CREEP STRENGTH OF ALUMINUM ALLOY CONDUCTOR by Thomas John Gerard A THESIS submitted to OREGON STATE COLLEGE in partial fulfillment of the requirements for the de gree of MASTER OF SC IENGE May 1958 AHFBOIISDT Redacted for Privacy Amogt*tc Pruful*ur of il*ahralaal Sngln**rl*g In Shmgp of lrJor Redacted for Privacy Ecad of Dryartucut af fmh*ntarl Eagfprmiag Redacted for Privacy Shntnnen of, Ssbsol ft,riluata Sounl,ttro Redacted for Privacy saarn of Sr*thntn Sohsel tb.tlr lr Detr pntrcnbail,,furthf /c ,/,?-t# by E;Lrn Evrnl typcdl ACKli'OWLEDGMENT o. The author is deeply indebted to G. l'aasohe, Associate Professor ot Mechanical Engineering, Oregon State College, for his extensive help in this project. He is grateful to the members of the faoulty and stu~ dent body who constructed and calibrated the apparatus. He wishes to thank the Kaiser Aluminum and Ohemieal Corporation tor making this investigation possible, and in particular, Doctor Roger Olleman, Department of Metallurgical Research, for his kind The suggest1~ns. author is grateful to Mr. Robert Leduc who kindly helped him .in the preparation of graphs for this paper. TABIE OF CONTENTS Page BACKGROUND...................................... 1 Introduction•••••••·••••••••••••• ; • ; •••·• • • • • l Objectives••••••• 7 ~••••••••••••••••••••••••• Scope•••••• •••• •• •••••••·••••• ••• 8 ~ ~ ~ ~ · .~..... History•••••••••••••••••••• ••••••·••••••••• 8 ~ Definition of Terms•••••••••••••••••••••••• 9 THEORY•••••••••••••••••••••••••••••••••••••••••• 10 Factors Affecting Creep•••••••••••••••••••• 10 Metallurgical $xplanations................. 17 Creep Correlations......................... 29 Summary•••••••••••••••••••••••••••••••••••• 36 CREEP TESTING••••••••••••• 37 ~~.~•••••••••••••••••• ASTM Specifications........................ 37 Creep Testing ·or ·Aluminum ·AlloyConductor.. 39 Test Material•••••••••••••••••••••••••••••• 40 Creep Testing Machines ••• ••• • • • • • • • •• • • • • • • 44 Test Equipment ••••••••••••••••••••••••••••• 45 Calibration................................ 57 Load Calibration........................... 58 TEST CONDITIONS................................. 59 Specimens.................................. 60 Loads•••••••••••••••••••••••••••••••••••••• 61 Duration of Test••••••••••••••••••••••••••• 63 Observations••••••••••••••••••••••••••••••• 63 I Ri SULTS•••••••• ~••••••••••••~••••••••••••••••~•• bh 64 General•••••••••••••••••••••••••••••••••••• Performance of Equipment ••••••••••••••••••• 65 INTERPRETATION OF RESULTS •• 68 ~~.~••••••••••••••••• General Correlations....................... 68 Preload•••••••••••••••••••••••••••••••••••• 71 Correlation of Prestressed Specimens....... 76 10,000 Hour Test••••••••••••••••••••••••••• 84 Conductor and Wire Correlations............ 87 Page Manu1'actur1ng Lot Correlations•••••••••••••• 90 Residual Stresses........................... 95 Effect of Clamps,........................... 97 CONCLUSIONS •• •~•••••••••~•••••~•••~••••••••••••~• 98 Theory••••••••·. • •• ._•• • • •••••••••• ~ ~.. • • • ..• • • 98 Equipment ••• ". •.•·•• • ••••• ~ ............, • .,. • • • • • 98 Procedure.,. •••• •......•·•••·•..............._" • • • 99 Test Result .s••••••••••• ~ • ~, ~., ••••••• • • • • • • • • 99 ••••••••••, ••••••• ••• 101 ~EOOMENDATIONS ~ ~·•t••••••••• BIBLIOGRAPm·••• •,• • ••••• , •· • • .............., •.....• • 103 APPENDIX•• : ••••••••••••••••••••• .... ~ ~ ~. ~ .~ , ~ ~ ~... ~-• 107 LIST OF FIGURES Page Figure 1. The Creep Curve•••••••••••••••••••••• 10 Figure 2. Effect of Tempe-rature on the Str·e-ngth of ·Grain'S and Grain Boundari-es••••••• 16 Figure 3. Interior View of the Enclosure ••••••• 46 Figure 4• Loading and TakErtip Ends . of the Creep 48 Testing Machine•••••••••••••••••••••• Figure 5. Cutaway Sketch of' the Enclosure •••••• 49 Figure 6. External View of the Enclosure•••••••• 53 Figure 7. Schematic · or ·The .Air Conditioning 56 System••••••••·••••••••••••••••••••••• Figure 8. Log...Log·o:ne Holir Preload Correlation 74 Curve••••••••••••••••••••••••••••••••• Figure 9. Stress-strain·curve ·ror ·on.e ·Hour· Preloads •••••••••••••••••••••••••••••• 75 Figure 10. Strain•Time Comparison Ourves of Pre stressed Specimens.................... 77 Figure 11. Log-Log Correlation ·ourves ·or ·p:re• Stressed Specimens.................... 79 for Figure 12. Stra1n-T1ma Curv$ the 10,000 Hour Test Specimen......................... 85 Figure 13. Log-Log Strain-Time Curve for the 10,000 Hour Test Specimen............. 86 14. Figure Creep Comparison Between Conductor and Single Strand••••••••••••••••••••• 88 Page Figure 15. Log-Log Correlation of Creep or · 89 Conductor s.nd Single Strand......... Figure 16. Manufacturing Lot Var1at1ons ·1n Creep of Single Strands••••••••••••• 91 Figure 17. Log-L.og Creep Correlation of Manu facturing Lot Variations in -Single Strands•• • • • ••••• • • • 92 e • •• ., • ·• • • ·•. • • ·•. • Figure 18. Manufaet\U'ing Lot Variat1ons ·in· Creep of Conductors................... 93 Figure 19. Log-Log Creep Correlation of Manu-. raeturing Lot ·Vs.rlat1.ons in ·C on• due tors.............................. 94 Figure 20. Effect of Creep Strain -upon Residual Stresses in Conductors................. 96 LIST OF TABLES Page Table 1. Nominal Composition or ·the Test Material................................ 1 Table 2. Test Cond1t16na ·or Series ·) and Series 4 Specimens. • • • • • • • • • • • • • • • • • • • •.• • • • • • • 62 Table .3. Table of Constants ·for the Creep Equation••••••••••••••••••••••••••••••• 72 C~EP S~NMHOFALWDmM ALLOY CONDUCTOR BACKGROUND IntrQd;setion '!'he use of aluminum tor conduction of electricity from the generating station to the user i.s now almost standard throughout the electrical power indust17. The change from the use of copper, formerly used, has been brought about by the fortuitous combination of good electrical conductivity, good corrosion resistance, light weight, and relatively good strength by pos~essed aluminum. To decrease the cost of a transmission line it a is desirable to have as strong conductor as possible, consistent with other factors. to enable the use of fewer towers. Recently. efforts have been made to increase the strength of aluminum by alloying and other treatments. In addition to the electrical load. a conductor is required to withstand mechanically induced forces such as tension. These cause the conductor to sag. This sag has been found to increase over a period of time due to plastic flow. It is the purpose of this thesis to investigate the characteristics and extent of this 2 plastic flow as a step toward evaluation ot the new aluminum alloy conductor as a transmission line material. The elastic deformation of a metal specimen sub jected to a load within the proportional limit ot the material may be predicted with a high degree of accuracy, since the modulus ot elasticity remains essentially con stant tar the material. The limit of elastic strain and the plastic strain exhibited by metals undergoing rel atively short time loads above the elastic limits is not as easy to determine, since each new alloy may exhibit a different plastic strain However, these rates may rate~ be evaluated quickly by mean-s ot short time tests. This plastic strain is generally of but indirect importance to the designer who designs within the elastic limits; he uses plastic strain as an added factor of safety. Of direct concern to the design engine r is the plastic deformation exhibited by metals subjected to constant stress at loads well below the elastic limit f.or long periods oi' time. Under ambient temperatures this plastic strain is almost indeed, under negl1g1bl~; some conditions it might be undetectible without the aid ot special equipment. However, in any part o! great length this plastic deformation may become quite noticeable. Should the part be loaded for any long
Description: