ebook img

CRC Handbook of chemistry and physics PDF

2475 Pages·2003·34.537 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview CRC Handbook of chemistry and physics

PREFACE The 84th Edition of the CRC Handbook of Chemistry and Physics features a completely new version of the most heavily used table, Physical Constants of Organic Compounds. This is the first revision of the table since 1994. Compounds have been selected for inclusion in the new table by a careful screening of lists of organic compounds that are important in laboratory research, industrial chemistry, environmental protection, drug development, teaching, and other active areas. In this way priorities were established for choosing the most significant compounds out of the millions of organic substances that have been reported in the literature. Property data for the selected compounds have been updated, and new structure diagrams, which show much more detail than the previous structures, have been drawn for all the compounds. This Internet version of the 84th Edition has added 17 new subsections that can be accessed as interactive tables. These include tables on Heat of Combustion, Activity Coefficients, Refrigerants, Amino Acids, Chemical Carcinogens, Laboratory Solvents, and other topics. The search screens have been modified to make them more user friendly, and there is now a subject index that permits boolean searching on the name of a physical property and the identifiers of a chemical substance (name, formula, or CAS Registry Number). An option has been added to the table displays that permits locking the left-most column, which usually contains the chemical name, when scanning a wide table. Tool-tips that explain the data in a column now appear when the cursor is held over that column heading, and it is now possible to export the results of a search directly into an Excel file. Other new features of the 84th Edition include: • An update and expansion of the table of Critical Constants of Fluids, with many new compounds and recently published data • A new version of Properties of Refrigerants, which covers fluids now used in refrigeration systems and those being considered as substitutes • A new table on Fermi Energy and Related Properties of Metals • New tables of practical laboratory data such as Flame and Bead tests, Flame Temperatures, and Density of Ethanol-Water Mixtures • An update of lists of Chemical Carcinogens and Interstellar Molecules. The Handbook of Chemistry and Physics is dependent on the efforts of many contributors throughout the world. The list of current contributors follows this Preface. The new table of Physical Constants of Organic Compounds could not have been completed without the help of Dr. Fiona Macdonald, who oversaw the structure drawing and checked names and formulas. Thanks are also due to Janice Shackleton, Trupti Desai, Nazila Kamaly, Matt Griffiths, and Lawrence Braschi, who participated in drawing the structures. David R. Lide October 27, 2003 This Edition is dedicated to my grandchildren: Mary Eleanor Lide David Alston Lide, Jr. Grace Eileen Lide David Austell Whitcomb Kate Elizabeth Whitcomb This work contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot accept responsibility for the validity of all materials or for the consequences of their use. © Copyright CRC Press LLC 2004 CURRENT CONTRIBUTORS Lev I. Berger Norman E. Holden Joseph Reader California Institute of Electronics National Nuclear Data Center Atomic Physics Division and Materials Science Brookhaven National Laboratory National Institute of Standards and 2115 Flame Tree Way Upton, New York 11973 Technology Hemet, California 92545 Gaithersburg, Maryland 20899 H. Donald Brooke Jenkins Department of Chemistry A. K. Covington Lewis E. Snyder University of Warwick Department of Chemistry Coventry CV4 7AL England Astronomy Department University of Newcastle University of Illinois Newcastle upon Tyne NE1 7RU Henry V. Kehiaian Urbana, Illinois 61801 England ITODYS David W. Stocker 1 rue Guy de la Brosse School of Chemistry Robert B. Fox 75005 Paris, France University of Leeds 6115 Wiscassett Rd. J. Alistair Kerr Leeds LS2 9JT England Bethesda, Maryland 20816 School of Chemistry University of Birmingham B. N. Taylor H. P. R. Frederikse Birmingham B15 2TT England Physics Laboratory 9625 Dewmar Lane National Institute of Standards and Nand Kishore Kensington, Maryland 20895 Technology Department of Chemistry Gaithersburg, Maryland 20899 Indian Institute of Technology J.R. Fuhr Powai, Bombay 400 076 India Thomas G. Trippe Atomic Physics Division National Institute of Standards and Rebecca Lennen Particle Data Group Technology Naval Surface Warfare Center Lawrence Berkeley Laboratory Gaithersburg, Maryland 20899 Biological Sciences Group 1 Cyclotron Road Berkeley, California 94720 9500 MacArthur Blvd. Robert N. Goldberg West Bethesda, Maryland Petr Vany´sek Biotechnology Division 20817-5700 Department of Chemistry National Institute of Standards and Frank J. Lovas Northern Illinois University Technology 8616 Melwood Rd. DeKalb, Illinois 60115 Gaithersburg, Maryland 20899 Bethesda, Maryland 20817 Karl A. Gschneidner Wolfgang L. Wiese Ames Laboratory William C. Martin Atomic Physics Division Energy and Mineral Resources Atomic Physics Division National Institute of Standards and Research Institute National Institute of Standards and Technology Iowa State University Technology Gaithersburg, Maryland 20899 Ames, Iowa 50011 Gaithersburg, Maryland 20899 Edward S. Wilks Joel S. Miller E.I. du Pont de Nemours and C. R. Hammond Department of Chemistry Company Inc. 17 Greystone Rd. University of Utah Barley Mills Plaza 14/1290 West Hartford, Connecticut 06107 Salt Lake City, Utah 84112 Wilmington, Delaware 19880-0014 Robert F. Hampson Thomas M. Miller Christian Wohlfarth Chemical Kinetics Division Air Force Research Laboratory/VSBP Institut für Physikalische Chemie National Institute of Standards and 29 Randolph Rd. Martin Luther University Technology Hanscom AFB, Massachusetts D-06217 Merseburg Gaithersburg, Maryland 20899 01731-3010 Germany FUNDAMENTAL PHYSICAL CONSTANTS Peter J. Mohr and Barry N. Taylor These tables give the 1998 self-consistent set of values of the basic constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA) for international use. The 1998 set replaces the