowsthatthemultiplicity forarootzsatisfying z <x couldbeanynumber. + | | Example4.6. Forany n,k N ,(x+1)n(x k) F . Letn=1, (x+1)(x k) F . Let f (x)=(x+1)2 >1 1 0 1 ∈ − ∈ − ∈ and fn+1(x) = fn(x)(x2⌊deg(fn)/2⌋+1+1) for n>1. Then we have (x+1)n+1 fn(x), fn(x) Z>0[x], and all | ∈ coefficients of f areeither1or2. Thus, f (x)(x k) F and(x+1)n(x k) F bydefinition. n n 0 1 − ∈ − ∈ 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.