sustainability ConceptPaper Cover Crops as an Agroecological Practice on Organic Vegetable Farms in Wisconsin, USA ErinM.Silva1,2,*andVirginiaM.Moore2,3 1 DepartmentofPlantPathology,UniversityofWisconsin-Madison,1630LindenDr.,Madison,WI53706,USA 2 PlantBreedingandPlantGeneticsProgram,UniversityofWisconsin-Madison,1575LindenDr.,Madison, WI53706,USA;[email protected] 3 DepartmentofAgronomy,UniversityofWisconsin-Madison,1575LindenDr.,Madison,WI53706,USA * Correspondence:[email protected];Tel.:+1-608-890-1503;Fax:+1-608-263-2626 AcademicEditor:CarolShennan Received:6October2016;Accepted:14December2016;Published:1January2017 Abstract: Global agricultural and food systems face the challenge of feeding a growing world population in the face of finite and diminishing resources. To guide the redesign of agricultural systems,farmersandpolicymakersareincreasinglyturningtoagroecology. Organicagriculturehas historicallyintegratedagroecologicalpracticeswithinitsregulatoryframework;however,questions remain as to the extent to which organic farmers are maintaining and expanding agroecological practices. Inthispaper,wewilladdressconvergencesanddivergencesofagroecologicalandorganic practices. Using cover cropping as a model agroecological practice, we conduct a preliminary assessment on the degree to which organic vegetable farms in Wisconsin, USA are integrating agroecological concepts into their farm management, drawing upon the results of a 2013 cover croppingpracticesurvey. Thesurveydatademonstratesvaryingdegreesofcomplexityanddiversity incovercroppingpractices,potentiallyillustratingthedesireoforganicfarmerstopromoteahigh degreeofagroecosystemservices. Farmers’integrationofcovercropdiversityandcomplexitywas notcorrelatedtofarmsizeorrevenue. TheseresultsofferpreliminaryevidencethatWisconsin’s organicvegetablefarmersareintegratingagroecologicalpracticesontheirfarms,evenasgrowthin theorganicmarketcontinuestooccur. Keywords: agroecology;organicagriculture;covercropping;ecosystemservices;USA 1. Introduction Ourglobalagriculturalandfoodsystemsfacethechallengeoffeedingagrowingworldpopulation inthefaceoffiniteanddiminishingresources. Aswelooktowardtheissuesconfrontingfarmers—soil erosion,groundandsurfacewatercontamination,chemical-resistantweedsandinsects,diminishing fossilfuel-derivedandminedresources—itbecomesclearthatinordertoachieveasustainablepath forward,ourfutureagriculturalsystemsmustbebasedonadaptablepracticeswhichenhancethe cyclingresourcesandecologicalbalance,whilemaintainingproductive,nutritionally-densecrops. Toguidetheredesignofagriculturalsystemsonwhichtheglobalfoodsupplydepends,farmers andpolicymakersareincreasinglyturningtoagroecology. Agroecology,theintegrationofecological concepts to agricultural systems, arose in the early part of the 20th century as a response to the increasingindustrializationofouragriculturalsystem[1,2]. Onebroadly-useddefinitiondescribes agroecology as “ ... the integrative study of the ecology of the entire food system, encompassing ecological,economicandsocialdimensions”[3]. Asasetoffarmingpractices,agroecologypromotes more ecological strategies of management, including less dependence on monoculture systems; avoidanceofinputsubstitution,externalinputmarkets,andcostlybiotechnologypackages;cyclingof Sustainability2017,9,55;doi:10.3390/su9010055 www.mdpi.com/journal/sustainability Sustainability2017,9,55 2of15 resourceson-farmorfromlocalagroecosystemterritories;protectionofenvironment;andemphasis onlocalorregionalmarketstructuresandterritorialdevelopmentstrategies[4]. As with agroecology, the term “organic agriculture” has been used to describe a specific agriculturalproductionsystemforalmostacentury. Lampkin(1990)definesorganicagricultureasa farmingsystemapproachthataims“tocreateintegrated,humane,environmentallyandeconomically sustainableproductionsystems,whichmaximizerelianceonfarm-derivedrenewableresourcesand themanagementofecologicalandbiologicalprocessesandinteractions,soastoprovideacceptable levelsofcrop,livestockandhumannutrition,protectionfrompestsanddisease,andanappropriate returntothehumanandotherresources”[5]. AnotherdefinitionhasbeenofferedbytheInternational FederationofAgriculturalMovements(IFOAM):“OrganicAgricultureisaproductionsystemthat sustains the health of soils, ecosystems and people. It relies on ecological processes, biodiversity andcyclesadaptedtolocalconditions,ratherthantheuseofinputswithadverseeffects. Organic agriculturecombinestradition,innovationandsciencetobenefitthesharedenvironmentandpromote fairrelationshipsandagoodqualityoflifeforallinvolved”[6]. Questions remain, however, as to the degree to which organic agriculture, with foundations groundedwithinecologicalprocesses,alignswithagroecologicalproductionapproaches. Tobeginto deriveananswertothisquestion,weaddressconvergencesanddivergencesofagroecologicaland organicpractices,focusingontheintegrationofagroecologicalperspectivesintotheUnitedStates