ebook img

CRANFIELD UNIVERSITY MICHAIL DIAKOSTEFANIS INTERNET OPERATION OF AERO GAS ... PDF

410 Pages·2015·24.25 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview CRANFIELD UNIVERSITY MICHAIL DIAKOSTEFANIS INTERNET OPERATION OF AERO GAS ...

CRANFIELD UNIVERSITY MICHAIL DIAKOSTEFANIS INTERNET OPERATION OF AERO GAS TURBINES SCHOOL OF ENGINEERING PhD Thesis Academic Year: 2013 – 2014 Supervisors: Dr T. Nikolaidis, Dr M. Stillwell, Dr S. Barnes, Pr P. Pilidis October 2014 CRANFIELD UNIVERSITY SCHOOL OF ENGINEERING PhD Thesis Academic Year 2013 - 2014 MICHAIL DIAKOSTEFANIS INTERNET OPERATION OF AERO GAS TURBINES Supervisors: Dr T. Nikolaidis, Dr M. Stillwell, Dr S. Barnes, Pr P. Pilidis October 2014 © Cranfield University 2014. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. ABSTRACT Internet applications have been extended to various aspects of everyday life and offer services of high reliability and security. In the Academia, Internet applications offer useful tools for the remote creation of simulation models and real-time conduction of control experiments. The aim of this study was the design of a reliable, safe and secure software system for real time operation of a remote aero gas turbine, with the use of standard Internet technology at very low cost. The gas turbine used in this application was an AMT Netherlands Olympus micro gas turbine. The project presented three prototypes: operation from an adjacent computer station, operation within the Local Area Netwok (LAN) of Cranfield University and finally, remotely through the Internet. The gas turbine is a safety critical component, thus the project was driven by risk assessment at all the stages of the software process, which adhered to the Spiral Model. Elements of safety critical systems design were applied, with risk assessment present in every round of the software process. For the implementation, various software tools were used, with the majority to be open source API’s. LabVIEW with compatible hardware from National Instruments was used to interface the gas turbine with an adjacent computer work station. The main interaction has been established between the computer and the ECU of the engine, with additional instrumentation installed, wherever required. The Internet user interface web page implements AJAX technology in order to facilitate asynchronous update of the individual fields that present the indications of the operating gas turbine. The parameters of the gas turbine were acquired with high accuracy, with most attention given to the most critical indications, exhaust gas temperature (EGT) and rotational speed (RPM). These are provided to a designed real-time monitoring application, which automatically triggers actions when necessary. The acceptance validation was accomplished with a formal validation method – Model Checking. The final web application was inspired by the RESTful architecture and allows the user to operate the remote gas turbine through a standard browser, without requiring any additional downloading or local data processing. The web application was designed with provisions for generic applications. It can be configured to function with multiple different gas turbines and also integrated with external performance simulation or diagnostics Internet platforms. Also, an analytical proposal is presented, to integrate this application with the TURBOMATCH WebEngine web application, for gas turbine performance simulation, developed by Cranfield University. i Keywords: Asynchronous, AJAX, Remote, Real-time, Spiral, Safety Critical, Risk Assessment, Software Process, Formal Validation, Model Checking ii ACKNOWLEDGEMENTS Theoretically this work was considered to a one researcher’s project and at the very early stages I did have this feeling, as the subject was until then mostly unknown to me. However, as time and work went on, I realized that I was not working alone, but in collaboration with numerous other individuals, who contributed in different ways to the completion of this work. It is all these people then who I wish to thank and express my gratitude for their support. First of all I wish to individually thank my three Supervisors, starting with Pr Pilidis, who honoured me by trusting me and assigning me this task, which was originally his own idea. He acted more than a Coordinator between the two involved Departments, as he was always willing to spare his limited time with me and support me with valuable advice and corrections. Dr Nikolaidis, as the Power and Propulsion Supervisor, has vastly contributed to the evaluation of the gas turbine performance aspects that should be considered for the project. Then it was Dr Barnes from the AMAC Group, who guided me closely during my first steps into software engineering and was always there to listen to my numerous questions, many of which later on I realized that they were trivial. My special thanks to Dr Stillwell, who replaced Dr Barnes after the latter left Cranfield, but his knowledge in Internet applications development and his patience with me, played a major role for the accomplishment of this Thesis. Dr G. P. Liu, from Glammorgan University. Although we met only once at an early stage of the project, he had the kindness to demonstrate the NCSLab application, developed under his supervision. His advice then was abstract but crucial for me. Mr Charnley and all the Technicians in the test area for their immense support for the use of available equipment and facilities. Also, it would be an omission not to thank Mr Stan Collins, who had the kindness to give me some software modules he had designed, in order to reuse them in my application. A special reference should be addressed to Sebastian Spratt, a very talented young man from Wootton Upper School. As a Nuffield Scholar, he designed the host web pages of the application, based on the guidelines provided by me. I also want to thank my lovely daughters, Antonia and Evangelia, who both not only tolerated my absence from every day family life, but they were as well happy to help me with minor details of the Thesis layout. iii Additionally, I have to mention the contribution of our family dog, Princess, who has been my patient audience with whom I discussed all my newly conceived ideas for the project, whilst we were having long relaxed walks. Finally, there are no words to describe the contribution of my beloved wife Nektaria to the accomplishment of this Thesis. Even with all the support that I had from Cranfield and my Supervisors, it would never be possible for me to complete the work without the infinite support from her. She has been there for me throughout the whole period of my studies in Cranfield. She has shared hours with me helping me arrange this Thesis and took on all the family obligations, while I was absorbed with my studies. I dedicate this work to my wonderful wife Nektaria and to the memory of my parents, Antonios and Kalliopi. iv TABLE OF CONTENTS ABSTRACT .................................................................................................................................. i ACKNOWLEDGEMENTS ............................................................................................................ iii LIST OF FIGURES....................................................................................................................... ix LIST OF TABLES ...................................................................................................................... xiv LIST OF EQUATIONS ................................................................................................................ xv LIST OF ABBREVIATIONS ......................................................................................................... xvi 1 INTRODUCTION ...................................................................................................................... 1 1.1 Scope .............................................................................................................................. 1 1.2 Thesis structure .............................................................................................................. 1 1.3 The AMT Netherlands Olympus gas turbine .................................................................... 4 2 AIM AND OBJECTIVES ............................................................................................................. 5 2.1 Aim ................................................................................................................................. 5 2.2 Objectives ....................................................................................................................... 5 2.3 Contribution ................................................................................................................... 5 3 LITERATURE REVIEW .............................................................................................................. 7 3.1 Similar applications and problem definition .................................................................... 7 3.1.1 Applications in the aviation sector ........................................................................... 8 3.1.2 Applications in power generation. ............................................................................ 8 3.1.3 Academic applications ........................................................................................... 11 3.1.4 The Turbomatch WebEngine .................................................................................. 14 3.2 Gas turbines and basic performance monitoring elements ............................................ 15 3.2.1 Basic principles ...................................................................................................... 15 3.2.2 Steady state and transient performance ................................................................ 16 3.2.3 Failure modes ........................................................................................................ 16 3.2.4 Gas turbine control systems ................................................................................... 18 3.3 Hazard Identification, risk analysis and risk mitigation ................................................... 20 3.3.1 Risk evaluation and mitigation ............................................................................... 20 3.3.2 Probabilistic risk analysis ........................................................................................ 22 3.3.3 Project risk analysis ................................................................................................ 22 3.4 Risk assessment and quality determination of software products.................................. 23 3.4.1 Software quality metrics ........................................................................................ 23 3.4.2 Safety critical systems ............................................................................................ 24 3.4.3 Software reliability prediction ................................................................................ 24 3.4.4 Avionics development ............................................................................................ 26 3.5 Software development .................................................................................................. 27 3.5.1 Software process models ....................................................................................... 27 3.5.2 System Requirements ............................................................................................ 29 3.5.3 Architectural design ............................................................................................... 30 3.5.4 Validation & Verification ........................................................................................ 32 3.5.5 Model checking ...................................................................................................... 33 3.6 Real time operating systems interfacing software ......................................................... 35 v 3.7 Internet applications and protocols ............................................................................... 36 3.7.1 Internet data communication protocols ................................................................. 36 3.7.2 Web services and web applications ........................................................................ 37 3.7.3 HTTP requests ........................................................................................................ 39 3.7.4 File Transfer Protocol ............................................................................................. 40 3.7.5 TCP and UDP .......................................................................................................... 40 3.8 Performance and security over the web ........................................................................ 40 3.8.1 Internet threats ..................................................................................................... 40 3.8.2 Internet security .................................................................................................... 41 3.8.3 Network performance ............................................................................................ 43 4 SOFTWARE PROCESS, REQUIREMENTS AND ARCHITECTURE ................................................. 46 4.1 Software Process .......................................................................................................... 46 4.1.1 The Spiral as the Software Process Model .............................................................. 46 4.1.2 Adaptation of the Spiral to the present project ...................................................... 48 4.2 System Requirements ................................................................................................... 50 4.2.1 Methodology ......................................................................................................... 50 4.2.2 Objectives and risk analysis .................................................................................... 51 4.2.3 Elicitation of the requirements and the SRS ........................................................... 52 4.3 Architecture and Modelling ........................................................................................... 57 4.4 General Physical Risk Assessment ................................................................................. 62 4.5 Validation Plan .............................................................................................................. 63 4.6 Validation of the Requirements ..................................................................................... 64 4.7 Results – Discussion ...................................................................................................... 65 5 GAS TURBINE INTERFACING ................................................................................................. 67 5.1 Methodology ................................................................................................................ 67 5.2 Risk Assessment ............................................................................................................ 68 5.3 Analysis, Design and Implementation ............................................................................ 69 5.3.1 Software ................................................................................................................ 69 5.3.2 Hardware ............................................................................................................... 72 5.4 Validation ..................................................................................................................... 73 5.5 Results – Discussion ...................................................................................................... 74 6 ENGINE OPERATION CONTROL SOFTWARE. .......................................................................... 79 6.1 Methodology ................................................................................................................ 79 6.1.1 Approach to the software modules design ............................................................. 79 6.1.2 General test harness .............................................................................................. 81 6.1.3 Validation methodology ......................................................................................... 81 6.2 Risk Assessment ............................................................................................................ 81 6.3 Analysis, Design and Implementation ............................................................................ 82 6.3.1 EIS adaptation ........................................................................................................ 82 6.3.2 EIS Interface ........................................................................................................... 83 6.3.3 MEOCS ................................................................................................................... 85 6.3.4 The General Test Harness....................................................................................... 88 6.4 Validation ..................................................................................................................... 90 vi 6.5 Results – Discussion ...................................................................................................... 91 7 ADDITIONAL FEATURES ........................................................................................................ 97 7.1 Methodology ................................................................................................................ 97 7.1.1 Ambient parameters and mains power supply – Live image ................................... 97 7.1.2 Peripheral features ................................................................................................ 98 7.1.3 The Trouble Shooting System module (TSS)............................................................ 99 7.1.4 Validation Methodology ....................................................................................... 101 7.2 Risk Assessment .......................................................................................................... 101 7.3 Analysis, Design and Implementation .......................................................................... 102 7.3.1 The ACAS – Addition of other modules and adaptations ....................................... 102 7.3.2 Peripheral Hardware ............................................................................................ 109 7.3.3 The Troubleshooting System (TSS) ....................................................................... 110 7.4 Validation ................................................................................................................... 118 7.5 Results – Discussion .................................................................................................... 119 8 INTERNET IMPLEMENTATION ............................................................................................. 130 8.1 Methodology .............................................................................................................. 130 8.1.1 Host website and web applications ...................................................................... 130 8.1.2 Service invocation ................................................................................................ 132 8.1.3 User Interface and live video transmission ........................................................... 133 8.1.4 Security of the application ................................................................................... 134 8.1.5 Validation methodology ....................................................................................... 135 8.2 Risk Assessment .......................................................................................................... 135 8.3 Analysis, Design and Implementation .......................................................................... 136 8.3.1 The host website. ................................................................................................. 136 8.3.2 The main web application .................................................................................... 139 8.3.3 Functionality and the REST API ............................................................................. 141 8.3.4 Adaptations of existing modules .......................................................................... 145 8.3.5 The operation panel web page ............................................................................. 150 8.3.6 Additional Functionality ....................................................................................... 150 8.4 Validation ................................................................................................................... 151 8.5 Results, Discussion ...................................................................................................... 152 9 ACCEPTANCE VALIDATION.................................................................................................. 159 9.1 Objectives – Risk Assessment ...................................................................................... 159 9.2 Methodology .............................................................................................................. 160 9.2.1 Requirements testing and final testing methodology ........................................... 160 9.2.2 Probabilistic analysis methodology....................................................................... 162 9.3 Requirements testing and final testing ........................................................................ 167 9.4 Probabilistic analysis of reliability ................................................................................ 169 9.5 Results – discussion..................................................................................................... 174 10 DEVELOPMENT CAPABILITIES ........................................................................................... 178 10.1 Addition of different gas turbines .............................................................................. 178 10.2 Configuration with multiple test stations and gas turbines ........................................ 180 10.3 Integration with the WebEngine................................................................................ 186 vii 10.4 Practical Applications ................................................................................................ 191 11 RESULTS - DISCUSSION ..................................................................................................... 193 11.1 SRS – General risk assessment ................................................................................... 193 11.2 Implementation ........................................................................................................ 193 11.2.1 Round 1 ............................................................................................................. 193 11.2.2 Round 2 ............................................................................................................. 194 11.2.3 Round 3 ............................................................................................................. 194 11.2.4 Round 4 ............................................................................................................. 195 11.3 Validation ................................................................................................................. 196 11.4 Installation and data handling ................................................................................... 197 11.5 Optimisation of different aspects of the application .................................................. 199 12 CONCLUSIONS - RECOMMENDATIONS FOR FURTHER WORK ............................................ 202 12.1 Conclusions ............................................................................................................... 202 12.1.1 Risk mitigation ................................................................................................... 202 12.1.2 Quality factors ................................................................................................... 204 12.1.3 Reusability ......................................................................................................... 208 12.2 Future work .............................................................................................................. 208 REFERENCES ......................................................................................................................... 213 APPENDICES .......................................................................................................................... 224 Appendix A Functional Requirements ............................................................................... 224 Appendix B Risk Assessment ............................................................................................. 243 Appendix C Software Components Control Flow Validation .............................................. 271 Appendix D Acceptance and Final Validation ..................................................................... 307 Appendix E Software Components Documentation ........................................................... 343 Appendix F Installation Guidelines .................................................................................... 383 viii

Description:
LabVIEW with compatible hardware from National Instruments was used to Figure 50 - Deviation between indications of LabVIEW and EDT during manual and LabVIEW Measurements required for control or diagnostics.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.