Chapter 6 Coupling of angular momenta – the vector model In the previouschapter, we introduced the central-field approximation as a way to obtainseparablebasisfunctionsforthestatesofmultielectronatoms.Theseproduct statesaresolutiontoaSchro¨dingerequationwithapurelyradialpotential,andthey are annotated with an electron orbital nomenclature (see chapters 1.5 and 5.2.1). Whatweneedtodonowistoapplyperturbationtheory,usingtheseelectroncon- figurationsaszeroth-orderfunctions. WhenweinitiallyintroducedtheCFAinchapter5,andestablishedelectroncon- figurations,weignoredtwocontributionstothetotalHamiltonian;namelythespin- orbitinteractionandwhat’sleftofthemutualelectronrepulsionterm,whenwehave separatedoutitsradialpart.Theissuenowathandistoaddthesecontributionsas perturbations.Eventually,wewillthenbeabletofurtheraddotherinteractions,for examplewithexternalfieldsandelectromagneticmomentsfromthenucleus. Whatwehavetodealwithpresentlyisinteractionsbetweentheorbitalandspin angular momenta of all electrons. A model for doing this was developed by early spectroscopists,beforequantummechanicsandbeforethesalientfeaturesofatomic structure were known. It is a phenomenological model based on the addition of vectors,describingthedifferentangularmomenta,withconstraintsconcerningthe discrete nature of the vector sums. The latter rules was initially entirely based on empiricalobservations. Whenstudyingatomicspectra,itwasnotedthatgroupsofofenergylevels(de- rivedfromspectrallines)appearedtogether,andthatsomespecifictypesofatoms alwayshadsuchgroupingswithparticularmultiplicities.Forexample,alkaliatoms had states appearing in doublets, alkaline earths were shown to have singlets and triplets,andnitrogenhaditsenergylevelsarrangedinquartetsanddoublets.Work- ingbackwards,itwashypothesisedthatthishastodowithinteractingangularmo- menta, and that spin had to be included in the treaties. The model was developed before quantum mechanics, but it turns out that when the addition of angular mo- menta was subsequently put on a quantum mechanical footing, this vector model stillgaveexcellentqualitativeresults,anditstillgreatlyfacilitatesaclosestudyof basicatomicstructureandatomicspectroscopy. 73 74 6 Couplingofangularmomenta–thevectormodel Inthefollowing,wewillintroducethevectormodel,andwewillquicklyproceed to the application of quantum mechanical perturbation analyses of the same issue. When doing this, we will have to isolate special cases, where some interactions dominate over others. The extremes of these special cases are the so called LS- coupling and jj-coupling schemes. They will be introduced in chapters 6.3 and 6.4, and then treated in detail in chapters 7 and 8. Albeit the above schemes are limiting cases, they will help us to understand a majority of atomic structure, and via interpolation schemes, we can get a good grasp also of various intermediated situations. 6.1 Theconceptofthevectormodel Thecentral-fieldapproximationisakeytothejustificationofthevectormodel.In thepre-quantumera,andaftertheintroductionoftheatomicmodelsbyRutherford and Bohr, the formulation was rather along the lines that only a few of the nega- tive charges in an atom contribute to the finer features of atomic structures. With an atomic model based on discrete orbitals, this could also be stated as that only electronintheoutermostoccupiedorbitalsgiveangularcontributionstothestruc- ture,whereastheinneronesgiveasphericallysymmetriccontributiontotheoverall energyoftheatom.Thishypothesiswasforearlyspectroscopistsapostulatebased onobservations.Today,wecangiverationalargumentsforit,andwewilldwellon itmoreinchapter6.2. A purely central potential gives a comparatively simple solution to the Schro¨- dingerequation.Theobservationthatatomicspectracanstillbeverycomplicated must then lead to the conclusion that these complications have to to with atoms outsidethesymmetricclosedshells,i.e.thevalenceelectrons.Inner,fullyoccupied orbitals,maycombinetoasphericalforcefield,buttheremainingvalenceelectrons will exert torques on each other. From there, we can understand that the number ofvalenceelectronsmusthaveanimportantbearingontheenergylevelstructure, andthusitisunderstandablewhyatomsfoundinthesamecolumnintheperiodic systemhavesimilarspectra. The said angular effects must, from a Newtonian point of view, be possible to describeasinteractionsbetweendifferentangularmomentathathavetheeffectthat theywillallvarywithtime,whereastheirsumwillremainconstant(forthemoment weruleoutdissipation).Wehave dL =τ , (6.1) dt andifwetaketheexampleoftheangularpartoftheelectrostaticinteractionbetween twovalenceelectrons,itisclearthatneitherL ,norL willbeconstantintime.They 1 2 willbothprecessabouttheirvectorsum,asillustratedinfig6.1 Inquantummechanicallanguage,L2 andL2 willcommutewithL2,L andthe 1 1 z Hamiltonian describing the interaction, but L and L will not. Likewise, for an 1z 2z 6.1 Theconceptofthevectormodel 75 Fig.6.1 Theorbitalangular L L 1 + 2 momentaoftwoelectrons,L 1 andL ,arecoupledtrough 2 electrostaticinteraction.Asa result,theywillbothprecess, whereastheirsumisconstant intime. L 1 L 2 electron spin interacting with the same electron’s orbital angular momentum, L i andS willprocessaroundtheirsumJ,asdescribedinchapter4. i i It is clear that sums of angular momenta play an important role, and thus we havetoknowwithwhatrestrictionssuchadditionscanbemade.Tostartwith:from classical physics it is clear that a sum of angular momenta is in itself an angular momentum. Moreover, we know that a general quantum mechanical angular mo- mentum J must be quantized such that the eigenvalues of J2 are j(j+1), with j being either zero, a positive integer, or a positive half-integer, and the eigenvalues ofJ arem ,whosepossiblevaluesliebetween−jand jandareseparatedbyinte- z j gernumbers(seeappendixC). With this, we can illustrate the addition rules with a few practical examples. A morerigorousjustificationfortheserulesisgiveninappendixI.Webeginbycon- sideringanumberofvalenceelectronswithspinsS thatinteracttoformatotalspin i S=∑iSi.Weknowthatforeveryelectron,si= 21,andweassumethattheorbital angular momenta (and/or the principal quantum numbers) are such that we do not have tobother withthe Pauliprinciple. We writethe quantumnumbers associated withS2andS asSandM respectively(seechapter1.5),andthepossiblevaluesof z S Sareillustratedinfigure6.2. For a case with two valence electrons, the possible results for the total spin are S=0orS=1—thetwospinsareeitheralignedoranti-parallel.Thesetwooptions correspondtothesingletsandtripletsdescribedinchapter2.2.Withathirdelectron, thethirdspin-vectormustbeaddedtothevectorsumofthetwofirst,eitherincreas- ing or decreasing the total spin, and the possible values are S=1/2 and S=3/2. Thosevaluesgivesspectrallinesappearingindoubletsandquartets,andweseethat thereisindeedalogicallinkbetweenthetotalspinS,andthequantity2S+1,which was assumed to be the multiplicity (see chapter 1.5). It should be noted that some 76 6 Couplingofangularmomenta–thevectormodel Fig.6.2 Illustrationofthe S vectoradditionofelectron spins.Onthex-axisisthe number of electrons, and onthey-axisthetotalspin 5/2 (thevectorsum).Withtwo electrons,onlysinglets(S= 0)andtriplets(S=1)are 2 possible. Three electrons producesdoublets(S=1/2) and(S=3/2)quartets,andso 3/2 on.Notethatisthisdiagram, itisassumedthatthePauli principleisnotanimpediment 1 (someoftheotherquantum numbersaredifferent). 1/2 N 1 2 3 4 5 e oftheadditionpathsinfigure6.2mayinsomeinstancesbeinhibitedbythePauli principle. Addingorbitalangularmomentaworksinthesameway,exceptthatthedifferent l canbeanypositiveinteger,butareneverhalf-integers.Takeanexamplewithone i d-electron(l =2)andonep-electron(l =1).Thepossiblevaluesofthequantum 1 2 numberforthetotalangularmomentum,L,are3,2and1.Ifthereisathirdelectron, itsangularmomentumisaddedinthesamewaytothedifferentsumsofthefirsttwo. Atthisstage,theorderofthesummationdoesnotmatter. Left to do is to take into account the spin-orbit interaction. Here we are faced withachoice.WecaneitherfirstcouplealltheindividualL andS toanumberof i i J =L +S,whereafteralltheindividualJ aresummedintoagrandtotalangular i i i i momentum,J=∑iJi.Alternatively,wefirstformL=∑iLiandS=∑iSi,andafter thatwegettothesameJ=L+S,havingtakenadifferentroute.Thisisillustrated infigure6.3 WhatpathwetakeinordertogettoJisactuallycrucial.Evenwhenweexclude angular effects from inner, closed shells, we will have two angular momenta per valenceelectrons,andtheywillallinteracteachother.Wehavealreadyresignedto calculateenergycontributionswithperturbationtheory,usingCFAelectronconfig- urations as zero-order states. However, if we take the Hamiltonian from (5.2) and (5.4),andaddthespin-orbitcontributionfrom(4.16): H=H +H +H , (6.2) CF to SO westillneedtotreatthelasttwotermsonebyone.Foraperturbativecalculation, that will only work if the largest term is treated first, and if each subsequent term inthestepwisecalculationhasanenergycontributionsignificantlysmallerthanthe 6.1 Theconceptofthevectormodel 77 ~s2 ~s2 J~ S~ J~ ~j2 ~s1 ~l2 L~ ~j1 ~l2 ~s1 ~l1 ~l1 Fig.6.3 Twodifferentwaystocouplethefourangularmomentaofatwoelectronatom(L ,S ,L 1 1 2 andS )inordertoformthetotalelectronicangularmomentum2.Intheleftpanel,thestrongest 2 interactionisthatbetweentheelectrons.TheindividualLiandSifirstcoupletoformLandS,and thethespinorbitinteractiongivesusJ.ThisistheLS-couplingapproximation.Intherightpanel, thespin-orbitinteractionisthemostpronounces.Inthis—the jj-couplingcase—theindividual Jiarefirstformed,andthenthesecoupleduetotheelectron-electroninteractionandwillgiveusJ precedingone.Thatistosaythatbothpictograminfigure6.3representsapproxi- mationsandrepresenttwolimitingcases. What this means is that we need to know the relative importance of H and to H , and the answer to that question is not universal. For light atoms, and for a SO considerablepartoftheperiodicsystem,theinteractionbetweenelectronsismuch more important than the spin-orbit interaction. In that case, we first treat H , and to theresultarestatesreferredtoasatomicterms.Forthese,thefirststageonthepath toJhasbeentoformLandSfromtheangularmomentaoftheindividualelectrons. The situation is referred to as ‘LS–coupling’, and it will be treated in chapters 6.3 and7.Inthefinalstep(ignoringexternalfieldsandnucleareffects),thetermH SO is applied as a perturbation to the atomic terms. This reveals the ‘fine structure’, whichwillbequantifiedinthequantumnumberJ.Therepresentationofthestates inLS-couplingis: |γLSJM (cid:105). (6.3) J The fine-structure Hamiltonian H scales as Z3 — see (4.12) — whereas H SO to hasalinearscalingwithZ.Asaconsequencetheapproximationthatthespin-orbit termissmallcomparedwiththeCoulombtorqueonemaynotholdforveryheavy atoms. Intheotherextremelimit,wewillhavethecasewherewecansafelyinversethe orderinwhichthetwoangularHamiltoniansareapplied.Inthesecases,theinternal spin–orbitinteractionswampsthecouplingbetweenthevalenceelectrons.Thissitu- ationsiswhatisillustratedintherightpartoffigure6.3.Wecallthis‘jj–coupling’, 78 6 Couplingofangularmomenta–thevectormodel since we begin by forming the individual J, and then we add all these to form J. i ThequantumnumbersLandSnolongercommuteswiththetotalHamiltonian,and therepresentationmustratherbe: |γ j ... j JM (cid:105). (6.4) 1 N J Wetreat jj–couplinginchapters6.4and8. ObviouslybothLS–couplingand jj-couplingareapproximations.However,with thesedescriptionsasabasis,weareabletodescribealsomanyintermediatecases. Wewilllookcloseratsuchcasesinchapter9. 6.2 Closedshells Wewilltakeacloserlookatclosedshells,andthecontributiontoatomicstructureof electronsintheseclosedshells.Ashasbeenestablishedinchapter5,aclosedshell isanelectronorbital,designatedbythequantumnumbersnl,whichhasexactlythe maximumnumberofelectronsinitthatispossible. Thefactthatorbitals,orshells,canbefilledatallisaconsequenceofthePauli principle.Wedesignateeachelectronwithacertainsetofquantumnumbersn,l,m, l andm .Inastringentpointofview,thisisincorrect.Intherealmultielectronatoms, s allelectronsareentangled,andwhenwetalkaboutelectronconfigurations,there- alityisthateachsetofquantumnumbersrepresentoccurrences.Assigningspecific quantum-numberlabelstoeachelectronisstrictlyspeakingunphysical.Neverthe- less,thinkingofelectronconfigurationisthiswaywillworkfineforfiguringoutthe salientfeaturesoftheatomicstructure. ThePauliprincipletellsusthatnoelectronsmaybeidentical.Thatis,theymay not have the same set of quantum numbers — that would make the wave function exchangesymmetric.Thismeansthatforagivensetofn,l,andm,therecanbeonly l two electrons — with opposite spins. For each ‘shell’, nl, we can allow 2(2l+1) electrons.Thus,ands-shellisclosed,orfilled,whenithastwoelectrons.Ap-shell takessixelectrons,ad-shellten,andanf-shellfourteen. Thiswayoffillingupmeansthatinaclosedshell,foreveryelectronthathasa positivevalueofm theremustbeanotherthatisidenticalexceptforadifferentsign l of m. Likewise, for every spin-up electron, there must be a spin-down one. This l meansthatthesumsofallm andallm forallelectronsinallclosedshellsmostbe l s zero. The projection quantum numbers are the only ones that can contribute to an orientation,andthusclosedshellsmustbesphericallysymmetric. Forthespin-orbitHamiltonian(4.16),whereallvectorsL andS areincludedin i i thesummation,wecanthereforeignoreallelectronsinclosedshells—theircontri- butiontothespin-orbitcouplingswillbezero.WhenformulatingtheHamiltonian (4.16),itwillsufficetoincludevalenceelectrons. Itisintuitivelyreasonabletoassumethattheangularcontributionoftheelectron- electron interaction from closed shells will also be zero, since these filled orbitals 6.3 LS-coupling 83 6.3 LS-coupling In the LS-coupling approximation, we assume that the angular part of the interac- tionbetweenelectronsissomuchstrongerthanthespin-orbitinteraction,intrinsic foreachelectron,thatthelattercanbeignoredinafirststepoftheapproximation. Oncewehavespecifiedtheelectronicconfiguration,thenextstepisthustoformthe quantumnumbersLandS,andwewillassumethatthecorrespondingoperatorsL2 andS2 commutewiththeHamiltonian.Moregenerally,wewilltakethisasadef- initionofLS-couplingschemes,thatisonesforwhichtheHamiltonianisdiagonal inLandS. Wesawinchapter6.2thatwecanignoreelectronsinclosedshells.Theprocess ofaddingupthedifferentL andS forthevalenceelectronsisdoneascoveredin i i chapter6.1andasillustratedinfigurexxxxxXXX. ThequantumnumbersLcanbezerooranypositiveinteger.Itisannotatedina wayanalogoustothatontheorbitalangularmomentumofindividualelectrons(see chapter 1.5), but with capital letters. A total angular momentum of L=0 will be annotated‘S’,L=1‘P’,L=2‘D’andsoon.Thislettersymbolwillbethebasis oftheLS-couplingterm. Thetotalspin,S,willbehalf-integerforanoddnumberofelectrons,andinteger orzeroforanevennumber.InanLS-couplingterm,thevalueofS isindicatedby writingthenumericalvalueof2S+1asasuperscripttotherightofthelettersymbol forL.2S+1iscalledthemultiplicityoftheterm,forreasonsthatwillbeclarified inthefollowing. 6.3.1 Atomicterms We will look more closely at the total number of quantum numbers needed to de- scribeanatomicstate,andthemultiplicity(ordegeneracy)ofa2S+1L-term.Foran individualelectron,weneedthefourquantumnumbersn,l,m andm todescribe l s astate,whichcorrespondstonunumbersofdegreesoffreedom.ForanN-electron atom,wecanthereforeassumethatwehave4Ndegrees,andaneedfor4Nquantum numbers. Suppose that the number of atoms in closed shells is N and the number of va- c lence electrons is N , with N +N =N. Within the CFA, we describe the closed o c o shellswiththeircorrespondingpartoftheelectronconfiguration,whichwillgives usN pairsofnandl.InlightofthePauliprinciple—whichistheeffectmaking c theseshells‘closed’inthefirstplace—thiswillactuallyspecifyallfourrelevant quantumnumbersfortheseelectrons.Thisleavesuswithanother4N tobedeter- o mined. Thevalencepartoftheconfigurationprovides2N numbers.Fortheremaining o 2N ,thingwilldependonhowmanyvalenceelectronswehave.Ifthereisonlyone, o only two degrees of freedom remains, and specifying the ”total quantum numbers basedonLandS,thatiseither|LSM M (cid:105)or|LSLM (cid:105),givesapparentlygiveustoo L S J 84 6 Couplingofangularmomenta–thevectormodel manyquantumnumbers.Thisisnotactuallyaproblem,sinceinthiscase,wewill alwayshaveL=landS=s=1/2. For two valence electrons, the sets |LSJM (cid:105) or |LSM M (cid:105) will do perfectly J L S to provide a full description. If we have three or more valence electrons, the LS- coupling designation is incomplete. This latter situation diverges for cases where all electrons are in the same orbital or not. If they are not, a ‘parent term’ can be formedbeforethefinalatomictermisspecified.Ifthevalenceelectronsareindeed in identical n and l, the actual number of degrees of freedoms will be limited by i i thePauliprinciple,andtheLS-descriptionwillbesufficientafterall. In the LS-coupling approximation, we will thus specify an atomic term for an N-electronatomas: (n l ...n l )n l ...n l 2S+1L, (6.18) 1 1 Nc Nc o1 o1 N N wherethepartoftheelectronconfigurationinsideaparenthesisrepresentstheva- lenceelectrons.Thisismorethanoftenomittedintherepresentation.Ifparentterms are needed, the representation will be (with the valence configuration omitted for clarity): n l ...n l (2Sp+1L )n 2S+1L. (6.19) o1 o1 N−1 N−1 p N Inacasewithamanyvalenceelectrons(forexamplead-orbitalwithfourormore electrons),morethanoneparenttermmaybeneeded.Thetheatomictermsabove willbeaddedspecificationfortheremainingquantumnumbers,whenmorepertur- bationssuchasthespin-orbitcouplingareadded. 6.3.2 Twonon-equivalentelectrons Togiveconcreteexamples,westartbyshowingthepossibleatomictermsforacase oftwovalenceelectronsthatarenotinthesameorbitals.Thatis,wehaveeitheror bothoftheconditionsn (cid:54)=n andl (cid:54)=l fulfilled(wenowignoretheelectronsif 1 2 1 2 theinnershellandsimplyindexthevalanceelectronsbeginningwithone).Thisis thesimplestcase,sincethenwedonothavetobecarefulaboutobeyingthePauli principle.Wecannevermakethesetwoelectronsequivalentmyspecifyingm ,m , l1 l2 m andm .Inthefollowing,wewillgivetoexamples—theconfigurations2p3p s1 s2 and3d4p. Forthe2p3p-configuration(oranyn pn pwithn (cid:54)=n ),wehavel =l =1and 1 2 1 2 1 2 asalwayss =s =1/2.Thevaluesform andm canbe+1,0or-1,andthespins 1 2 l1 l2 can be parallel or anti-parallel with the chosen quantization axis (‘up’ or ‘down’). Withallpossiblepermutations,thisshouldgiveus36differentstates,wheremany maybedegenerateinenergy.Whenl andl couples,thepossiblevaluesforLare 1 2 2, 1 or 0. The two electrons spins can be either mutually parallel or anti-parallel, givingthepossiblevaluesof1or0forS.Thepossibletermsfortheconfiguration 2p3parethus: 1D,3D,1P,3P,1S,3S. (6.20) 6.3 LS-coupling 85 IfwechoosetospecifytherestofthetermwiththequantumnumbersJ andJ M (whichwillprovetobeappropriateintheabsenceofexternalfields),wecanmake anaccountingofthenumberofstate,andshowthatitisindeed36.Weknowthefor eachterm,thepossiblevaluesforJarebetweenL+Sand|L−S|.Thisisillustrated intable6.1. Table6.1 PossibleLS-couplingstatesfora2p3p-configuration term J MJ numberof states 1D 2 −2...2 5 3 −3...3 7 3D 2 −2...2 5 1 −1...1 3 1P 1 −1...1 3 2 −2...2 5 3P 1 −1...1 3 0 0 1 1S 0 0 1 3S 1 −1...1 3 Totalnumberofstates: 36 Forthe3d4p-configuration,Sisstill0or1,andLcanvarybetween3and1.The possibletermsbecome: 1F,3F,1D,3D,1P,3P, (6.21) andifwecountthenumberofpossiblestate,weinthiscaseget60. 6.3.3 Twoequivalentelectrons Toexemplifythiscase,wetaketheconfiguration2p2(thegroundstateconfiguration for atom number 6, C). Had it not been for the Pauli principle, the possible terms wouldhavebeenthesameasinthecasefor2p3p,shownin(6.20).However,inthis caseourelectronsareequivalentandwemusttakeintoaccountthatonlyexchange anti-symmetricwavefunctionsarepossible.Wemustexcludeatomictermsthatare onlypossibleforelectronsequivalent.Wemustalsoexcludecombinationsofm , l1 m ,m andm thatarethesameforequivalentelectrons. s1 l2 s2 86 6 Couplingofangularmomenta–thevectormodel Apracticalwaytoillustratethisistouseatablerepresentationoftheaboveindi- vidualelectronquantumnumbers,introducedbyCondon&Shortley.Suchatable is organised horizontally and vertically by the total angular momentum projection numbers M =m +m and M =m +m . To illustrate this, we first show an L l1 l2 S s1 s2 exampleforthealreadytreatedconfiguration2p3pintable6.2.Eachentryinthista- Table6.2 ghghhghgh M 2p3p S 1 0 -1 2 ( 1+ 1+ ) ( 1+ 1− )( 1− 1+ ) ( 1− 1− ) ( 1+ 0+ ) ( 1+ 0− )( 1− 0+ ) ( 1− 0− ) 1 ( 0+ 1+ ) ( 0+ 1− )( 0− 1+ ) ( 0− 1− ) ( 1+ −1+ ) ( 1+ −1− )( 1− −1+ ) ( 1− −1− ) ML 0 ( 0+ 0+ ) ( 0+ 0− )( 0− 0+ ) ( 0− 0− ) (−1+ 1+ ) (−1+ 1− )(−1− 1+ ) (−1− 1− ) ( 0+ −1+ ) ( 0+ −1− )( 0− −1+ ) ( 0− −1− ) -1 (−1+ 0+ ) (−1+ 0− )(−1− 0+ ) (−1− 0− ) -2 (−1+ −1+ ) (−1+ −1− )(−1− −1+ ) (−1− −1− ) bleisapairofelectrons,withthenumericalvaluesshowingm andtheplus/minus li superscriptsindicatesm .WeseethatM canvarybetween2and-2,whichmeans li L thatthemaximumvalueofListo,andthatS=1isthemaximumtotalspin,since M isbetween1and-1.Wealsoseethatwehave36statesintotal,whichisfully S consistentwithwhatweshowedinchapter6.3.2. Forthecasewiththe2p3p-configuration,atablesuchastable6.2issuperfluous. However,forthecasewithequivalentelectronsitwillhelp.Considerthesametype oftableforthe2p2-configuration.Initially,wecancopytable6.2,butthenanumber oftermshavetobedeleted.Wehavetoremovepairsofidenticalelectrons,suchas (1+ 1+). Furthermore, with identical electrons we have some pairs that identical, suchas(1+1−)and(1−1+);thesealsohavetogo.Weendupwithtable6.3.The 36stateshavebeenreducedto15.Sometermsarenolongerfeasible.Forexample 3Disnolongerpossible,sincewecannothaveM =2andM =1atthesametime. L S Westillneedatleastonetriplet,andwecanmakeoutfromtable6.3thatwemust havea3P-term.IfwecontemplatethepossiblevaluesofJ andM for3P,wefind J thatitcorrespondsto9states.Wecanthenremove9electronpairsfromtable6.3, withM -andM -valuesbothbetween1and-1.Forwhatremainsinthetable,we S L seethatwemustalsohaveaterm1D.Thiswilltakecareoffivestates,whichmeans thattheonlythingremainingintable6.3willbealoneelectronpairforM =0and L M =0.Thishastocorrespondto1S. S WeconcludethatthepossibleLS-couplingtermsforthe2p2-configurationare:
Description: