CRC Handbook of Chemistry and Physics 90th Edition Internet Version 2010 Editor-in-Chief David R. Lide Former Director, Standard Reference Data National Institute of Standards and Technology Associate Editor W. M. “Mickey” Haynes Scientist Emeritus National Institute of Standards and Technology Editorial Advisory Board Grace Baysinger Henry V. Kehiaian Swain Chemistry and Chemical Engineering Library ITODYS Stanford University University of Paris VII Lev I. Berger Kozo Kuchitsu California Institute of Electronics and Materials Science Department of Chemistry Josai University Michael Frenkel Dana L. Roth National Institute of Standards and Technology Millikan Library California Institute of Technology Robert N. Goldberg Daniel Zwillinger National Institute of Standards and Technology, retired Mathematics Department Rensselaer Polytechnic Institute FOREwORD BY ThE PuBLIShER Publishing the 90th edition of this landmark reference is a true Editorship the Handbook grew to over 3000 pages and the cov- milestone in the history of CRC Press. Since its first publication erage expanded to include x-ray crystallography, nuclear physics, in 1913 – as a 116-page pocket-sized book priced at $2 – the CRC synthetic polymers, and other fields that did not exist when his Handbook of Chemistry and Physics has developed into a 2800 first edition appeared. page tome that no longer fits anyone’s pocket but still finds a place Following Hodgman’s retirement Robert Weast took over the on every scientist’s bookshelf. Editorship and published the 45th edition in 1964. Noticeably big- Certainly, the tremendous advances in science and technology ger with an 8” by 10” page size, the Handbook continued to expand over the past 96 years have fuelled the increase in the Handbook’s in both scope and magnitude over the next few years. In 1972, The contents, but the immense task of data selection, compilation, Chemical Rubber Company first published it under the CRC Press and organization has been expertly performed by a succession of imprint, and in the late 1970’s sold off its laboratory supply busi- Editors, Advisory Board members, and Contributors. These people ness, moved to new headquarters in Florida, and began building have played a significant role in shaping the Handbook that we see its book publishing business. today, and it is to them that I wish to pay tribute in this Foreword. David R. Lide became the Handbook’s fourth Editor in 1989, and Covering such large subject areas, the Editors have always relied took the opportunity to radically overhaul the organization and on a team of subject experts from around the world to contrib- content to reflect the needs of the modern user. He added, merged, ute articles and tables. A cursory glance over the names credited and deleted tables, and during the period of his editorship, up- through the years provides an interesting historical roll call of re- dated 100 percent of the content. Staying within the confines of a nowned chemists and physicists who have given their time and single volume has always meant difficult decisions on which tables scientific expertise to the Handbook. These contributors include to include – often at the expense of others –but with the advent leaders such as Nobel Laureate Glenn T. Seaborg, space science of electronic media, the Handbook is now available electronically pioneer James Van Allen, and C. S. “Speed” Marvel, considered the and space constraints are less of a problem. Modern production father of synthetic polymer chemistry. techniques and the move to a larger page size have given the cur- Originally conceived by the Ohio-based Chemical Rubber rent Handbook a cleaner and more user-friendly look. Company as an incentive to encourage sales of their laboratory Publication of the 90th edition marks David Lide’s final edition as supplies, the Handbook started life as a small booklet of useful Editor-in-Chief, and the publisher wishes to take this opportunity mathematical formulae and laboratory data. By 1913, it had grown to thank him for his tremendous expertise and enthusiasm that has to 116 pages and was published in its own right as the Handbook helped make the Handbook so indispensable to today’s scientists. of Chemistry and Physics. The Editor was William R. Veazey, an Starting with the 91st edition, the Handbook editorship transfers Associate Professor of Chemistry at the (then) Case School of to W.M. “Mickey” Haynes, Editor-in-Chief of the International Applied Science. Who could have predicted that this pocket book Journal of Thermophysics, Scientist Emeritus at the National was to become so well known that its users came to refer to it as Institute of Standards and Technology (NIST), and former Chief of the ‘Rubber Bible’ or, simply, the ‘CRC’? To paraphrase a review of the NIST Physical and Chemical Properties Division. We look for- the 88th edition –“if you can’t find a copy in your lab, that’s because ward to a new era in the Handbook’s long and illustrious history. someone in the next lab has stolen it.” Veazey’s successor was Charles D. Hodgman, his Assistant Fiona Macdonald Editor for the first edition and an Associate Professor of Physics Publisher, CRC Press at Case. Hodgman went on to hold the position of Editor from Boca Raton, Florida 1915 to 1963, overseeing 42 editions of the Handbook. Under his March 2009 PREFACE The 90th Edition of the CRC Handbook of Chemistry and Physics marks a milestone for this reference work, which first appeared in 1913. For almost a century the Handbook has been updated annually, except for a few wartime years, and has served several generations of R&D professionals, engineers, and students. Its aim has always been to provide broad coverage of all types of physical science data commonly encountered by scientists and engineers, with as much depth as can be accommodated in a one-volume format. The data contained in the Handbook have been carefully selected by experts in each field; quality control is a high priority and the sources are documented. The annual updates make it possible to add new and improved data in a timely fashion, and references to more detailed data sources have helped to establish the Handbook as the first place to look for physical and chemical data. This edition also marks the retirement of the current Editor-in-Chief after 20 years in that post. The reception to the changes I have made in the book is very gratifying, and I greatly appreciate the suggestions that have come from the Editorial Board, the contributors, and many users. The new Editor will be W. M. “Mickey” Haynes, who has had long experience in providing physical and chemical data through the National Institute of Standards and Technology and through his service as Editor of the International Journal of Thermophysics. I am confident that he will continue the tradition of excellence the Handbook has achieved. Many new tables and updates are included in the 90th Edition, especially in the following areas: Fluid properties (Sec. 6) - new data over a wider temperature and pressure range for - Water (including D O) and steam 2 - Air - Refrigerants and other important industrial fluids Biochemistry (Sec. 7) – new tables on - Enzyme catalyzed reactions - Structure and functions of common drugs - Chemical constituents of human blood Analytical chemistry (Sec. 8) – new and expanded tables on - Proton NMR shifts for solvents and other fluids - Mass spectral peaks - Nuclear moments and other data for NMR spectroscopy - Aqueous solubility of organic compounds Astronomy and geophysics (Sec. 14) – new data on - Properties of the planets and their satellites - Major world earthquakes, 850 AD to 2008 - Interstellar molecules Other new and expanded tables - International recommendations for the expression of uncertainty of measurements - Description of the new IUPAC chemical identifier (InChI) - Nobel prize winners in physics and chemistry - Threshold limits for airborne contaminants In addition to offering the full text of the print edition in searchable pdf format, this Internet Version 2010 presents the major tables of numerical data in the form of interactive tables that can be sorted, filtered, and combined in various ways. Substances in these tables can be retrieved by searching on name, formula, CAS Registry Number, or chemical structure, and such a search can be combined with a request for a desired property. Thus one can request a specific property of a specific substance (for example, viscosity of benzene) and receive a customized table with exactly that information. In addition, the Internet version includes a section with pdf files of many older tables that have been removed from the print edition to make space for new material. Suggestions on new topics for the Handbook and notification of errors are always appreciated. Input from users plays a key role in keeping the book up to date. Address all comments to Editor-in-Chief, CRC Handbook of Chemistry and Physics, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487. The Handbook of Chemistry and Physics is dependent on the efforts of many contributors throughout the world. The list of current contributors follows this Preface. The assistance and support of Dr. Fiona Macdonald, Chemical and Biological Sciences Publisher for CRC Press/Taylor & Francis Books, is greatly appreciated. Finally, I want to thank Mimi Williams, Pam Morrell, Glen Butler, James Yanchak, and Theresa Delforn for their outstanding work in production of the book and Ronel Decius, Robert Morris, and Aviel Alkon for producing the Internet version. David R. Lide June 2009 The 90th Edition of the Handbook of Chemistry and Physics is dedicated to my wife, Bettijoyce Breen Lide, and to the members of my family David Alston Lide, Vanessa Lide Whitcomb and David Whitcomb, James Lide and Deborah Horowitz, Quentin Lide and Suzanne Romero, Neil and Lizzie Molino, and Van Molino and to my grandchildren David A. Lide, Jr., Mary Lide, Grace Lide, David A. Whitcomb, Kate Whitcomb, and Zoë Lide How To Cite this Reference The recommended form of citation is: David R. Lide, ed., CRC Handbook of Chemistry and Physics, 90th Edition (Internet Version 2010), CRC Press/Taylor and Francis, Boca Raton, FL. If a specific table is cited, use the format: "Physical Constants of Organic Compounds", in CRC Handbook of Chemistry and Physics, 90th Edition (Internet Version 2010), David R. Lide, ed., CRC Press/Taylor and Francis, Boca Raton, FL. This work contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Best efforts have been made to select and verify the data on the basis of sound scientific judgment, but the author and the publisher cannot accept responsibility for the validity of all materials or for the consequences of their use. © Copyright Taylor and Francis Group LLC 2010 CuRREnT COnTRIBuTORS Robert A. Alberty Willem H. Koppenol Cedric J. Powell Department of Chemistry Dept CHAB Surface and Microanalysis Science Massachusetts Institute of Technology Lab. f. Anorg. Chemie, HCI H211 Division Cambridge, Massachusetts 02139 Wolfgang-Pauli-Strasse 10 National Institute of Standards and ETH Hönggerberg Technology Lev I. Berger CH-8093 Zürich, Switzerland Gaithersburg, Maryland 20899 California Institute of Electronics and Materials Science 2115 Flame Tree Way Eric W. Lemmon Joseph Reader Hemet, California 92545 Thermophysical Properties Division Atomic Physics Division National Institute of Standards and National Institute of Standards and A. K. Covington Technology Technology Department of Chemistry Boulder, Colorado 80305 Gaithersburg, Maryland 20899 University of Newcastle Newcastle upon Tyne NE1 7RU Frank J. Lovas E. Dendy Sloan England 8616 Melwood Rd. Center for Hydrate Research Bethesda, Maryland 20817 J. R. Fuhr Colorado School of Mines Atomic Physics Division 1600 Illinois St. National Institute of Standards and Yu-Ran Luo Golden, Colorado 80401 Technology School of Chemistry and Material Science Gaithersburg, Maryland 20899 University of Science and Technology of Lewis E. Snyder China Astronomy Department J. Gmehling Hefei 230026, China University of Illinois Universität Oldenburg Urbana, Illinois 61801 Fakultät V, Technische Chemie William C. Martin D-26111 Oldenburg, Germany Atomic Physics Division Barry N. Taylor Robert N. Goldberg National Institute of Standards and Physics Laboratory Biotechnology Division Technology National Institute of Standards and National Institute of Standards and Gaithersburg, Maryland 20899 Technology Technology Gaithersburg, Maryland 20899 Alan D. McNaught Gaithersburg, Maryland 20899 8 Cavendish Avenue Allan H. Harvey Cambridge CB1 7US Petr Vanýsek Thermophysical Properties Division England Department of Chemistry National Institute of Standards and Northern Illinois University Technology DeKalb, Illinois 60115 Thomas M. Miller Boulder, Colorado 80305 Air Force Research Laboratory/VSBP 29 Randolph Rd. Wolfgang L. Wiese Steven R. Heller Hanscom AFB, Massachusetts 01731-3010 Atomic Physics Division Chemical and Biochemical Reference Data National Institute of Standards and Division Technology National Institute of Standards and N. Moazzen-Ahmadi Technology Department of Physics and Astronomy Gaithersburg, Maryland 20899 Gaithersburg, Maryland 20899 University of Calgary 2500 University Drive NW Christian Wohlfarth Norman E. Holden Calgary, Alberta T2N 1N4, Canada Martin Luther University National Nuclear Data Center Institute of Physical Chemistry Brookhaven National Laboratory Mühlpforte 1 Peter J. Mohr Upton, New York 11973 Physics Laboratory 06108 Halle (Saale), Germany National Institute of Standards and Henry V. Kehiaian Technology Daniel Zwillinger 7, Allee de la Caravelle Gaithersburg, Maryland 20899 Mathematics Department 94430 Chennevieres sur Marne Rensselaer Polytechnic Institute France Troy, New York 12180 I. Ozier Carolyn A. Koh Department of Physics and Astronomy Center for Hydrate Research University of British Columbia Piotr Zyla Colorado School of Mines 6224 Agricultural Road Particle Data Group 1600 Illinois St. Vancouver, British Columbia V6T 1Z1, Lawrence Berkeley Laboratory Golden, Colorado 80401 Canada Berkeley, California 94720 CODATA RECOMMENDED VALUES OF THE FUNDAMENTAL PHYSICAL CONSTANTS: 2006 PeterJ.Mohr,BarryN.Taylor,andDavidB.Newell Thesetablesgivethe2006self-consistentsetofvaluesofthe P. J. Mohr, National Institute of Standards and Technology, basicconstantsandconversionfactorsofphysicsandchemistry UnitedStatesofAmerica recommendedbytheCommitteeonDataforScienceandTech- D.B.Newell,NationalInstituteofStandardsandTechnology, nology(CODATA)forinternationaluse. The2006adjustment UnitedStatesofAmerica takes into account the data considered in the 2002 adjustment F.Nez,LaboratoireKastler-Brossel,France as well as the data that became available between 31 Decem- ber2002,theclosingdateofthatadjustment,and31December B.W.Petley,NationalPhysicalLaboratory,UnitedKingdom 2006, the closing date of the new adjustment. The new data T.J.Quinn,Bureauinternationaldespoidsetmesures has led to a significant reduction in the uncertainties of many B.N.Taylor,NationalInstituteofStandardsandTechnology, recommendedvalues. The2006setreplacesthepreviouslyrec- UnitedStatesofAmerica ommended 2002 CODATA set and may also be found on the WorldWideWebatphysics.nist.gov/constants. W.Wo¨ger,Physikalisch-TechnischeBundesanstalt,Germany Thisreportwaspreparedbytheauthorsundertheauspices B.M.Wood,NationalResearchCouncil,Canada of the CODATA Task Group on Fundamental Constants. The Z. Zhang, National Institute of Metrology, China (People’s membersofthetaskgroupare: Republicof) F.Cabiati,IstitutoNazionalediRicercaMetrologica,Italy K.Fujii,NationalMetrologyInstituteofJapan,Japan References S. G. Karshenboim, D. I. Mendeleyev All-Russian Research InstituteforMetrology,RussianFederation 1. Mohr,P.J.,Taylor,B.N.,andNewell,D.B.,“CODATA I.Lindgren,ChalmersUniversityofTechnologyandGo¨teborg recommended values of the fundamental physical con- University,Sweden stants: 2006,”J.Phys.Chem.Ref.Data37,1187,2008; B. A. Mamyrin (deceased), A. F. Ioffe Physical-Technical alsoappearsinRev.Mod.Phys.80,633,2008,andonline Institute,RussianFederation at<physics.nist.gov/constants>. W. Martienssen, Johann Wolfgang Goethe-Universita¨t, Germany 2. Yao,W.M.,etal.,J.Phys.G 33,1,2006. TABLEI:AnabbreviatedlistoftheCODATArecommendedvaluesofthefundamentalconstants ofphysicsandchemistrybasedonthe2006adjustment. Relativestd. Quantity Symbol Numericalvalue Unit uncert. u r speedoflightinvacuum c,c 299792458 ms 1 (exact) 0 − magneticconstant μ0 4π×10−7 NA−2 12.566370614... 10 7 NA 2 (exact) − − = × electricconstant1/μ c2 � 8.854187817... 10 12 Fm 1 (exact) 0 0 × − − Newtonianconstantofgravitation G 6.67428(67) 10 11 m3kg 1s 2 1.0 10 4 − − − − × × Planckconstant h 6.62606896(33) 10 34 Js 5.0 10 8 − − × × h/2π h¯ 1.054571628(53) 10−34 Js 5.0 10−8 × × elementarycharge e 1.602176487(40) 10 19 C 2.5 10 8 − − × × magneticfluxquantumh/2e F0 2.067833667(52)×10−15 Wb 2.5×10−8 conductancequantum2e2/h G 7.7480917004(53) 10 5 S 6.8 10 10 0 × − × − electronmass m 9.10938215(45) 10 31 kg 5.0 10 8 e × − × − protonmass m 1.672621637(83) 10 27 kg 5.0 10 8 p × − × − proton-electronmassratio m /m 1836.15267247(80) 4.3 10 10 p e × − fine-structureconstante2/4π�0h¯c α 7.2973525376(50)×10−3 6.8×10−10 inversefine-structureconstant α 1 137.035999679(94) 6.8 10 10 − − × Rydbergconstantα2mc/2h R 10973731.568527(73) m 1 6.6 10 12 Avogadroconstant e N∞,L 6.02214179(30) 1023 m−ol 1 5.0×10−8 A × − × − 1-1 1-2 CODATARecommendedValuesoftheFundamentalPhysicalConstants CODATARecommendedValuesoftheFundamentalPhysicalConstants 1-3 TABLEI:(Continued.) TABLEII:(Continued). Relativestd. Relativestd. Quantity Symbol Numericalvalue Unit uncert. ur Quantity Symbol Numericalvalue Unit uncert. ur FmaorlaadragyacsocnosntsatnatnNtAe FR 986.3418454.37329(195(2)4) CJmmool−l−11K−1 21..57××1100−−86 μμBB//khc 04.66.761867143511(51(21)2) Km−T1−T1−1 21..57××1100−−86 Boltzmannconstant R/N k 1.3806504(24) 10 23 JK 1 1.7 10 6 Stefan-BoltzmannconstaAnt(π2/60)k4/h¯3c2 σ 5.670400(40)××10−8− Wm−−2K−4 7.0××10−−6 nucilneaerVmTag1netoneh¯/2mp μN 53..0155027485312243(2163()45×)10−1207 8 JeVT−T1 1 21..54×1100−89 − − − − Non-SIunitsacceptedforusewiththeSI μ /h 7.62259384(19) × MHzT 1 2.5×10 8 e(ulencitfrioedn)vaotlotm: (iec/Cm)aJssunit eV 1.602176487(40)×10−19 J 2.5×10−8 μμNN//khc 32..65548226623376(1664()64)1×0140−2 mK−T1T1−−1 21..57××1100−−86 1u m 1m(12C) 10 3kgmol 1/N u 1.660538782(83) 10 27 kg 5.0 10 8 N × − − × − = u= 12 = − − A × − × − ATOMICANDNUCLEAR General TABLE II: The CODATA recommended values of the fundamental fine-structureconstante2/4π�0h¯c α 7.2973525376(50)×10−3 6.8×10−10 constantsofphysicsandchemistrybasedonthe2006adjustment. inversefine-structureconstant α 1 137.035999679(94) 6.8 10 10 − − × Relativestd. Rydbergconstantα2mc/2h R 10973731.568527(73) m 1 6.6 10 12 Quantity Symbol Numericalvalue Unit uncert. ur e R∞c 3.289841960361(22) 1015 Hz− 6.6×10−−12 UNIVERSAL R∞hc 2.17987197(11) 10−×18 J 5.0×10−8 speedoflightinvacuum c,c0 299792458 ms−1 (exact) R∞hcineV ∞ 13.60569193(34)× eV 2.5××10−8 meclheaacgrtnarieccttieccroicsnotsintcasitnmatnp1te/dμa0nc2ce �μ00 4=8π.81×524.151068−6773871076..1.