Department of Agriculture’s National Organic Program (USDA-NOP) regulation. Then, we will describe cover cropping as a model agroecological practice that is currently employed in varying degrees and complexities on organic farms across the United States of America (USA). As a case study,wewillusecovercroppingasanindicatorwithwhichtoconductapreliminaryassessment ontheintegrationofagroecologicalconceptsintofarmmanagementonorganicvegetablefarmsin Wisconsin,USA. 2. HistoricalOverviewofAgroecologyandOrganicAgriculture Differences in the genesis of agroecology and organic agriculture have led to differences in practicalapproachesthatstillremaintoday. Agroecology,whilefirstnotedbyscientistsandwriters intheearlypartofthe20thcentury[1,7],gainedstrengthinthemiddlepartofthe20thcenturyin responsetoenvironmentaladvocates’oppositiontotheindustrializationofglobalagriculturalsystems anditsincreasinglyapparentnegativeimpactsonthegreaterecosystem. Intandemtotherecognition of agroecology as an agricultural approach throughout the twentieth century, organic agriculture achievedmorewidespreadrecognition. Unlikethetermagroecology,whichfromthebeginninghad closertiestothefieldofecology,theoriginsoforganicagriculturearemorestronglyalignedwithsoil enhancementandpreservation.Whilemirroringthecomplexityofecologyinmanyrespects,theschool ofthoughtwhichshapedorganicagriculturewasrootedinthephilosophyofholism,inwhichthe farmwasviewedasacomplexsystem(an“organism”),drivenbyprocessesthatlinkedsoilorganic matter(referredtoas“humus”)andsoilbiologytocrop,human,andlivestockhealth[8,9]. Whilethesetwotermsareuseddistinctly,commonalitiesdoexistbetweenorganicfarmingand agroecologyinbothpracticeandvision. Intermsofhistoriccontext,bothwereenergizedbythepublic responsetointensivechemicalpollution—inagricultureandinotherindustries—andtherenewed discussionsofenvironmentalismthathadfurtherturnedtofoodandfarming[10]. Bothmovements wereenergizedbythepublicationofRachelCarson’sseminalwork“SilentSpring”(1962),highlighting thedangersofpesticidesinourfoodsystemsandenvironment. Finally,bothpromotedclosedsystems andresourcecycling,diverseproductionapproacheswithinafarmingenterprise,diverselandscape elements, and reliance on biological processes for building soil fertility and controlling pests and diseases[11]. Whiletheterms“agroecology”and“organicagriculture”haveexistedinagricultural lexiconforalmostacentury,theterm“organicagriculture”ismorehighlyrecognizedbyconsumers, inlargepartduetotheregulatoryandmarketcomponentassociatedwithorganicagricultureinthe USAandglobally. Sustainability2017,9,55 3of15 Unlikeorganicagriculture,whichisgovernedbystrictregulatorycodes,agroecologyisnotstrictly definedbyacodifiedsetofpractices. However,broaddefinitionsdoexistthatallowfordesignation ofcertainpracticesasagroecological. AccordingtoWezeletal.[12],“agroecologicalpracticescanbe characterizedasagriculturalpracticesaimingtoproducesignificantamountsoffood,whichseekto valorizeecologicalprocessesandecosystemservicesbyintegratingthemasfundamentalelements in the development of the said practices, as opposed to simply relying on external inputs such as chemicalfertilizerandsyntheticpesticideapplication,orontechnologicalsolutionssuchasgenetically modifiedorganisms”. Assuch,agroecologicalpracticesarebasedonvariousecologicalprocessesand ecosystemservicessuchasnutrientcycling,biologicalNfixation,naturalregulationofpests,soiland waterconservation,biodiversityconservation,andcarbonsequestration,whilecontributingtothe sustainabilityoftheagriculturalsystem[12]. Examplesofagroecologicalpracticesincludetheuseof covercrops,greenmanures,intercropping,agroforestry,biologicalcontrol,resourceandbiodiversity conservationpractices,orlivestockintegration[2,12,13]. As the practices to be mandated by the USDA-NOP were established, alignment with agroecological practices is evident. The broad definition included in the USDA-NOP regulation describesorganicproductionasa“productionsystemthatismanagedinaccordancewiththeAct andregulationsinthisparttorespondtosite-specificconditionsbyintegratingcultural,biological, andmechanicalpracticesthatfostercyclingofresources,promoteecologicalbalance,andconserve biodiversity”[14]. Theregulationspecificallymentionspracticesthatcanbeconsideredagroecological, includingtheuseofcroprotation,covercrops,andcatchcropstoprovideforpestmanagementin annualandperennialcrops(subpart§205.206),aswellasculturalpracticesthatenhancecrophealth, includingselectionofplantspeciesandvarietieswithregardtosuitabilitytosite-specificconditions and resistance to prevalent pests, weeds, and diseases (subpart § 205.206). Further, the organic regulationincorporateslandscapeelementsofagroecologymanagement,includingtheregulationof pestinsectsthroughthedevelopmentofhabitatfornaturalenemiesofpests(§205.206). 3. CoverCrops: AnIndicatorAgroecologicalPracticewithinOrganicManagement As the organic market expands and appetites for organic products increase, more hectares of landarebeingtransitionedtocertifiedorganicmanagementtocapturemarketdemandandaccess thehigherpricesthatorganicmarketsprovide. Withthistransitionofhectares,certifiedorganicland maydepartfromthesmall,diversifiedandintegratedfarmshistoricallytypifyingorganicagriculture, withtheiruseofmorecomplexagroecologicalpractices,andmovetowardlarger,morespecialized farms,mirroringthemonoculturesofconventionalagricultureandtheirassociatedrelianceonoutside inputs. Thisphenomenon,referredtoas“conventionalization”,wasfirstforwardedbyBucketal. in 1997[15]todescribetheCaliforniaorganicindustry,aswellasbyHallandMogyorodyin2001[16]in theirassessmentoftheindustryinOntario,Canada. Bucketal.[15]contendthatconventionalization canbedemonstratedbycertainfarmercharacteristics,practices,andorientationsamonglargerorganic farmers,inparticular,thelargerfarmerswhohaverecentlymovedtoorganicfarming. Almost 15 years after the inception of the USDA-NOP, few studies have demonstrated if conventionalizationoftheorganicindustryhastrulyoccurred. Inpart,thisisduetothedifficulty in identifying specific agroecological practices that would be appropriate indicators to assess a wide range of organic farms across a wide regional distribution. As organic farming is not a “cookbook approach”—instead encouraging farmers to use appropriate strategies for their local climatesandagroecosystems—thedegreetowhichspecificagroecologicalpracticesareimplemented onfarmswillvary. Thus,itcanbedifficulttorigorouslydocument,usingasingleorfewindicators, thediversityofmanagementpracticesemployedonorganicfarmsandtheirconvergenceordivergence withagroecologicalpracticesandprinciples. Oneofthemorewidespreadagroecologicalpracticesobservedonorganicfarms,however,iscover cropping. Covercroppingcanbedescribedastheuseof“vegetationplantedormanagedtoprotect andimprovesoil,crops,orwaterquality”[17]. Covercropscanprovidenumerousecosystemservices, Sustainability2017,9,55 4of15 includingimprovingsoilquality,nutrientcycling,pestregulation,andcropproductivity,bothinthe samefield,andalsoacrosstime[18–21]. Thus,integratingcovercropsintocroprotationalstrategies addsimportantfoundationalelementsofagroecologicalmanagement,includingincreasingdiversity acrossmultiplemeasuressuchastemporal,taxonomic,andfunctionalbiodiversity[22]. Manystudieshavedocumentedthespecificagroecologicalfunctionsandimpactsofcovercrops, ofteninamorelinearversussystems-basedcontext. AsubsetofthesestudiesareoutlinedinTable1, organizedbytheagroecosystemserviceonwhichtheresearchisfocused. Manyofthecovercrops describedinthistablearecommonlyusedoverwidegeographicregions,includingWisconsin,USA. Benefitsconferredbycovercropsareoftenmulti-functional,simultaneouslyprovidingbothagronomic andenvironmental;forexample,increasingwaterinfiltrationalsominimizessurfaceerosion,increasing waterqualityinsurfacewaters. Thecomplexnatureofcovercrophighlightsachallengeinneatly categorizingtheirfunctionalrolesasagroecologicalpractices,asagroecologicalperformancedoesnot necessarilydependonspecificspeciesortechniques,butislinkedtoprocessesthatbenefitthewhole system[23]. Table 1. Examples of agroecosystem services provided by cover crops, as documented from peer-reviewedresearchstudies. Agroecosystem CoverCrop CashCropSystem StudyLocation Citation Service Forageradish(Raphanussativus) Notspecified Denmark [24] Winterwheat Hairyvetch(Viciavillosa),sunnhemp (Triticumaestivum)andgrain Kansas,USA [25] (Crotalariajuncea),soybeans(Glycinemax) Reducesoil sorghum(Sorghumbicolor) compaction Forageradish;rapeseed(Brassicanapus); Maize(Zeamays) Maryland,USA [26] cerealrye(Secalecereale) Millet(Pennisetumglaucum);sorghum; SaoPaulo, Soybean [27] andsunnhemp Brazil Winterwheatand Hairyvetch;sunnhemp;soybean Kansas,USA [25] grainsorghum Calopo(Calopogoniomuconoides),sunn Improvesoil hemp,sorghum,pigeonpea Papaya(Caricapapaya) Bahia,Brazil [28] structure (Cajanuscajan)andjackbean (Canavaliaensiformis)withsorghum Springbarley(Hordeumvulgare), British cerealrye,andannualryegrass Notspecified Columbia, [29] (Loliummultiflorum) Canada Tomato Blackoat(Avenastrigose) Uraguay [30] (Solanumlycopersicum) Improvewater Winterwheat Silagemaize California,USA [31] infiltration Bromegrass(Bromusinermis),resident vegetation,andstrawberryclover Notspecified California,USA [32] (Trifoliumfragiferum) Forageradish;rapeseed;cerealrye Maize Maryland,USA [26] Cerealrye,winterbarley Improvesoil (Hordeumvulgare),triticale(xTriticosecale Wisconsin, moistureretention Soybean [33] spp.),hairyvetch,Austrianwinterpea USA (Pisumsativum) Cerealryeandhairyvetch Maize Illinois,USA [34] Cotton(Gossypiumhirsutum) Cerealryeandhairyvetch,aloneand andsorghum Georgia,USA [35] inmixtures (Sorghumbicolor) Increasesoil Guineagrass(Panicummaximum),Congo organicmatterand grass(Brachiariaruziziensis),palisade SantoAntônio soilcarbon