ebook img

CRANFIELD UNIVERSITY Charalambos Andrew Georgiou Thermal PDF

156 Pages·2013·6.67 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview CRANFIELD UNIVERSITY Charalambos Andrew Georgiou Thermal

CRANFIELD UNIVERSITY Charalambos Andrew Georgiou Thermal Performance of a Multi-Axis Smoothing Cell School of Applied Sciences Precision Engineering Masters by Research Academic Year: 2010 - 2011 Supervisors: Paul Comley, Paul Shore May 2011 CRANFIELD UNIVERSITY School of Applied Science Precision Engineering MSc by Research Academic Year 2010 - 2011 Charalambos Andrew Georgiou Thermal Performance of a Multi-Axis Smoothing Cell Supervisor: Paul Comley, Paul Shore May 2011 © Cranfield University 2011. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. ABSTRACT Multi Axis Robots have traditionally been used in industry for pick and place, de- burring, and welding operations. Increasing technological advances have broadened their application and today robots are increasingly being used for higher precision applications in the medical and nuclear sectors. In order to use robots in such roles it is important to understand their performance. Thermal effects in machine tools are acknowledged to account for up to 70% of all errors (Bryan J. , 1990) and therefore need to be considered. This research investigates thermal influences on the accuracy and repeatability of a six degree of freedom robotic arm, which forms an integral part of a smoothing cell. The cell forms part of a process chain currently being developed for the processing of high accuracy freeform surfaces, intended for use on the next generation of ground based telescopes. The robot studied was a FANUC 710i/50 with a lapping spindle the end effector. The robot geometric motions were characterised and the structure was thermally mapped at the latter velocity. The thermal mapping identified the key areas of the robot structure requiring more detailed analysis. Further investigation looked into thermal variations in conjunction with geometric measurements in order to characterise the robot thermal performance. Results showed thermal variations of up to 13ºC over a period of six hours, these produced errors of up to 100µm over the 1300mm working stroke slow. Thermal modelling carried out predicted geometric variation of 70µm to 122µm for thermal variations up to 13ºC over a period of six hours. The modelling was 50% to 75% efficient in predicting thermal error magnitudes in the X axis. With the geometric and modelling data a recommendation for offline compensation would enable significant improvement in the robots positioning capability to be achieved. Keywords: Robot, Thermal Performance, Thermal Model, Geometric Performance, Optics i ACKNOWLEDGEMENTS I would like to thank God and all those who have kept me in their prayers, my family and friends who have assisted me in writing my thesis and made many sacrifices for me. No trophy or victory in this world comes without sacrifice. I wish to thank all those during this time who offered support; specifically my parents Andreas and Rita Georgiou, who have unconditionally shown love for me. My sisters and cousin Maria Georgiou and Petros Sofocleous who gave me the opportunity to have the English and grammar checked during their working hours by their account manager Christina Georgiou. She also deserves thanks for her dedication throughout weekends which has been relentless. Natalie Georgiou for the reminders to keep me from distractions, my cousin Paul Pangalos who made many suggestions to me, sacrificing much time in making comments and suggestions for writing up my thesis and also for ideas for my VIVA presentation and offering his experience in working with other students. Theodore Veniamin who also offered advice in writing up together with his experience from a non-technical point of view who was always willing to lend a hand if I needed it. Wynand Swart from South Africa, after I sent a request for help over e-mail not having met him before who helped me with the DH Parameters for Fanuc Robot 710iC/50 for the kinematic model of my robot, and his secretary Han Li. Gratitude also goes to my supervisors Paul Comley who also spend many hours going over my work and making comments, I could not ask for a better supervisor, and Paul Shore for overseeing my work. All the technicians and staff who I would join for tea breaks and who enjoyed my ‘unique’ humour, biscuits and cakes. Andy, Xavier, John, Kevin, Adam, Alan, Roger, Yan, Ian, Renaud, and others. PhD and MSc by Research students Marco Castelli, Graham McMeecking, Tom Morris, Yinka Abedayo, Eva, Dominica, the Italian summer students, Andreas Bacci, Marco Targa, Andrea, Andrea and Simone and Yakubo, Saadia Hakim. This whole experience has taught me what research is, it is not a perfect world where everything is set out for you, there are obstacles which are hard to overcome but not impossible, for everything I am grateful. iii TABLE OF CONTENTS ABSTRACT ......................................................................................................... i ACKNOWLEDGEMENTS................................................................................... iii LIST OF FIGURES ............................................................................................. 7 LIST OF TABLES ............................................................................................... 9 LIST OF EQUATIONS ...................................................................................... 10 List of symbols/acronyms ................................................................................. 10 List of acronyms ............................................................................................ 10 List of Symbols ............................................................................................. 11 1 Introduction ............................................................................................... 14 1.1 Background ......................................................................................... 14 1.2 Machine performance .......................................................................... 16 1.3 Research scope .................................................................................. 17 1.4 Work plan ............................................................................................ 17 2 Literature review: History and published work ........................................... 18 2.1 Performance factors ............................................................................ 18 2.1.1 Machine design ............................................................................. 18 2.1.2 Environment and thermal effects .................................................. 21 2.1.3 Robot design................................................................................. 23 2.2 Geometric performance measurement ................................................ 28 2.2.1 Direct methods.............................................................................. 29 2.2.2 Indirect methods ........................................................................... 35 2.3 Thermal measurement ........................................................................ 37 2.3.1 Contact devices ............................................................................ 37 2.3.2 Non-contact .................................................................................. 40 2.4 Compensation strategies for machine tools and robots....................... 42 2.4.1 Temperature control ..................................................................... 43 2.4.2 Offline compensation techniques .................................................. 45 2.4.3 Online compensation techniques .................................................. 46 3 Experimental methodology ........................................................................ 49 3.1 Geometric assessment ........................................................................ 49 3.1.1 Smoothing axes accuracy and repeatability ................................. 49 3.1.2 ISO standard................................................................................. 53 3.2 Thermal mapping ................................................................................ 54 3.2.1 Thermal mapping procedure ......................................................... 54 3.2.2 Implementation of thermal profiles to modelling ........................... 55 3.3 Thermal assessment ........................................................................... 58 3.3.1 Initial temperature measurement system ...................................... 59 3.3.2 Implementing the temperature measurement system ................... 60 3.3.3 Thermal effects ............................................................................. 66 4 Thermal modelling ..................................................................................... 69 4.1 Modelling strategies ............................................................................ 69 4.1.1 Initial estimation ............................................................................ 69 4.1.2 Linear distortion modelling: non-uniform thermal distribution ........ 70 4.2 Geometric model ................................................................................. 76 4.2.1 Inverse kinematics ........................................................................ 76 v 4.2.2 Forward kinematics ....................................................................... 77 4.3 Geometric and thermal modelling ....................................................... 83 4.3.1 Applying thermal load to geometric model .................................... 83 4.4 Thermal results ................................................................................... 88 4.4.1 Results for thermal modelling of robot arm ................................... 88 5 Robot performance results ........................................................................ 94 5.1 Geometric evaluation of the robot ....................................................... 94 5.1.1 X Axis geometric accuracy ........................................................... 94 5.1.2 Y Axis geometric accuracy ........................................................... 96 5.1.3 Z Axis geometric accuracy ............................................................ 98 5.1.4 Circular motion of robot end effector ........................................... 100 5.1.5 ISO Standard geometric assessment ......................................... 102 5.2 A Thermal mapping system ............................................................... 104 5.2.1 Thermal profiling mapping: Thermal gradients for modelling ...... 108 5.3 Thermal performance ........................................................................ 119 5.3.1 Geometrical measurement ......................................................... 119 5.3.2 Thermal measurement ................................................................ 128 6 Discussion ............................................................................................... 135 6.1 Geometric, thermal effects, accuracy of model ................................. 135 6.1.1 X Axis ......................................................................................... 136 6.1.2 Y Axis ......................................................................................... 137 6.1.3 Z axis .......................................................................................... 139 6.1.4 Discussion of circular motion repeatability .................................. 140 6.1.5 Discussion of ISO motion repeatability ....................................... 141 6.2 Thermal performance ........................................................................ 142 6.2.1 Thermal measurement system ................................................... 142 6.2.2 Thermal output of robot .............................................................. 143 6.3 Recommendation for further work ..................................................... 144 7 Conclusions ............................................................................................. 145 8 References .............................................................................................. 147 vi

Description:
Figure 19: PTC curve (Source: Amwei Thermistor Co., Ltd.) 39. Figure 20: . Figure 44: Thermocouple testing in a temperature controlled oven 62 .. (HPKM): Hybrid Parallel Kinematic Manipulators. (MRA): Multiple . aircraft manufacture, to compact volumes of millimetres for micro-fluidic devices.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.