previous set of constants recommended by CODATA in 1986; assigned uncertainties have been reduced by a factor of 1/5 to 1/12 (and sometimes even greater) relative to the 1986 uncertainties. The recommended set is based on a least-squares adjustment involving all of the relevant experimental and theoretical data available through December 31, 1998. Full details of the input data and the adjustment procedure are given in Reference 1. The 1998 adjustment was carried out by P. J. Mohr and B. N. Taylor of the National Institute of Standards an d Technology (NIST) under the auspices of the CODATA Task Group on Fundamental Constants. The Task Gr oup was established in 1969 with the aim of periodically providing the scientific and technological communities wi th a self-consistent set of internationally recommended values of the fundamental physical constants based on all app licable information available at a given point in time. The first set was published in 1973 and was followed by a rev ised set first published in 1986; the current 1998 set first appeared in 1999. In the future, the CODATA Task Gr oup plans to take advantage of the high level of automation developed for the current set in order to issue a new set of recommended values at least every four years. At the time of completion of the 1998 adjustment, the membership of the Task Group was as follows: F. Cabiati, Istituto Elettrotecnico Nazionale “Galileo Ferraris,” Italy E. R. Cohen, Science Center, Rockwell International (retired), United States of America T. Endo, Electrotechnical Laboratory, Japan R. Liu, National Institute of Metrology, China (People’s Republic of) B. A. Mamyrin, A. F. Ioffe Physical-Technical Institute, Russian Federation P. J. Mohr, National Institute of Standards and Technology, United States of America F. Nez, Laboratoire Kastler-Brossel, France B. W. Petley, National Physical Laboratory, United Kingdom T. J. Quinn, Bureau International des Poids et Mesures B. N. Taylor, National Institute of Standards and Technology, United States of America V. S. Tuninsky, D. I. Mendeleyev All-Russian Research Institute for Metrology, Russian Federation W. Wöger, Physikalisch-Technische Bundesanstalt, Germany B. M. Wood, National Research Council, Canada REFERENCES 1. Mohr, Peter J., and Taylor, Barry N., J. Phys Chem. Ref. Data 28, 1713, 1999; Rev. Mod. Phys. 72, 351, 2000. The 1998 set of recommended values is also available at the Web site of the Fundamental Constants Data Center of the NIST Physics Laboratory: http://physics.nist.gov/constants. Fundamental Physical Constants Relativestd. Quantity Symbol Value Unit uncert. ur UNIVERSAL s peedoflightinvacuum c,c 299792458 ms−1 (exact) 0 m agneticconstant µ 4π ×10−7 NA−2 0 =12.566370614...×10−7 NA−2 (exact) e lectricconstant1/µ c2 ε 8.854187817...×10−12 Fm−1 (exact) 0 0 c haracteristi√cimpedance ofvacuum µ /(cid:7) =µ c Z 376.730313461... (cid:8) (exact) 0 0 0 0 N ewtonianconstant ofgravitation G 6.673(10)×10−11 m3 kg−1 s−2 1.5×10−3 G/(cid:1)c 6.707(10)×10−39 (GeV/c2)−2 1.5×10−3 P lanckconstant h 6.62606876(52)×10−34 Js 7.8×10−8 ineVs 4.13566727(16)×10−15 eVs 3.9×10−8 h/2π (cid:1) 1.054571596(82)×10−34 Js 7.8×10−8 ineVs 6.58211889(26)×10−16 eVs 3.9×10−8 P lanckmass((cid:1)c/G)1/2 m 2.1767(16)×10−8 kg 7.5×10−4 P P lancklength(cid:1)/m c =((cid:1)G/c3)1/2 l 1.6160(12)×10−35 m 7.5×10−4 P P P lancktimel /c =((cid:1)G/c5)1/2 t 5.3906(40)×10−44 s 7.5×10−4 P P ELECTROMAGNETIC e lementarycharge e 1.602176462(63)×10−19 C 3.9×10−8 e/h 2.417989491(95)×1014 AJ−1 3.9×10−8 magneticfluxquantumh/2e (cid:11) 2.067833636(81)×10−15 Wb 3.9×10−8 0 c onductancequantum2e2/h G0 7.748091696(28)×10−5 S 3.7×10−9 inverseofconductancequantum G−1 12906.403786(47) (cid:8) 3.7×10−9 0 J osephsonconstanta 2e/h K 483597.898(19)×109 HzV−1 3.9×10−8 J v onKlitzingconstantb h/e2 =µ c/2α R 25812.807572(95) (cid:8) 3.7×10−9 0 K Bohrmagnetone(cid:1)/2m µ 927.400899(37)×10−26 JT−1 4.0×10−8 e B ineVT−1 5.788381749(43)×10−5 eVT−1 7.3×10−9 µ /h 13.99624624(56)×109 HzT−1 4.0×10−8 B µ /hc 46.6864521(19) m−1 T−1 4.0×10−8 B µ /k 0.6717131(12) KT−1 1.7×10−6 B nuclearmagnetone(cid:1)/2m µ 5.05078317(20)×10−27 JT−1 4.0×10−8 p N ineVT−1 3.152451238(24)×10−8 eVT−1 7.6×10−9 µN/h 7.62259396(31) MHzT−1 4.0×10−8 µ /hc 2.54262366(10)×10−2 m−1 T−1 4.0×10−8 N µ /k 3.6582638(64)×10−4 KT−1 1.7×10−6 N ATOMICANDNUCLEAR General fine-structureconstante2/4π(cid:7) (cid:1)c α 7.297352533(27)×10−3 3.7×10−9 0 inversefine-structureconstant α−1 137.03599976(50) 3.7×10−9 Fundamental Physical Constants Relativestd. Quantity Symbol Value Unit uncert. u r Ryd bergconstantα2mec/2h R∞ 10973731.568549(83) m−1 7.6×10−12 R∞c 3.289841960368(25)×1015 Hz 7.6×10−12 R∞hc 2.17987190(17)×10−18 J 7.8×10−8 R ∞hcineV 13.60569172(53) eV 3.9×10−8 Boh rradiusα/4πR∞ =4π(cid:7)0(cid:1)2/mee2 a0 0.5291772083(19)×10−10 m 3.7×10−9 Hart reeenergye2/4πε0a0 =2R∞hc =α 2m c2 E 4.35974381(34)×10−18 J 7.8×10−8 e h in eV 27.2113834(11) eV 3.9×10−8 quan tumofcirculation h/2m 3.636947516(27)×10−4 m2 s−1 7.3×10−9 e h/m 7.273895032(53)×10−4 m2 s−1 7.3×10−9 e Electroweak Ferm icouplingconstantc G /((cid:1)c)3 1.16639(1)×10−5 GeV−2 8.6×10−6 F wea kmixingangled θ (on-shellscheme) W sin2θ =s2 ≡1−(m /m )2 sin2θ 0.2224(19) 8.7×10−3 W W W Z W Electron,e− elec tronmass m 9.10938188(72)×10−31 kg 7.9×10−8 e inu,m = A (e)u(electron e r relativeatomicmasstimesu) 5.485799110(12)×10−4 u 2.1×10−9 energyequivalent m c2 8.18710414(64)×10−14 J 7.9×10−8 e inMeV 0.510998902(21) MeV 4.0×10−8 elec tron-muonmassratio me/mµ 4.83633210(15)×10−3 3.0×10−8 elec tron-taumassratio me/mτ 2.87555(47)×10−4 1.6×10−4 elec tron-protonmassratio m /m 5.446170232(12)×10−4 2.1×10−9 e p elec tron-neutronmassratio m /m 5.438673462(12)×10−4 2.2×10−9 e n electron-deuteronmassratio m /m 2.7244371170(58)×10−4 2.1×10−9 e d elec trontoalphaparticlemassratio me/mα 1.3709335611(29)×10−4 2.1×10−9 elec tronchargetomassquotient −e/m −1.758820174(71)×1011 Ckg−1 4.0×10−8 e elec tronmolarmass N m M(e),M 5.485799110(12)×10−7 kgmol−1 2.1×10−9 A e e Com ptonwavelengthh/m c λ 2.426310215(18)×10−12 m 7.3×10−9 e C λ C/2π =αa0 =α2/4πR∞ (cid:1)C 386.1592642(28)×10−15 m 7.3×10−9 classicalelectronradiusα2a r 2.817940285(31)×10−15 m 1.1×10−8 0 e Tho msoncrosssection(8π/3)re2 σe 0.665245854(15)×10−28 m2 2.2×10−8 elec tronmagneticmoment µ −928.476362(37)×10−26 JT−1 4.0×10−8 e to Bohrmagnetonratio µ /µ −1.0011596521869(41) 4.1×10−12 e B to nuclearmagnetonratio µ /µ −1838.2819660(39) 2.1×10−9 e N electronmagneticmoment anomaly|µ |/µ −1 a 1.1596521869(41)×10−3 3.5×10−9 e B e electrong-factor−2(1+a ) g −2.0023193043737(82) 4.1×10−12 e e electron-muon magneticmomentratio µe/µµ 206.7669720(63) 3.0×10−8 Fundamental Physical Constants Relativestd. Quantity Symbol Value Unit uncert. u r el ectron-proton m agneticmomentratio µ /µ −658.2106875(66) 1.0×10−8 e p el ectrontoshieldedproton m agneticmomentratio µ /µ(cid:9) −658.2275954(71) 1.1×10−8 ◦ e p (H O,sphere,25 C) 2 el ectron-neutron m agneticmomentratio µ /µ 960.92050(23) 2.4×10−7 e n el ectron-deuteron m agneticmomentratio µ /µ −2143.923498(23) 1.1×10−8 e d electrontoshieldedhelione magneticmomentratio µ /µ(cid:9) 864.058255(10) 1.2×10−8 e h ◦ (gas,sphere,25 C) el ectrongyromagneticratio2|µ |/(cid:1) γ 1.760859794(71)×1011 s−1 T−1 4.0×10−8 e e γ /2π 28024.9540(11) MHzT−1 4.0×10−8 e Muon,µ− m uonmass mµ 1.88353109(16)×10−28 kg 8.4×10−8 inu,mµ = Ar(µ)u(muon relativeatomicmasstimesu) 0.1134289168(34) u 3.0×10−8 energyequivalent mµc2 1.69283332(14)×10−11 J 8.4×10−8 inMeV 105.6583568(52) MeV 4.9×10−8 m uon-electronmassratio mµ/me 206.7682657(63) 3.0×10−8 m uon-taumassratio mµ/mτ 5.94572(97)×10−2 1.6×10−4 m uon-protonmassratio mµ/mp 0.1126095173(34) 3.0×10−8 m uon-neutronmassratio mµ/mn 0.1124545079(34) 3.0×10−8 m uonmolarmass NAmµ M(µ),Mµ 0.1134289168(34)×10−3 kgmol−1 3.0×10−8 m uonComptonwavelengthh/mµc λC,µ 11.73444197(35)×10−15 m 2.9×10−8 λC,µ/2π (cid:1)C,µ 1.867594444(55)×10−15 m 2.9×10−8 m uonmagneticmoment µµ −4.49044813(22)×10−26 JT−1 4.9×10−8 toBohrmagnetonratio µµ/µB −4.84197085(15)×10−3 3.0×10−8 tonuclearmagnetonratio µµ/µN −8.89059770(27) 3.0×10−8 m uonmagneticmomentanomaly | µµ|/(e(cid:1)/2mµ)−1 aµ 1.16591602(64)×10−3 5.5×10−7 m uong-factor−2(1+aµ) gµ −2.0023318320(13) 6.4×10−10 muon-proton m agneticmomentratio µµ/µp −3.18334539(10) 3.2×10−8 Tau,τ− ta umassf mτ 3.16788(52)×10−27 kg 1.6×10−4 inu,mτ = Ar(τ)u(tau relativeatomicmasstimesu) 1.90774(31) u 1.6×10−4 energyequivalent mτc2 2.84715(46)×10−10 J 1.6×10−4 inMeV 1777.05(29) MeV 1.6×10−4 Fundamental Physical Constants Relativestd. Quantity Symbol Value Unit uncert. u r ta u-electronmassratio mτ/me 3477.60(57) 1.6×10−4 ta u-muonmassratio mτ/mµ 16.8188(27) 1.6×10−4 ta u-protonmassratio mτ/mp 1.89396(31) 1.6×10−4 ta u-neutronmassratio mτ/mn 1.89135(31) 1.6×10−4 ta umolarmass NAmτ M(τ),Mτ 1.90774(31)×10−3 kgmol−1 1.6×10−4 ta uComptonwavelengthh/mτc λC,τ 0.69770(11)×10−15 m 1.6×10−4 λC,τ/2π (cid:1)C,τ 0.111042(18)×10−15 m 1.6×10−4 Proton,p protonmass m 1.67262158(13)×10−27 kg 7.9×10−8 p inu,mp = Ar(p)u(proton relativeatomicmasstimesu) 1.00727646688(13) u 1.3×10−10 energyequivalent m c2 1.50327731(12)×10−10 J 7.9×10−8 p inMeV 938.271998(38) MeV 4.0×10−8 proton-electronmassratio m /m 1836.1526675(39) 2.1×10−9 p e p roton-muonmassratio mp/mµ 8.88024408(27) 3.0×10−8 p roton-taumassratio mp/mτ 0.527994(86) 1.6×10−4 p roton-neutronmassratio m /m 0.99862347855(58) 5.8×10−10 p n p rotonchargetomassquotient e/m 9.57883408(38)×107 Ckg−1 4.0×10−8 p p rotonmolarmass N m M(p), M 1.00727646688(13)×10−3 kgmol−1 1.3×10−10 A p p p rotonComptonwavelengthh/mpc λC,p 1.321409847(10)×10−15 m 7.6×10−9 λC,p/2π (cid:1)C,p 0.2103089089(16)×10−15 m 7.6×10−9 p rotonmagneticmoment µ 1.410606633(58)×10−26 JT−1 4.1×10−8 p toBohrmagnetonratio µ /µ 1.521032203(15)×10−3 1.0×10−8 p B tonuclearmagnetonratio µ /µ 2.792847337(29) 1.0×10−8 p N protong-factor2µ /µ g 5.585694675(57) 1.0×10−8 p N p p roton-neutron m agneticmomentratio µ /µ −1.45989805(34) 2.4×10−7 p n sh ieldedprotonmagneticmoment µ(cid:9) 1.410570399(59)×10−26 JT−1 4.2×10−8 p ◦ (H O,sphere,25 C) 2 toBohrmagnetonratio µ(cid:9)/µ 1.520993132(16)×10−3 1.1×10−8 p B tonuclearmagnetonratio µ(cid:9)p/µN 2.792775597(31) 1.1×10−8 p rotonmagneticshielding c orrection1−µ(cid:9)/µ σ(cid:9) 25.687(15)×10−6 5.7×10−4 p p p ◦ (H O,sphere,25 C) 2 protongyromagneticratio2µ /(cid:1) γ 2.67522212(11)×108 s−1 T−1 4.1×10−8 p p γp/2π 42.5774825(18) MHzT−1 4.1×10−8 sh ieldedprotongyromagnetic r atio2µ(cid:9)/(cid:1) γ(cid:9) 2.67515341(11)×108 s−1 T−1 4.2×10−8 p p ◦ (H O,sphere,25 C) 2 γ(cid:9)/2π 42.5763888(18) MHzT−1 4.2×10−8 p Neutron,n Fundamental Physical Constants Relativestd. Quantity Symbol Value Unit uncert. u r n eutronmass mn 1.67492716(13)×10−27 kg 7.9×10−8 inu,mn = Ar(n)u(neutron relativeatomicmasstimesu) 1.00866491578(55) u 5.4×10−10 energyequivalent m c2 1.50534946(12)×10−10 J 7.9×10−8 n inMeV 939.565330(38) MeV 4.0×10−8 neutron-electronmassratio m /m 1838.6836550(40) 2.2×10−9 n e n eutron-muonmassratio mn/mµ 8.89248478(27) 3.0×10−8 n eutron-taumassratio mn/mτ 0.528722(86) 1.6×10−4 n eutron-protonmassratio m /m 1.00137841887(58) 5.8×10−10 n p n eutronmolarmass N m M(n),M 1.00866491578(55)×10−3 kgmol−1 5.4×10−10 A n n n eutronComptonwavelengthh/mnc λC,n 1.319590898(10)×10−15 m 7.6×10−9 λC,n/2π (cid:1)C,n 0.2100194142(16)×10−15 m 7.6×10−9 n eutronmagneticmoment µn −0.96623640(23)×10−26 JT−1 2.4×10−7 toBohrmagnetonratio µ /µ −1.04187563(25)×10−3 2.4×10−7 n B tonuclearmagnetonratio µ /µ −1.91304272(45) 2.4×10−7 n N n eutrong-factor2µ /µ g −3.82608545(90) 2.4×10−7 n N n neutron-electron magneticmomentratio µ /µ 1.04066882(25)×10−3 2.4×10−7 n e n eutron-proton m agneticmomentratio µ /µ −0.68497934(16) 2.4×10−7 n p n eutrontoshieldedproton m agneticmomentratio µ /µ(cid:9) −0.68499694(16) 2.4×10−7 n p ◦ (H O,sphere,25 C) 2 n eutrongyromagneticratio2|µ |/(cid:1) γ 1.83247188(44)×108 s−1 T−1 2.4×10−7 n n γ /2π 29.1646958(70) MHzT−1 2.4×10−7 n Deuteron,d d euteronmass m 3.34358309(26)×10−27 kg 7.9×10−8 d inu,m = A (d)u(deuteron d r relativeatomicmasstimesu) 2.01355321271(35) u 1.7×10−10 energyequivalent mdc2 3.00506262(24)×10−10 J 7.9×10−8 inMeV 1875.612762(75) MeV 4.0×10−8 d euteron-electronmassratio m /m 3670.4829550(78) 2.1×10−9 d e d euteron-protonmassratio m /m 1.99900750083(41) 2.0×10−10 d p deuteronmolarmass N m M(d),M 2.01355321271(35)×10−3 kgmol−1 1.7×10−10 A d d d euteronmagneticmoment µd 0.433073457(18)×10−26 JT−1 4.2×10−8 toBohrmagnetonratio µ /µ 0.4669754556(50)×10−3 1.1×10−8 d B tonuclearmagnetonratio µ /µ 0.8574382284(94) 1.1×10−8 d N deuteron-electron magneticmomentratio µ /µ −4.664345537(50)×10−4 1.1×10−8 d e deuteron-proton magneticmomentratio µ /µ 0.3070122083(45) 1.5×10−8 d p

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.