×4..1.0×−1120−7 NNFmAA−−−122 ((eexxaacctt)) BH=oahrαrtr2remaedeecinu2esrαg/y4eπ2/R4∞π�=0a40π=�02h¯2R/∞mheec2 aE0h 04..53259917747329048(2529)(×361)0×−1180−10 mJ 65..80××1100−−180 ofvacuum√μ0/�0=μ0c Z0 376.730313461... � (exact) quainnteuVmofcirculation h/2m 32.76.32611943783518969(6(580)) 10 4 meV2s 1 12..45×1100−89 e × − − × − Newtonianconstant h/me 7.273895040(10)×10−4 m2s−1 1.4×10−9 ofgravitation G 6.67428(67) 10 11 m3kg 1s 2 1.0 10 4 − − − − G/h¯c 6.70881(67)×10 39 (GeV/c2) 2 1.0×10 4 Electroweak − − − PlanckincoenVstsant h 46..1632566066783936((×1303))×1100−−3145 JeVs s 52..05××1100−−88 wFeeramkimcoixuipnlginagncgolen4stθaWnt(3on-shellscheme) GF/(h¯c)3 1.16637(1)×10−5 GeV−2 8.6×10−6 h/2π h¯ 1.054571628(53)××10−34 Js 5.0××10−8 sin2θW=sW2 ≡1−(mW/mZ)2 sin2θW 0.22255(56) 2.5×10−3 ineVs 6.58211899(16) 10 16 eVs 2.5 10 8 − − h¯cinMeVfm 197.3269631(49)× MeVfm 2.5×10−8 Electron,e− × electronmass m 9.10938215(45) 10 31 kg 5.0 10 8 e × − × − PPPlllaaaennnncccekkkrgmtleeynmaegspqstheu(rh¯ih¯avc/ta/umlGrePen)ct1(/h¯=i2nc5(Gh/¯GGeV)/1c/32)/1k/2 lmmTPPPPc2 2111....12467211606648724985(2521(((1678)111)))××××10111−000813−9235 kGKmgeV 5555....0000××××11110000−−−−5555 eneiirnnrgeyuMla,eteqmiVvueeiv=aatloAemnr(teic)mua(eslsetcitmroensu) mec2 085...5141880759179098499301890(44(311(3)2)3×)1×0−1104−4 MuJ eV 245...520×××111000−−−1880 Plancktimel /c (h¯G/c5)1/2 t 5.39124(27) 10 44 s 5.0 10 5 P = P × − × − electron-muonmassratio m/m 4.83633171(12) 10 3 2.5 10 8 e μ × − × − ELECTROMAGNETIC electron-taumassratio me/mτ 2.87564(47)×10−4 1.6×10−4 elementarycharge ee/h 21..461072918796445847((6400))××1100−1419 CAJ−1 22..55××1100−−88 eeellleeeccctttrrrooonnn---pndreeouutttoreornonmnmamasassssrsarartiatoitoio mmmee///mmmpn 552...447432684164773037241140759793(((231432)))××111000−−444 464...303××111000−−111000 e d × − × − magneticfluxquantumh/2e F0 2.067833667(52)×10−15 Wb 2.5×10−8 electrontoalphaparticlemassratio me/mα 1.37093355570(58)×10−4 4.2×10−10 conductancequantum2e2/h G 7.7480917004(53) 10 5 S 6.8 10 10 JvoosnienpKvhlesirtoszneinocgofcncoosntnasdntautn1ctt2a2en/chequantum GKJ0−01 1428390569.74.083917(71827)(×881)×09 − H�zV−1 26..58×××1100−−−180 eeClleeoccmttrrpootnnoncmhwoalaragvreemlteonasgmsthaNshAs/mqmueeoctient λ−MCe(/em),eMe −52..144.827565738918902020911475350(((234334)))×××111000−−17112 Ckmgkmg−o1l−1 241...524×××111000−−−8190 h/e2=μ0c/2α RK 25812.807557(18) � 6.8×10−10 clasλsCic/a2lπel=ecαtrao0n=raαd2i/u4sπαR2∞a rλC 328.861.1759942062485994((5538))×1100−1155 mm 12..41×1100−99 0 e × − × − Bohrmagnetoneh¯/2me μB 927.400915(23)×10−26 JT−1 2.5×10−8 Thomsoncrosssection(8π/3)re2 σe 0.6652458558(27)×10−28 m2 4.1×10−9 ineVT 1 5.7883817555(79) 10 5 eVT 1 1.4 10 9 − − − − × × μ /h 13.99624604(35) 109 HzT 1 2.5 10 8 B × − × − 3ValuerecommendedbytheParticleDataGroup(Yaoetal.,2006). 1SeeTableIVfortheconventionalvalueadoptedinternationallyforrealizingrepresentationsofthevoltusingtheJosephsoneffect. 4BasedontheratioofthemassesoftheWandZbosonsmW/mZrecommendedbytheParticleDataGroup(Yaoetal.,2006). Thevaluefor 2SeeTableIVfortheconventionalvalueadoptedinternationallyforrealizingrepresentationsoftheohmusingthequantumHalleffect. sin2θWtheyrecommend,whichisbasedonaparticularvariantofthemodifiedminimalsubtraction(MS)scheme,issin2θˆW(MZ)=0.23122(15). 1-2 CODATARecommendedValuesoftheFundamentalPhysicalConstants CODATARecommendedValuesoftheFundamentalPhysicalConstants 1-3 TABLEI:(Continued.) TABLEII:(Continued). Relativestd. Relativestd. Quantity Symbol Numericalvalue Unit uncert. ur Quantity Symbol Numericalvalue Unit uncert. ur FmaorlaadragyacsocnosntsatnatnNtAe FR 986.3418454.37329(195(2)4) CJmmool−l−11K−1 21..57××1100−−86 μμBB//khc 406.6.6781674153115(1(122)) mK−T1−T1−1 21..57××1100−−86 Boltzmannconstant R/N k 1.3806504(24) 10 23 JK 1 1.7 10 6 Stefan-BoltzmannconstaAnt(π2/60)k4/h¯3c2 σ 5.670400(40)××10−8− Wm−−2K−4 7.0××10−−6 nucilneaerVmTag1netoneh¯/2mp μN 53..0155027485312243(2163()45×)101−207 8 JeVT−T1 1 21..54×1100−89 − − − − Non-SIunitsacceptedforusewiththeSI μ /h 7.62259384(19) × MHzT 1 2.5×10 8 e(ulencitfrioedn)vaotlotm: (iec/Cm)aJssunit eV 1.602176487(40)×10−19 J 2.5×10−8 μμNN//khc 23..56452862263376(1664()64)1×0140−2 mK−T1T1−−1 21..57××1100−−86 1u m 1m(12C) 10 3kgmol 1/N u 1.660538782(83) 10 27 kg 5.0 10 8 N × − − × − = u= 12 = − − A × − × − ATOMICANDNUCLEAR General TABLE II: The CODATA recommended values of the fundamental fine-structureconstante2/4π�0h¯c α 7.2973525376(50)×10−3 6.8×10−10 constantsofphysicsandchemistrybasedonthe2006adjustment. inversefine-structureconstant α 1 137.035999679(94) 6.8 10 10 − − × Relativestd. Rydbergconstantα2mc/2h R 10973731.568527(73) m 1 6.6 10 12 Quantity Symbol Numericalvalue Unit uncert. ur e R∞c 3.289841960361(22) 1015 H−z 6.6×10−−12 UNIVERSAL R∞hc 2.17987197(11) 10−×18 J 5.0×10−8 speedoflightinvacuum c,c0 299792458 ms−1 (exact) R∞hcineV ∞ 13.60569193(34)× eV 2.5××10−8 meclheaacgrtnarieccttieccroicsnotsintcasitnmatnp1te/dμa0nc2ce �μ00 4=8π.81×524.151068−6773871076..1.×4..1.0×−1120−7 NNFmAA−−−122 ((eexxaacctt)) BH=oahrαrtr2remaedeecinu2esrαg/y4eπ2/R4∞π�=0a40π=�02h¯2R/∞mheec2 aE0h 04..53259917747329048(2529)(×361)0×−1180−10 mJ 65..80××1100−−180 ofvacuum√μ0/�0=μ0c Z0 376.730313461... � (exact) quainnteuVmofcirculation h/2m 32.76.32611943783518969(6(580)) 10 4 meV2s 1 12..45×1100−89 e × − − × − Newtonianconstant h/me 7.273895040(10)×10−4 m2s−1 1.4×10−9 ofgravitation G 6.67428(67) 10 11 m3kg 1s 2 1.0 10 4 − − − − G/h¯c 6.70881(67)×10 39 (GeV/c2) 2 1.0×10 4 Electroweak − − − PlanckincoenVstsant h 46..1632566066783936((×1303))×1100−−3145 JeVs s 52..05××1100−−88 Fweeramkimcoixuipnlginagncgolen4stθaWnt(3on-shellscheme) GF/(h¯c)3 1.16637(1)×10−5 GeV−2 8.6×10−6 h/2π h¯ 1.054571628(53)××10−34 Js 5.0××10−8 sin2θW=sW2 ≡1−(mW/mZ)2 sin2θW 0.22255(56) 2.5×10−3 ineVs 6.58211899(16) 10 16 eVs 2.5 10 8 − − h¯cinMeVfm 197.3269631(49)× MeVfm 2.5×10−8 Electron,e− × electronmass m 9.10938215(45) 10 31 kg 5.0 10 8 e × − × − PPPlllaaaennnncccekkkrgmtleeynmaegspqstheu(rh¯ih¯avc/ta/umlGrePen)ct1(/h¯=i2nc5(Gh/¯GGeV)/1c/32)/1k/2 lmmTPPPPc2 2111....12467211606648724985(2521(((1678)111)))××××10111−000813−9235 kGKmgeV 5555....0000××××11110000−−−−5555 eneiirnnrgeyuMla,eteqmiVvueeiv=aatloAemnr(teic)mua(eslsetcitmroensu) mec2 085...5141880759179098499301890(44(311(3)2)3×)1×0−1104−4 uJMeV 452...205×××111000−−−1880 Plancktimel /c (h¯G/c5)1/2 t 5.39124(27) 10 44 s 5.0 10 5 P = P × − × − electron-muonmassratio m/m 4.83633171(12) 10 3 2.5 10 8 e μ × − × − ELECTROMAGNETIC electron-taumassratio me/mτ 2.87564(47)×10−4 1.6×10−4 elementarycharge ee/h 21..461072918796445847((6400))××1100−1419 CAJ−1 22..55××1100−−88 eeellleeeccctttrrrooonnn---pndreeouutttoreornonmnmamasassssrsarartiatoitoio mmmee///mmmpn 552...447432684164773037241140759793(((231432)))××111000−−444 464...303××111000−−111000 e d × − × − magneticfluxquantumh/2e F0 2.067833667(52)×10−15 Wb 2.5×10−8 electrontoalphaparticlemassratio me/mα 1.37093355570(58)×10−4 4.2×10−10 conductancequantum2e2/h G 7.7480917004(53) 10 5 S 6.8 10 10 JvoosnienpKvhlesirtoszneinocgofcncoosntnasdntautn1ctt2a2en/chequantum GKJ0−01 1428390569.74.083917(71827)(×881)×09 − H�zV−1 26..58×××1100−−−180 eeClleeoccmttrrpootnnoncmhwoalaragvreemlteonasgmsthaNshAs/mqmueeoctient λ−MCe(/em),eMe −52..144.827565738918902020911475350(((234334)))×××111000−−17112 Ckmgkmg−o1l−1 241...524×××111000−−−8190 h/e2=μ0c/2α RK 25812.807557(18) � 6.8×10−10 clasλsCic/a2lπel=ecαtrao0n=raαd2i/u4sπαR2∞a rλC 328.861.1759942062485994((5538))×1100−1155 mm 12..41×1100−99 0 e × − × − Bohrmagnetoneh¯/2me μB 927.400915(23)×10−26 JT−1 2.5×10−8 Thomsoncrosssection(8π/3)re2 σe 0.6652458558(27)×10−28 m2 4.1×10−9 ineVT 1 5.7883817555(79) 10 5 eVT 1 1.4 10 9 − − − − × × μ /h 13.99624604(35) 109 HzT 1 2.5 10 8 B × − × − 3ValuerecommendedbytheParticleDataGroup(Yaoetal.,2006). 1SeeTableIVfortheconventionalvalueadoptedinternationallyforrealizingrepresentationsofthevoltusingtheJosephsoneffect. 4BasedontheratioofthemassesoftheWandZbosonsmW/mZrecommendedbytheParticleDataGroup(Yaoetal.,2006). Thevaluefor 2SeeTableIVfortheconventionalvalueadoptedinternationallyforrealizingrepresentationsoftheohmusingthequantumHalleffect. sin2θWtheyrecommend,whichisbasedonaparticularvariantofthemodifiedminimalsubtraction(MS)scheme,issin2θˆW(MZ)=0.23122(15). 1-4 CODATARecommendedValuesoftheFundamentalPhysicalConstants CODATARecommendedValuesoftheFundamentalPhysicalConstants 1-5 TABLEII:(Continued). TABLEII:(Continued). Relativestd. Relativestd. Quantity Symbol Numericalvalue Unit uncert. u Quantity Symbol Numericalvalue Unit uncert. u r r electronmagneticmoment μ 928.476377(23) 10 26 JT 1 2.5 10 8 energyequivalent m c2 2.84705(46) 10 10 J 1.6 10 4 e − × − − × − τ × − × − toBohrmagnetonratio μ /μ 1.00115965218111(74) 7.4 10 13 inMeV 1776.99(29) MeV 1.6 10 4 e B − × − × − tonuclearmagnetonratio μ /μ 1838.28197092(80) 4.3 10 10 e N − × − electronmagneticmoment tau-electronmassratio m /m 3477.48(57) 1.6 10 4 τ e × − anomaly μ /μ 1 a 1.15965218111(74) 10 3 6.4 10 10 tau-muonmassratio m /m 16.8183(27) 1.6 10 4 | e| B− e × − × − τ μ × − electrong-factor 2(1 a ) g 2.0023193043622(15) 7.4 10 13 tau-protonmassratio m /m 1.89390(31) 1.6 10 4 − + e e − × − τ p × − tau-neutronmassratio m /m 1.89129(31) 1.6 10 4 τ n × − electron-muonmagneticmomentratio μe/μμ 206.7669877(52) 2.5×10−8 taumolarmass NAmτ M(τ),Mτ 1.90768(31)×10−3 kgmol−1 1.6×10−4 electron-proton magneticmomentratio μ /μ 658.2106848(54) 8.1 10 9 tauComptonwavelengthh/m c λ 0.69772(11) 10 15 m 1.6 10 4 e p − × − τ C,τ × − × − electrontoshieldedproton λC,τ/2π λC,τ 0.111046(18)×10−15 m 1.6×10−4 magneticmomentratio μ /μ 658.2275971(72) 1.1 10 8 e �p − × − (H O,sphere,25 C) Proton,p 2 ◦ protonmass m 1.672621637(83) 10 27 kg 5.0 10 8 p × − × − electron-neutron inu,mp= Ar(p)u(proton elmecatgrnoent-idcemutoemroenntratio μe/μn 960.92050(23) 2.4×10−7 enerrgeylaetqivueivaatloemnticmasstimesu) mpc2 11..500037227776345696(7775()1×0)10−10 Ju 51..00××1100−−180 elmecatgrnoentitcomshoimelednetdrhaetiloion μe/μd −2143.923498(18) 8.4×10−9 protonin-elMecetrVonmassratio mp/me 913883.62.7125201637(22437)(80) MeV 24..53××1100−−810 m(gaagsn,estpihcemreo,m25en◦Ctr)atio μe/μ�h 864.058257(10) 1.2×10−8 pprroottoonn--mtauuomnamssarsastriaotio mmpp//mmμτ 80..858208204132(3896()23) 21..56××1100−−84 electrongyromagneticratio2|μe|/h¯ γγee/2π 218.7062048.9559376740((7404))×1011 sM−1HTz−T1−1 22..55××1100−−88 ppprrroootttooonnn-cmnheoaulrtagrroemntoamsmsasaNsssramqtuiootient meM/p(m/pmp),nM 091...9509708876822373364947268(6227447)((×41601))07 10 3 Ckgkmg−o1l 1 214...506××111000−−18100 A p p × − − × − Muon,μ− protonComptonwavelengthh/mpc λC,p 1.3214098446(19)×10−15 m 1.4×10−9 muonmass mμ 1.88353130(11)×10−28 kg 5.6×10−8 λC,p/2π λC,p 0.21030890861(30)×10−15 m 1.4×10−9 eneiirnnrgeyuMla,eteqmiVvuμeiv=aatloeAmnr(tiμc)mua(smsutiomnesu) mμc2 1100..61591.623584832338659612805((639(852))9)×10−11 MJu eV 352...665×××111000−−−888 pprroottttoooonnBnuormcmhalresgamncrheamtagircnaggemetnoorenamtodreniauntrstiaotio μμμRpppp//μμBN 0112....8457712960128608(03466279623)605×2961(((3120723−)))15××1100−−236 mJT−1 2878....6182××××11110000−−−−3899 protong-factor2μ /μ g 5.585694713(46) 8.2 10 9 muon-electronmassratio mμ/me 206.7682823(52) 2.5×10−8 proton-neutron p N p × − muon-taumassratio m /m 5.94592(97) 10 2 1.6 10 4 mmmuuuooonnn--mpnreooulttaorronmnmamassasssNsrAaramtitoμio mmMμμμ(//μmm),τpnMμ 000...111111223644052948559212665×176(((222999−)))×10−3 kgmol−1 222...555××××111000−−−−888 sh(mHieat2olgdOnBee,dotsihppcrrhmometrooaemn,gn2emne5tta◦oCgrnan)teriatoitciomoment μμμp�p�p//μμnB −11..145.124005599798039418120986(((313874)))××1100−−236 JT−1 212...714×××111000−−−788 tonuclearmagnetonratio μ /μ 2.792775598(30) 1.1 10 8 mmuuλooCnn,μCm/o2amgπnpettoicnmwoamveelnentgthh/mμc λλμCCμ,,μμ 111.48..764379450494444127098456(((341076)))××111000−−−112556 mmJT−1 322...655××111000−−−888 pcroortorenctmioangn1e−ticμs�ph/iμelpding σp��p N 25.694(14)×10−6 5.3××10−−4 toBohrmagnetonratio μ /μ −4.84197049(12)×10 3 2.5×10 8 (H2O,sphere,25◦C) tonuclearmagnetonratio μμμ/μBN −−8.89059705(23)× − 2.5××10−−8 protongyromagneticratio2μp/h¯ γγpp/2π 422.6.57757242822019(91(17)0)×108 Ms−1HTz−T1−1 22..66××1100−−88 shieldedprotongyromagnetic muonmagneticmomentanomaly μμ /(eh¯/2mμ) 1 aμ 1.16592069(60) 10−3 5.2 10−7 ratio2μ�p/h¯ γp� 2.675153362(73)×108 s−1 T−1 2.7×10−8 m|uo|ng-factor −2(1 aμ) gμ 2.0023318414(×12) 6.0×10−10 (H2O,sphere,25◦C) muon-proton − + − × γp�/2π 42.5763881(12) MHzT−1 2.7×10−8 magneticmomentratio μ /μ 3.183345137(85) 2.7 10 8 μ p − × − Neutron,n Tau,τ− neutronmass mn 1.674927211(84)×10−27 kg 5.0×10−8 taumainsrse5ula,tmivτe=atoAmr(iτc)mua(tsasutimesu) mτ 13..9106776787((3512))×10−27 kug 11..66××1100−−44 eneiirnnrgeyuMla,eteqmiVvuneiv=aatloAemnr(tinc)mua(snsetuimtroesnu) mnc2 9113..50900.558636546394459601(552(9377)5()4×3)10−10 MJu eV 254...503××111000−−1880 − × 5Thisandallothervaluesinvolvingmτarebasedonthevalueofmτc2inMeVrecommendedbytheParticleDataGroup(Yaoetal.,2006),but neutron-electronmassratio m /m 1838.6836605(11) 6.0 10 10 withastandarduncertaintyof0.29MeVratherthanthequoteduncertaintyof−0.26MeV,+0.29MeV. n e × − 1-4 CODATARecommendedValuesoftheFundamentalPhysicalConstants CODATARecommendedValuesoftheFundamentalPhysicalConstants 1-5 TABLEII:(Continued). TABLEII:(Continued). Relativestd. Relativestd. Quantity Symbol Numericalvalue Unit uncert. u Quantity Symbol Numericalvalue Unit uncert. u r r electronmagneticmoment μ 928.476377(23) 10 26 JT 1 2.5 10 8 energyequivalent m c2 2.84705(46) 10 10 J 1.6 10 4 e − × − − × − τ × − × − toBohrmagnetonratio μ /μ 1.00115965218111(74) 7.4 10 13 inMeV 1776.99(29) MeV 1.6 10 4 e B − × − × − tonuclearmagnetonratio μ /μ 1838.28197092(80) 4.3 10 10 e N − × − electronmagneticmoment tau-electronmassratio m /m 3477.48(57) 1.6 10 4 τ e × − anomaly μ /μ 1 a 1.15965218111(74) 10 3 6.4 10 10 tau-muonmassratio m /m 16.8183(27) 1.6 10 4 | e| B− e × − × − τ μ × − electrong-factor 2(1 a ) g 2.0023193043622(15) 7.4 10 13 tau-protonmassratio m /m 1.89390(31) 1.6 10 4 − + e e − × − τ p × − tau-neutronmassratio m /m 1.89129(31) 1.6 10 4 τ n × − electron-muonmagneticmomentratio μe/μμ 206.7669877(52) 2.5×10−8 taumolarmass NAmτ M(τ),Mτ 1.90768(31)×10−3 kgmol−1 1.6×10−4 electron-proton magneticmomentratio μ /μ 658.2106848(54) 8.1 10 9 tauComptonwavelengthh/m c λ 0.69772(11) 10 15 m 1.6 10 4 e p − × − τ C,τ × − × − electrontoshieldedproton λC,τ/2π λC,τ 0.111046(18)×10−15 m 1.6×10−4 magneticmomentratio μ /μ 658.2275971(72) 1.1 10 8 e �p − × − (H O,sphere,25 C) Proton,p 2 ◦ protonmass m 1.672621637(83) 10 27 kg 5.0 10 8 p × − × − electron-neutron inu,mp= Ar(p)u(proton elmecatgrnoent-idcemutoemroenntratio μe/μn 960.92050(23) 2.4×10−7 enerrgeylaetqivueivaatloemnticmasstimesu) mpc2 11..500037227776345696(7775()1×0)10−10 Ju 51..00××1100−−180 elmecatgrnoentitcomshoimelednetdrhaetiloion μe/μd −2143.923498(18) 8.4×10−9 protonin-elMecetrVonmassratio mp/me 913883.62.7125201637(22437)(80) MeV 24..53××1100−−810 m(gaagsn,estpihcemreo,m25en◦Ctr)atio μe/μ�h 864.058257(10) 1.2×10−8 pprroottoonn--mtauuomnamssarsastriaotio mmpp//mmμτ 80..858208204132(3896()23) 21..56××1100−−84 electrongyromagneticratio2|μe|/h¯ γγee/2π 218.7062048.9559376740((7404))×1011 sM−1HTz−T1−1 22..55××1100−−88 ppprrroootttooonnn-cmnheoaulrtagrroemntoamsmsasaNsssramqtuiootient meM/p(m/pmp),nM 091...9509708876822373364947268(6227447)((×41601))07 10 3 Ckgkmg−o1l 1 214...506××111000−−18100 A p p × − − × − Muon,μ− protonComptonwavelengthh/mpc λC,p 1.3214098446(19)×10−15 m 1.4×10−9 muonmass mμ 1.88353130(11)×10−28 kg 5.6×10−8 λC,p/2π λC,p 0.21030890861(30)×10−15 m 1.4×10−9 eneiirnnrgeyuMla,eteqmiVvuμeiv=aatloeAmnr(tiμc)mua(smsutiomnesu) mμc2 1100..61591.623584832338659612805((639(852))9)×10−11 MJu eV 352...665×××111000−−−888 pprroottttoooonnBnuormcmhalresgamncrheamtagircnaggemetnoorenamtodreniauntrstiaotio μμμRpppp//μμBN 0112....8457712960128608(03466279623)605×2961(((3120723−)))15××1100−−236 mJT−1 2878....6182××××11110000−−−−3899 protong-factor2μ /μ g 5.585694713(46) 8.2 10 9 muon-electronmassratio mμ/me 206.7682823(52) 2.5×10−8 proton-neutron p N p × − muon-taumassratio m /m 5.94592(97) 10 2 1.6 10 4 mmmuuuooonnn--mpnreooulttaorronmnmamassasssNsrAaramtitoμio mmMμμμ(//μmm),τpnMμ 000...111111223644052948559212665×176(((222999−)))×10−3 kgmol−1 222...555××××111000−−−−888 sh(mHieat2olgdOnBee,dotsihppcrrhmometrooaemn,gn2emne5tta◦oCgrnan)teriatoitciomoment μμμp�p�p//μμnB −11..145.124005599798039418120986(((313874)))××1100−−236 JT−1 212...714×××111000−−−788 tonuclearmagnetonratio μ /μ 2.792775598(30) 1.1 10 8 mmuuλooCnn,μCm/o2amgπnpettoicnmwoamveelnentgthh/mμc λλμCCμ,,μμ 111.48..764379450494444127098456(((341076)))××111000−−−112556 mmJT−1 322...655××111000−−−888 pcroortorenctmioangn1e−ticμs�ph/iμelpding σp��p N 25.694(14)×10−6 5.3××10−−4 toBohrmagnetonratio μ /μ −4.84197049(12)×10 3 2.5×10 8 (H2O,sphere,25◦C) tonuclearmagnetonratio μμμ/μBN −−8.89059705(23)× − 2.5××10−−8 protongyromagneticratio2μp/h¯ γγpp/2π 422.6.57757242822019(91(17)0)×108 Ms−1HTz−T1−1 22..66××1100−−88 shieldedprotongyromagnetic muonmagneticmomentanomaly μμ /(eh¯/2mμ) 1 aμ 1.16592069(60) 10−3 5.2 10−7 ratio2μ�p/h¯ γp� 2.675153362(73)×108 s−1T−1 2.7×10−8 m|uo|ng-factor −2(1 aμ) gμ 2.0023318414(×12) 6.0×10−10 (H2O,sphere,25◦C) muon-proton − + − × γp�/2π 42.5763881(12) MHzT−1 2.7×10−8 magneticmomentratio μ /μ 3.183345137(85) 2.7 10 8 μ p − × − Neutron,n Tau,τ− neutronmass mn 1.674927211(84)×10−27 kg 5.0×10−8 taumainsrse5ula,tmivτe=atoAmr(iτc)mua(tsasutimesu) mτ 13..9106776787((3512))×10−27 kug 11..66××1100−−44 eneiirnnrgeyuMla,eteqmiVvuneiv=aatloAemnr(tinc)mua(snsetuimtroesnu) mnc2 9113..50900.558636546394459601(552(9377)5()4×3)10−10 JMu eV 524...053××111000−−1880 − × 5Thisandallothervaluesinvolvingmτarebasedonthevalueofmτc2inMeVrecommendedbytheParticleDataGroup(Yaoetal.,2006),but neutron-electronmassratio m /m 1838.6836605(11) 6.0 10 10 withastandarduncertaintyof0.29MeVratherthanthequoteduncertaintyof−0.26MeV,+0.29MeV. n e × −