Rice(Oryzasativa) [36] grass(Brachiariabrizantha),andpearl deGoiás,Brazil millet(Pennisetumglaucum) Cerealryeandhairyvetch, Massachusetts, Maize [37] rye/vetchcombination USA Sustainability2017,9,55 5of15 Table1.Cont. Agroecosystem CoverCrop CashCropSystem StudyLocation Citation Service Washington, Brownmustard(Brassicahirta) Potato(Solanumtuberosum) [38] USA Enhancenitrogen fixation Hairyvetch Tomato Maryland,USA [39] Hairyvetch,sunnhemp,soybeans [25] Greenbeans Oatandcommonvetch(Viciasativa) Oregon,USA [40] (Phaseolusvulgaris) Hariyvetchandcerealrye Tomato Maryland,USA [41] Oat;hairyvetch;wintercanola (Brassicanapus);covercropmixture1 Increasemicrobial (cowpea(Vignasinensis,V.unguiculata), activity winterpea(Pisumsativum),millet (Pennisetumamericanum),forageradish, SouthDakota, turnip(Brassicarapa);covercropmixture2 Wheatandoat [42] USA (wintercanola,forageoats/winterpea, crimson(Trifoliumincarnatum)/alsikeclover (Trifoliumhybridum),fieldpea (Pisumsativum)/timothy(Phleumpretense), forageradish/fieldpea) Whitemustard(Sinapisalba),phacelia (Phaceliatanacetifoli),annualryegrass Notprovided Belgium [43] (Loliumperenne),oats,cerealrye, forageradish Reduceerosion Cerealryeandoat Corn-soybeanrotation Iowa,USA [44] Sugarcane Sunnhemp;sorghumsudangrass;oats Hawaii,USA [45] (Saccharumofficinarum) Cerealryeandoat Corn-soybeanrotation Iowa,USA [46] Reducenutrient Cerealrye Lettuce(Latucasativa) California,USA [47] leachingandloss Phaceliaandcerealrye Broccoli(Brassicaoleraceae) California,USA [48] Meta-analysis [18] Mustard(Sinapisalba),forageradish,and springvetch(Viciasativa);mixture1(spring vetch,forageradish,berseemclover (Trifoliumalexandrinum);mixture2(field - Germany [49] pea,lupin(Lupinusangustifolius),blackoat (Avenastrigose)berseemclover,phacelia, niger(Guizotiaabyssinica) Suppressweeds Whitemustard(Sinapisalba),oilseedradish, phacelia,tartarybuckwheat Wheatandbarley (Fagopyrumtataricum),forageradish, Germany [50] (Hordeumvulgare) redoat(Avenabyzantine),grainamaranth (Amaranthuscruentus) Illinois, Mustard(Sinapisalba)andIndianmustard Vegetables NewYork,and [51] (Brassicajuncea) Michigan,USA Rapeseed,mediumredclover (Trifoliumpratense),Austrianwinterpea Enhancepollinator (Pisumsativumsubsp.arvense),andcereal Corn-soybean-winter Pennsylvania, andbeneficial rye;andasixspeciesmixthatincluded [52] wheatrotation USA habitat rapeseed,mediumredcloverAustrian winterpea,cerealrye,forageradish andoats Mustard(Brassicaspp.)andbuckwheat Broccoli California,USA [53] Increasebeneficial (Fagopyrumesculentum) insects Clementinemandarin Tallfescue(Festucaarundinace) Spain [54] (Citrusclementina) Okra Sunnhempandsorghumsudangrass Florida,USA [55] (Abelmoschusesculentus) Suppresssoil diseaseand Sudangrass Lettuce(Latucasativa) NewYork,USA [56] nematodes Cowpea,sunnhemp,pearlmillet,sorghum Tomato Florida,USA [57] sudangrass,aloneandinamixture Sustainability2017,9,55 6of15 SeveralofthecovercropbenefitsoutlinedinTable1involvesoilqualityandhealthenhancement, includingimprovementstosoilfertility,soilstructure,andsoilecology.Covercropssequesterandstore nutrientsthatmightotherwisebelosttoleachingorrunoff,maintainingfertilitywithinthesystem. Inparticular,densely-rootedcovercropsscavengenutrientsfromdeepinthesoilprofile,providing fertilityforfuturecrops[58–60]. Leguminouscovercropsfixnitrogenfromtheatmosphere,providing asourceoffertilityneededbysubsequentcashcrops,withoutrelianceonoutsideinputs[58,59,61–64]. Withthecontributionofbothabove-andbelow-groundbiomass,covercropscanincreasesoilorganic matter,whichinturnhastheeffectofimprovingsoilstructureandaggregation. Covercropsalsoimprovesoil–hydrologicrelationshipssuchasinfiltration,drainage,andaeration. Deep-rootedcovercropscanpenetrateandloosensubsurfacecompaction[58,59]andlivingvegetation andsurfaceresiduesserveaprotectiverole,minimizingerosionfromwindandwater[58–60,62,65]. Improvementsinsoilstructureandreducedneedforchemicalinputsalsobothleadtoreducednutrient leaching,whichcanultimatelyimprovewaterquality[58,62,66–69]. Whencovercropresiduesremain onthesoilsurface,additionalhydrologicbenefitsmaybeincurred,suchasreductionsinrunoffof sedimentandnutrientsandreducedirrigationneedsduetolowerevaporation[59,69]. Cover crops are increasingly used by farmers as a systems-based pest management tool. Particularly when paired with high biomass reduced tillage systems, cover crops can be a highly effectiveweedcontroloptionfororganicfarmers,asdemonstratedbycovercrop-basedreducedtillage systems[33,58,59,61,62,70]. Beyondhighbiomassreducedtillagesystems,plantedinrotationwith cash crop production, cover crops provide weed suppression through resource competition [58], niche disruption through modification of light, soil temperature, and/or soil moisture [24,28], andallelopathy[58,62,71]. Covercropscanhavepositiveornegativeimpactsonpestanddisease problems,withcertaincoverandcashcropcombinations(eithersimultaneouslyorsequentially)either attractingmorepestinsects,orconversely,morebeneficialpredatorsthatreducepestpopulations. Similarly,covercropsmaydisruptadiseasecycleorpreventdiseasefromspreading,orserveasan alternatehostforthepathogen[58,59,61,62,71]. 4. Methods: CanPerspectivesfromWisconsin’sOrganicVegetableFarmersHelpGaugeTheir AgroecologicalPriorities? Whiletheorganicmarketcontinuestoexpandandpriceadvantagesaremaintained,morefarmers may be motivated to enter organic production. Depending on the route taken to increase their production—expandinghectaresonanexistingorganicfarm,ortransitioningaconventionalfarmto certifiedorganic—farmerswillhavedifferentexperiences,motivations,andperspectives. Additionally, theymayexperiencevaryingpressuresandopportunitiesthateitherpersuadeordissuadetheadoption ofmorecomplexandcostlypracticeswithmultipleagroecologicalbenefits. Theattitudesofbothnew andexistingorganicfarmers,includingtheirprioritizationofexternalenvironmentalandsocietalgoals aswellasproductiongoals,willbeimportantdeterminantsoftheadoptionofagroecologicalpractices totheextentthatfarmerperceptions,beliefs,andvaluesinfluencetheirdecision-making. Influenced bypsychologicaltheory,theReasonedActionApproach(RAA)[72]considersthataperson’sbehavior depends on their intentions, which in turn depend on their attitudes, subjective norms, and the perceivedeaseordifficultyincontrollingthebehavior. Incorporationofperceptionsandvaluesinto anagroecologicalpracticeadoptionframeworkresonateswiththeholontheoryofagroecology,which proposestheconsiderationofafarmerorotheractorontheagriculturalandfoodsystemslandscape as a holon, or an “intentional entity embedded in an ecology of contexts” [73]. As such, farmers makedecisionsbasedonarangeoffactorsbeyondsimpleagronomicoreconomicconsiderations, butrathertheirdecisionstoimplementagroecologicalpracticeswillbeinfluencedbyfactorsranging frominternalvaluestosocietalandlandscape-scaleinteractions. Wisconsin,withitsstrong,vibranthistoryinorganicagriculture,providesauniqueopportunity toassesstrendsinconventionalizationoftheindustry—or,ataminimum,theadherenceoforganic farmerstotheagroecologicalapproachesthatmorecloselyalignwiththephilosophyunderpinning Sustainability 2017, 9, 55 7 of 15 entity embedded in an ecology of contexts” [73]. As such, farmers make decisions based on a range of factors beyond simple agronomic or economic considerations, but rather their decisions to implement agroecological practices will be influenced by factors ranging from internal values to societal and landscape-scale interactions. Wisconsin, with its strong, vibrant history in organic agriculture, provides a unique Sustainability2017,9,55 7of15 opportunity to assess trends in conventionalization of the industry—or, at a minimum, the adherence of organic farmers to the agroecological approaches that more closely align with the tphheiloorsgoapnhicyr eugnudlaetriopnin.nLioncga tetdhei nothrgeaunpicp erreMguidlawtieosnte. rnLorecgaitoend, Wini sctohnes inuphpaesrl onMgidsewrveestderans prreimgiaorny, rWegisioconnosfino rhgaasn liocnpgr soedruvcetdio ans ipnritmhearUyS rAeg(iFoing uorfe o1rg).anInic2 p0r0o1d,uWctisiocnon isni nthrea nUkSeAd (#F3igiunrteo 1ta).l Ionr g2a0n0i1c, fWarimscso,nbseihni nradnCkaeldif o#r3n iina atnodtalW oarsghainngict ofnar,mwsit,h b4e6h9inodrg Canailcifoorpneiraa taionnds W[74a]s.hAingdteocna,d ewliathte r4,6W9 ioscrognasniinc hoapderaritsioennst o[74th].e A# 2dercaandkein lga,tewr, iWthis1c1o8n0sionr ghaandi crifsaernm tso itnhet o#t2a lr,aannkdin1g6, 1wvitehg e1t1a8b0l eorfgaarmnisc cfaerrmtifis eidn otorgtaaln, iacn[d7 51]6.1O vrgegaentiacbvleeg featramblse cfearrtmifieerds tohrrgoaungich o[7u5t]t.h Oersgtaanteica rveegexettraebmlee flayrdmiveersr stehirnouegxphoeruite nthcee, sstiaztee, maraer keexttsre,manedlyc rdoipvedrisvee risni tye,xrpaenrgieinncgef, rosimzeb, emgianrnkeintsg, faanrmd ecrrsotpo dthivoeserswityit,h r3a0n+giynega rfsroomfe xbpegerinienninceg, ffraormme1rsh etoct athreostoe 1w0i0th+ h30e+ct ayreearfas romf se,xapnedrifernocme,t hfroosme p1r ohdecutcairneg tao h1a0n0d+ fhuelcotfarcero fpasrmtos,f aarnmds fproromd uthcionsge opvroerdu30cidnigf fae rheanntdtyfuple osfo cfrvoepgse ttoa bfalersm[7s 6p]r.oducing over 30 different types of vegetables [76]. Figure 1. Location of Wisconsin, USA as highlighted by the red circle. Blue dots represent organic Figure1. LocationofWisconsin,USAashighlightedbytheredcircle. Bluedotsrepresentorganic hectares in the USA as documented by the 2007 USDA Census of Agriculture, with one dot hectaresintheUSAasdocumentedbythe2007USDACensusofAgriculture,withonedotrepresenting representing approximate 100 hectares (map obtained from the USDA National Agricultural approximate100hectares(mapobtainedfromtheUSDANationalAgriculturalStatisticsService). Statistics Service). Toapplythisapproachtoapreliminaryinvestigationofthedegreeofadherenceandcommitment To apply this approach to a preliminary investigation of the degree of adherence and ofWisconsin’sorganicvegetablefarmerstoagroecologicalmanagementapproaches,weusedcover commitment of Wisconsin’s organic vegetable farmers to agroecological management approaches, croppingasamodelindicatorpractice. Thesurveydatausedforthisworkwascollectedin2014,inan we used cover cropping as a model indicator practice. The survey data used for this work was efforttoassessthecovercroppingpracticesofWisconsin’sorganicvegetablefarmersin2013aswell collected in 2014, in an effort to assess the cover cropping practices of Wisconsin’s organic vegetable asinprioryearsoffarming(moredetailsonthesurveydesignandsummaryofresultscanbefound farmers in 2013 as well as in prior years of farming (more details on the survey design and inMooreetal., 2016[77]). Thissurvey, intendedtoassesstheextent, diversity, andcomplexityto summary of results can be found in Moore et al., 2016 [77]). This survey, intended to assess the whichorganicvegetablefarmerswereemployingcovercrops,wasdesignedanddistributedusingthe extent, diversity, and complexity to which organic vegetable farmers were employing cover crops, tailoreddesignmethod[78]. ThesurveywasmailedthroughtheUnitedStatesPostalServicetoeach was designed and distributed using the tailored design method [78]. The survey was mailed ofthe322certifiedorganicvegetablegrowersinthestateofWisconsin,usingaddressesacquiredfrom through the United States Postal Service to each of the 322 certified organic vegetable growers in the theUSDA-NOP.Farmerswerecontactedatotaloffivetimes,includingthreemailingsofthesurvey state of Wisconsin, using addresses acquired from the USDA-NOP. Farmers were contacted a total questionnaireandtwomailingsofreminderpostcards,betweenJanuaryandMarch2014. Atotalof of five times, including three mailings of the survey questionnaire and two mailings of reminder 152completedsurveyswerereturned,constitutingaresponserateof47%. Questionsincludedcover postcards, between January and March 2014. A total of 152 completed surveys were returned, cropuse,relatedmotivationsandperceptions,andfarmdemographicinformation(size,numberof y earsfarming,education,amongothers). Withthisinformation,wewereablederivecovercropping trendswithinthisorganicagriculturalsectorovertime,aswellastheagroecologicalgoalsoffarmers usingcovercrops. Sustainability2017,9,55 8of15 To investigate the primary factors related to the farmers’ use of cover crops to maximize agroecologicalfunction(asindicatedbyextentofcovercropuse,covercropdiversity,andcovercrop complexity),differenteconometricmodelsandregressionanalyseswereperformedasdetermined by the type of dependent variable. The two-limit Tobit model was used to perform regressions to investigate explanatory variables related to the extent of cover crop adoption, with continuous variablesrepresentingtheproportionofvegetableacresplantedtocovercropsforsomepartofthe 2013productionseason. Thecovercropdiversityregressionwasperformedusingnegativebinomial regression,withthedependentvariableasthenumberofcovercropspecies. Lastly,astheindicator variablesforcomplexityofcovercropusewerebinaryandcorrelated(yesornoastotheuseoftwo practices,underseedingandintercroppingofcovercropswithcashcrops),abivariateprobitregression wasusedtodeterminerelatedfarmdemographicfactors. STATA14.0wasusedtoestimateregressions, using the tobit command for the two-limit Tobit regression, the nbreg command for the negative binomialregression,andthebiprobitcommandforthebivariateprobitregression. Moreinformationon thespecificregressionapproachescanbefoundinthemoreextensivesummaryofthesurveyresults publishedbyMooreetal.[77]. 5. Results Survey responses demonstrated that cover cropping was routinely integrated into organic vegetablefarmmanagement.Ninety-twopercentofrespondentshadusedcovercropsatsomepointin theirfarmingcareer,and78%plantedthemduring2013[77]. Additionally,diverseportfoliosofcover crops were used by respondents, including barley, buckwheat, clovers, cowpea, millet, mustards, oats, peas, cereal rye, annual ryegrass, sorghum sudangrass, tillage radish, turnip, hairy vetch, andwinterwheat. Resultsofthesurveyfurtherindicatedthatcovercroppingwasincreasingasapracticewiththe growthoforganicvegetablefarmsinWisconsin. Acloseranalysisoftherespondentswhousedcover cropsinaparticularfarmingseasonshowsanincreasingutilizationofthispracticeoverthe20years priortothesurveyyear(1983–2013),risingfromalowoflessthan10%oforganicvegetablefarmers usingcovercropsin1983,toover90%oforganicvegetablefarmersusingthispracticein2013[77]. Onagivenfarm,theextenttowhichcovercropsareplantedonthelandvaries,from25%offarmers plantingnoneoftheirvegetablelandincovercrops,25%plantingalloftheirvegetablelandincover crops,andtheremainingfarmersplantingaportionoftheirvegetablelandincovercrops. In addition to the extent of cover crop adoption over years farming as an agroecological practices indicator, the complexity to which cover crops are managed can serve as another gauge as to the farmer’s commitment to agroecological farming approaches. On the simplest level, if a farmermaintainstheirprimarymotivationtoplantcovercropsasadherencetotherequirementsof certificationagencies,themostbasicsolutionwouldbetoplantacleanfieldinasinglecovercrop. However,morecomplicatedstrategies—underseedingintoacashcrop,interplantingcovercropsat the time of cash crop planting, using more complex mixtures and cover crop “cocktails”—speaks tothedesireofthefarmertousecovercropswithmoremultifunctionalintentions. TheWisconsin survey results indicated that 25.7% of respondents under-seeded cover crops before the cash crop washarvestedfromthefield,and29.4%inter-plantedcovercropsinpathwaysbetweentheircash crops[77]. Additionally,farmersplantedmultiplecovercropspeciesbothwithinsinglefieldsand acrosstheirfarms,benefittingfromthemultipleagronomicandecosystemservicetraitsprovideby differentcovercropspecies. Resultsofthesurveyindicatedthatfarmersintegratedmorethanone cover crop species into their management plans, using an average of two species every year and threespeciesatleastinsomeyearsforatotalaverageoffivecovercropspeciesusedperfarm[77]. Achieving even greater levels of complexity and diversity, a large number (64.0%) of respondents plantedcovercropspeciesmixturesinsomefields. Survey respondents were also asked to rank the reasons why they used cover crops, given the options of the following agroecological functions: adding organic matter; improving fertility; Sustainability2017,9,55 9of15 improvingsoilstructure;suppressingweeds;erosionprotection;preventingnutrientleaching;reducing pestsanddiseases;increasingbiodiversity/habitat;andimprovingwaterinfiltration. Increasingsoil organicmatterhadthemostvotesinthetop3(97),withimprovingsoilfertilityrankingcloselybehind (90)[77]. Athirdsoilfunction,improvingsoilstructure,wasthethirdhighestfactorrankingthetop three (66). Other non-soil related agroecological functions, such as reducing pest and disease and increasingbiodiversityandhabitat,rankedmuchlower,withonlysixrespondentsrankingeachinthe topthree. Interestingly, these rankings did not conform closely with farmers’ perceptions of cover crop benefits. Respondentswereaskedtorespondtoaseriesofstatementsonafive-pointLikertscale, from“stronglyagree”,“agree”,“neutral”,“disagree”,and“stronglydisagree”. Statementsincluded: cover cropping improves farm profitability; cover cropping improves soil health, cover cropping improvessoilfertility;covercroppingdecreasesweedandpestpressure;andcovercroppingincreases biodiversity/habitat. Mostfarmersmoststronglyagreedwithstatementsaboutsoilbenefits: 98% of respondents agreed or strongly agreed that “cover cropping improves soil health”, and 99% agreedorstronglyagreedthat“covercroppingimprovesfertility”[77]. However,respondentsalso agreed (albeit less strongly) that cover crops offer other benefits (88% agreed or strongly agreed that “cover cropping decreases weed/pest problems”, and 82% agreed or strongly agreed that “covercroppingincreasesbiodiversity/habitat”). Thesevaluesindicatethatasignificantlygreater proportion of farmers held beliefs that broader agroecological benefits existed as compared to the number of farmers planting cover crops with the intention of deriving those ecosystem benefits. However,asignificantnumberoffarmersalsofeltthatcovercropsbenefittedtheeconomicaspectsof sustainabilityontheirfarm,with87%agreeingorstronglyagreeingthat“covercroppingimproves farmprofitability”[77]. Regressionanalysesdemonstratedseveralrelationshipsbetweencovercropadoptionandfarm characteristics. Covercroppingextentwasfoundtobestronglycorrelatedwiththefarm’sdependence onvegetablerevenue;themoredependentafarmwasonrevenuefromvegetablecrops,thesmaller the proportion of vegetable hectares were planted in cover crops [44]. Extent of cover cropping, however,wasnottotalfarmhectarage. Neithervegetablerevenuenorfarmsizewascorrelatedwith complexityordiversityofcovercropsused. However,negativebinomialcountdataregressionof thenumberofspeciesplanteddemonstratedthatthecomplexityofcovercropplantings—andtheir relatedmultifunctionalbenefits—werelinkedtotheeducationandexperimentalnatureoffarmers. Additionally,farmersweremoreaptatusingcovercropsinmorecomplex,multifunctionalwaysif theyknewotherfarmersthatalsousedcovercrops. 6. Discussion AnalysisofthissurveyprovidespreliminaryevidencethatWisconsin’sorganicvegetablefarmers areintegratingagroecologicalpracticesontheirfarms,evenasgrowthintheorganicmarketcontinues tooccur. However,theanalysisissomewhatsimplifiedandlimitedinitsabilitytodealwiththefull scopeandrationaleforpracticeadoption. Inadditiontoeconomicandfarmphysicalandbiological drivers,adoptionofanytechnology,includingcovercropping,intertwineswithpersonalvalues,social norms,availableknowledge,andothercomplexfactors,andthesefactorsarechallengingtoadequately assessinthecontextofasurvey. ThisincreaseincovercropadoptionmaybedueinparttotheimplementationoftheUSDA-NOP regulation in 2002, which encourages use of cover crops as part of organic farmers’ nutrient management and soil building strategies, and increased scrutiny of this practice by the certifiers most active in Wisconsin. However, according to survey responses, this does not seem to be the primarydriverforincreasedfarmeradoptionofcovercropping. Inresponsetothequestion“Iuse covercropsbecauseIamsupposedto”,only10%ofrespondentsansweredagree,with0%ranking stronglyagree. Theother90%ofrespondentsrankedthisasneutral,disagree,orstronglydisagree. Thisimpliesthatfarmersareusingcovercropsduetotheirrecognizedproductionandagroecological Sustainability2017,9,55 10of15 benefits. However,itisimportanttonotethateconomicpressuresimposedbyalimitedlandbasemay limitfarmer’sabilitytoemploycovercroppingasanagroecologicalpractice,despitetherecognition oftheirbenefitstothemanagementsystem. Theinformationcollectedinthesurveyfurtherdemonstratesvaryingdegreesofcomplexityand diversityincovercroppingpractices,potentiallyillustratingthedesirebyfarmerstopromoteagreater degreeofagroecosystemservices. Respondentsusedanaverageoftwospecieseveryyearandthree speciesatleastinsomeyears(so,anaverageoffivecovercropspeciesinthefarm’sportfolio).However, afewfarmsusedhighlydiversecovercropselections,withtwelveormoretotalcovercropspecies intheircovercropportfolios. Intermsofspecificpractices,farmerscommonlyusedmixesofcover cropspeciesinasinglefield,andmanyalsousedoverwinteringcovercrops. Lesscommonwerethe potentiallymoremanagement-intensivepracticesofintercroppingandunderseeding. Covercropping complexityalsoappearstoincreasewhenfarmersknowothersusingcovercrops,whichhighlights thepotentialimportanceofsociallearning,networking,andfarmer-to-farmereducation. Perhaps most interesting, in light of the conventionalization debate, remains the finding that covercropdiversityandcomplexitywasnotcorrelatedfarmsizeorrevenue. Thisiscountertothe conventionalizationargumentdescribedpreviously,whichstronglyemphasizedthegrowthoforganic farm size as a risk factor for conventionalization [79]. Within the context of the organic vegetable industryinCalifornia,Guthman[80]posedtheargumentthatwhenlargervegetablefarmscontinueto farmwithagroecologicalmethods,theyareunabletocompeteinthemoreindustrializedmarketdueto itspricestructure,pushingthesefarmerstowardinputsubstitutionapproachesandcropspecialization. Alternatively,shepositsthatthosefarmersoperatinginalternativemarkets,suchasfarmers’markets andCommunitySupportAgriculture,areabletobenefitfromastructurethatrewardsdiversecrop offeringsandprovideshigherrevenuemargins,whichsupporttheadoptionofagroecologicalpractices. WhiletheWisconsinsurveydatadidnotsupportthesetrends,itisimportanttonotethatthesetwo regionsoftheUSAhavesubstantialdifferencesinotherfactorsthatmayimpactafarmer’schoices infarmingpractices,suchaslandprices,availabilityofirrigationwater(eitherrainfedorirrigated), andseasonalcostsofinputs. Additionally,overall,themeanandmediansizesoffarmsinWisconsin, whereover50%oforganicvegetableoperationsareunder5hectaresinsize[81],maybesubstantially differentthanthosefoundontheCalifornialandscape. Furtherresearchisneededtoincreaseourunderstandingofthemultiplefunctionsofcovercrops andthewaythesefunctionsinteractinordertoenhancetheabilitytodesignagroecologicalsystems. Schipanski et al. [22] advocate for a systems-based approach to cover crop research, integrating knowledge from different disciplines and development of a framework for weighing different management priorities. Increased use of ecological- or bio-economic modeling, which integrates biophysicalandsocioeconomicdataintoasinglemodel[82,83],couldalsobeusedtoassessfeasibility anddesirabilityofvariouscovercroppingpractices. 7. Conclusions Cautioniscertainlywarrantedwhenextrapolatingtheresultsoftheassessmentpresentedinthis paper,whichusesasinglepracticeindicatorinorganicvegetablesystemswithinalimitedregionto begintoassesstheextenttowhichorganicfarmersareemployingagroecologicalpractices. Studies conductedacrosstheglobehaveposedthequestionofthemovementoforganicagriculturetoward conventionalizationandawayfromitsmoreagroecologicalfoundations[84–87]. Fromourassessment usingcovercroppingasamodelagroecologicalindicator,thisphenomenondoesnotappeartobe occurringonWisconsin’sorganicvegetablefarms. Itisimportanttonotethatmanyotherstudieshave beenconductedfromasocialscienceperspective,focusedonmotivations,scale,andmarkets,rather thaninvestigatingtheactualpracticesemployedonorganicfarmsacrossdifferentsizeranges[88]. With a lack of interdisciplinary studies approaching this question from both social and applied productionperspectives[89,90],thetrendsnotedbysocialscientistshavenotbeenwell-correlated with agronomic practices employed by organic farmers [88]. The ability of organic agriculture to
Description: