ebook img

Coupling between QPOs and broadband noise components in GRS 1915+105 PDF

2.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Coupling between QPOs and broadband noise components in GRS 1915+105

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed12January2011 (MNLATEXstylefilev2.2) Coupling between QPOs and broadband noise components in GRS 1915+105 1 Thomas J. Maccarone, Philip Uttley 1 0 UniversityofSouthampton,SchoolofPhysicsandAstronomy,HighfieldCampus,Southampton,Hampshire,SO171BJ 2 Michiel van der Klis, Rudy A. D. Wijnands n AstronomicalInstitute“AntonPannekoek”,UniversityofAmsterdam,Kruislaan403,1098SJ,Amsterdam,TheNetherlands a J Paolo S. Coppi 0 YaleUniversity,DepartmentofAstronomy,POBox208101,NewHavenCT06520-8101 1 ] E H ABSTRACT . h p We explorethe use of the bispectrumfor understandingquasiperiodicoscillations. The - bispectrumisastatisticwhichprobestherelationsbetweentherelativephasesoftheFourier o spectrum at different frequencies. The use of the bispectrum allows us to break the degen- r t eraciesbetweendifferentmodelsfortimeserieswhichproduceidenticalpowerspectra.We s lookatdatafromseveralobservationsofGRS1915+105whenthesourceshowsstrongquasi- a [ periodicoscillationsandstrongbroadbandnoisecomponentsinitspowerspectrum.Weshow that,despitestrongsimilaritiesinthepowerspectrum,thebispectracandifferstrongly.Inall 1 cases,therearefrequencyrangeswherethebicoherence,ameasureofnonlinearity,isstrong v forfrequenciesinvolvingthefrequencyofthequasi-periodicoscillations,indicatingthatthe 9 quasi-periodicoscillationsarecoupledtothenoisecomponents,ratherthanbeinggenerated 7 9 independently.We comparethe bicoherencesfrom the data to simple models,finding some 1 qualitativesimilarities. . 1 Key words: accretion, accretion discs – methods: statistical – X-rays:binaries – 0 stars:winds,outflows–stars:binaries:close 1 1 : v i X 1 INTRODUCTION than those of the shots. More sophisticated models of variability, forexample,self-organizedcriticality(e.g.Takeuchi,Mineshige& r a Recentstudiesofthevariabilitypropertiesofaccretingblackholes Negoro 1995; Takeuchi & Mineshige 1997), predict correlations and neutron stars have shown that these systems’ Fourier power betweenthearrivaltimesand/orintensitiesoftheshots.Otherre- spectra in certain spectral states are well-described by a sum of lated“reservoir”models(e.g.Merloni&Fabian2001;Maccarone many Lorentzian components (see e.g. Olive et al. 1998; Nowak & Coppi 2002; Malzac, Merloni & Fabian 2004), where the ac- 2000;Belloni,Psaltis&vanderKlis2002;vanStraatenetal.2002; cretiondiskand/ortherelativisticjettapsanenergysupplyeffec- Pottschmidtetal.2003).Essentiallythesamecomponentsseemto tively enough to reduce the available energy for future emission appearinnearlyallsources,andatnearlyallluminosities,andtheir also predict variability correlated over many frequencies. Reso- frequenciestendtobewellcorrelatedwithoneanotherandwiththe nancemodelsforproducingquasi-periodicoscillationsshouldalso sourcespectralstates(Wijnands&vanderKlis1999;Psaltis,Bel- clearlyproducenon-linearvariability(e.g.Psaltis&Norman2001; loni&vanderKlis1999).Thisphenomenologysuggeststhatthere Abramowicz&Kluzniak2001;Schnittman&Bertschinger2003; may be a single origin for most of the variability features in the Maccarone & Schnittman 2005), while non-resonant models for power spectra of accreting black holes and neutron stars. Similar producingthesameQPOs(e.g.Chen&Taam1992,1995;Rezzolla correlationsinfrequenciesbetweenthedifferentcomponentsseem etal.2003;Giannios&Spruit2004)could,butneednotshowcou- toapplyeventoaccretingwhitedwarfs(e.g.Mauche2002;Warner, plingbetweenthedifferentfrequencies.Propagationmodels,where Woudt&Pretorius2003). disturbancesmovethroughanaccretiondisc,alsoshouldproduce Coupling between different components in the power spec- non-linear coupling of variability components, as the variability trum has been suggested in many theoretical contexts. In a shot propertiesaremodifiedateachannulus(Lyubarskii1997). noise model (e.g. Terrell 1972), variability components on the Akeytoverifyingandunderstandingthispossibleunifiedori- timescale of the shot will be correlated with one another, result- ginforvariabilityistogobeyondthesimplepowerspectrumand ingin,e.g.fastriseexponentialdecayorexponentialrise,fastde- beginstudyingtheirnon-linearvariability.Thefirstattemptsatthis cayprofiles,butthereshouldbenocouplingontimescaleslonger failedtodetectsignaturesofnon-linearity,withthemethodsinclud- 2 Maccaroneet al. ingthetimeskewness(Priedhorskyetal.1978)andsearchesfora tivedifferences inthepropertiesof thebicoherence asafunction lowdimensionalchaoticattractor(Lochner,Swank&Szymkowiak ofphotonenergy,sowehaveusedthelowestenergysetofchan- 1989).Ontheotherhand,morerecentworkwithbetterlightcurves nelsinasingledatamodeforeachobservationforconvenience– didestablishthatthelightcurvesof CygnusX-1arenottimere- wewillnotattempttomakeinterpretationsofthedataatalevelof versible(Timmeretal.2000;Maccarone&Coppi2002),thatthere detailapproachingthedifferencescausedbychangingenergyband existsacorrelationbetweenrmsamplitudeandfluxofasourcethat used.ThedataarethenFouriertransformedwith4096elementsper is inconsistent with pure shot noise models (Uttley & McHardy transform, and time resolution of 1/64 seconds, 1/128 and 1/512 2001), that there is coupling between variability components on seconds, respectively. Thesearechosensothatthequasi-periodic allobservabletimescales(Maccarone&Coppi2002),andthatin oscillationisnearthemiddleoftherangeofFourierbinsineach some cases, there is a low dimensional chaotic attractor after all observation(i.e.alowertimeresolutionisusedwhentheQPOhasa (Misraetal.2004),andtheobservedlightcurvesmaybedescribed lowerfrequency).Theintegrationtimesusedare8640,10240,and byaLorenzsystem(Misraetal.2006).Withthisinmind,wenow 8160seconds, respectively, withonlythefirstpartofobservation approachlookingatthepropertiesofthecouplingbetweenquasi- 30184-01-01-000 used. Thisdecision wasoriginally madedue to periodic components and noise components inGRS 1915+105, a memorylimitationswhenthecalculationswerefirstmade,andthe bright Galactic X-ray binary with an accreting black hole which decisionnottore-dothecalculationwasmadebecausethereissig- has been the subject of several long observations with the Rossi nificantfrequencydriftoverthefullobservation,andtheeffectsof X-rayTimingExplorer(RXTE). frequencydriftareamelioratedbyusingshortertotalintegrations. We treat this work as a pilot study – the first attempt to ap- TheFouriertransformsarethencombinedtoproducethebispectra plythebispectrumtoastronomicaldatawithstrongquasi-periodic andbicoherencesofthesedatasets. oscillations. As such, we aim to illustrate the power of the tech- We have examined the amount of frequency drift inthe dif- niquebyshowingdataandsimplemodelsthatcangiveverysimilar ferent observations. For observation 10408-01-25-00 and 20402- powerspectra,andverydifferentbicoherences,butconsideritbe- 01-15-00,thepeakfrequencyinthepowerspectrumvariesbyless yondthescopeoftheworktotrytofitmodelstothedataprecisely. than 10% over the full integrations – less than the widths of the We present computations of the bicoherence for several observa- QPOs. For 30184-01-01-000, there is substantial variation of the tionsofGRS1915+105, discussthemeaningof thebicoherence, peakfrequencyifweconsiderthefullobservation–withpeakfre- andpresentafewtoymodelsforthebicoherencewhichwecom- quenciesrangingfromabout2.7Hzto4Hz.However,inthepart parewiththedata. ofthedatasetweconsider,thevariationisonlyfromabout3.3Hz to4Hz.Someminoreffectsfromthisvariationcanbeseeninthe computedbicoherences,andwediscussthembelow. 2 DATAUSED For thispilot study, wepresent the resultsfrom three representa- 3 STATISTICALMETHODS tiveobservationsofGRS1915+105;ourgoalsinthispaperarenot tomakeacompletecharacterisationofthebicoherenceproperties Forthiswork,wewillfocusoncomputingthebispectrumandthe of all sources in all states, but rather to demonstrate of the util- closelyrelatedbicoherence.Thebispectrumcomputedfromatime ityof thetechnique for identifying phenomenological differences seriesbrokenintoKsegmentsofequallengthisdefinedas: between apparently rather similar lightcurves with rather similar K−1 powerspectra,andtoshowafewtheoreticalmodelsthatproduce 1 ∗ bicoherencessimilartosomeoftheobservations.Allthesedataare B(k,l)= K XXi(k)Xi(l)Xi(k+l), (1) fromvariabilityclassχ intheclassificationscheme of Belloni et i=0 al.(2000). Inthisclass, GRS1915+105 stayssteadilyinstateC, whereXi(k)isthefrequencykcomponentofthediscreteFourier its“low/hard”state–the“hardveryhighstate”inthenomencla- transformoftheithtimeseries(e.g.Mendel 1991;Fackrell1996 tureofFender&Belloni(2004),orthehardintermediatestatein and references within). The bispectrum is well defined only for themorerecentclassificationofHoman&Belloni(2005).Inthis k+llessthanorequaltotheNyquistfrequencyofthedataused state,GRS1915+105 showsastrongpowerlawcomponent inits to compute it, and is defined nontrivially only for k < l, since X-rayspectrum,andhighrmsamplitudequasi-periodicoscillations B(k,l) = B(l,k)–althoughinthispaper,wewillplotthebico- atabout0.5-10Hz,oftenwithpowerfulharmonics(seeFender& herencefork > landforl > k tohelpguidetheeyetofeatures Belloni2004andreferenceswithin).Thebroadbandnoisecompo- intheplots.Theexpectationvalueofthebispectrumisunaffected nentinthepowerspectrumcontaintsagreaterfractionoftherms byadditiveGaussiannoise,althoughitsvariancewillincreasefora amplitudeofvariabilitythandotheQPOsandharmonics. noisysignal.Poissonnoisecanaffectthebicoherenceforfrequen- The RXTE observation identification numbers of the three cies where the Poisson level is high compared with the level of observations presented are10408-01-25-00 (taken 19 July1996), intrinsicvariability–theamplitudeofthePoissonnoisecorrelates 20402-01-15-00 (taken9Feb1997),and30184-01-01-000 (taken withthecountrate,sothattherewillbephasecouplingbetweenthe 4April1998). Standardscreeninghasbeenappliedtothedatato instrinsicvariabilityofthesource’ssignal,andthenoiselevelinthe ensurenousageofdatatakenduringEarthocculationsorperiods Poissoncomponent(seee.g.AppendixCofUttleyetal.2005).In ofhighoffset.Thedatausedarethesinglebitmodedatawiththe thispaper,wefocusonlowfrequencyvariabilityofahighlyvari- lowest setof energychannels: channels 0-35areusedfor 10408- ablesource,soPoissonnoiseisunimportant. 01-25-00 and30184-01-01-000, whilechannels0-13areusedfor The definition of the bispectrum gives its absolute phase a 20402-01-15-00. These correspond approximately to the energy well-definedmeaning,inconstrasttothephaseoftheFourierspec- range from 2-13 keV and 2-5 keV, respectively. We have done trumwhich has adependence on anarbitary reference time. One checksoftheotherdatamodeswithdifferentenergychannelranges canthenattempttodeterminethedegreeofconstancyofthatphase, andhavefoundnoqualitativedifferencesandonlyminorquantita- makinguseofarelatedquantity,thebicoherence–themagnitude Couplingbetween QPOsandbroadbandnoisecomponentsin GRS1915+105 3 ofthebispectrum,normalisedtoliebetween0and1.Definedanal- from actual data are plotted in figure 1, and the corresponding ogously to the cross-coherence function (e.g. Nowak & Vaughan powerspectraareplottedinfigure2. 1996),itisthevectorsumofaseriesofbispectrummeasurements divided by thesum of themagnitudes of theindividual measure- ments.Ifthebiphase(thephaseofthebispectrum)remainsconstant overtime,thenthebicoherencewillhaveavalueofunity,whileif 4.1 The“cross”pattern the phase is random, then the bicoherence will approach zero in thelimitofaninfinitenumber of measurements. Specifically,the Whenthesourceisinthe“radioquiet”stateCatlowcountrates, squaredbicoherence,b2isdefinedas: theQPOfrequencyislow(lessthan2Hz).Here,thebicoherence ∗ 2 showsa“cross”behavior(seetheresultsfromObsID20402-01-15- 2 (cid:12)PXi(k)Xi(l)Xi(k+l)(cid:12) 00plottedinfigure1bforthebicoherenceandfigure2bforthecor- b (k,l)= (cid:12) 2 (cid:12) 2. (2) P|Xi(k)Xi(l)| P|Xi(k+l)| respondingpowerspectrum),withlargebicoherenceforfrequency pairswhereonefrequencyistheQPOfrequencyandtheothercan ThisnormalizationofthebicoherencewasproposedbyKim take on any value. Here, in contrast to the web pattern, there is &Powers(1979).Ifitshowsvariationasafunctionofthefrequen- ciesused,thetimeseriesanalysedisnonlinear.Ithasbeenshown largebicoherenceevenfornoisefrequencieslessthantwicefQPO. Additional power isseen at the harmonics and for theharmonics thatothernormalisationsaremorelikelytodetectnonlinearityun- interactingwiththenoise. dercertainspecificcircumstances(Hinich&Wolinsky2004),but It is interesting to consider whether the cross pattern might weusetheKim&Powers(1979)normalisationheretoretaincon- be indicating the effects of very broad wings to the QPO, with sistencywithpastwork.Inpreviousworkwherewewerestudying no actual coupling between the QPO and thenoise, but just cou- variabilitycomponentswhichwereverybroadinthepowerspec- plingbetweentheQPOanditsharmonics.Thisisunlikelytobethe trum (Maccarone & Coppi 2002), we binned the data to make a case.Firstly,thebicoherencefeaturesareasymmetricinfrequency onedimensionalfunctionofk+l,andsubstantiallyre-binnedthe space,whiletheQPOsarewell-fitbyLorentzians,indicatingthat bispectrumvaluesoverfrequenciesandthencomparedtheresults theyarenotasymmetricinfrequencyspace.Inprinciple,sincethe withmodelpredictions.Sincethatwork,wehavebecomeawareof bicoherenceisnormalisedbydividingbyquantitiesrelatedtothe acorrectionwhichis,inprinciple,importantforstudyingaperiodic power spectrum, changes inthestrengthof thenoise component, variabilitywiththebicoherence.Themaximumvalueofthebico- whichwould dilute thecoupled variability, could be expected. In herenceissuppressedbysmearingofmanyfrequenciesintoasin- thiscase,though,thereisbothmorepowerinthenoisecomponent glebininthediscreteFouriertransform(S.Vaughan,privatecom- ofthepowerspectrumandstrongerbicoherenceatfrequenciesbe- munication).Thissuppressioncannotbecalculatedinastraightfor- lowtheQPOfrequencythanaboveit.Secondly,theharmonicstend wardway(seee.g.Greb&Rusbridge1988).Wenotealso,though, tofollow either roughly circular patternsfor their bicoherence, if thatsincecomparisonsinMaccarone&Coppi(2002) weremade thequasi-periodicityiscausedbyphasedisconnectionsinanoth- onlywithmodelcalculationsmadewiththesametimebinningas therealdata,theseeffects,whatevertheymaybe,arethesamefor erwiseperiodicsignal,orf1 =f2patterns,ifthequasi-periodicity iscausedbythepresenceofmanyrealfrequenciesduetochanges therealdataandthesimulateddata,andhencetheconclusionsof infrequencyovertimeorthesuperpositionofmultiplefrequencies thatpaperarenotaffectedsubstantially.Therefore,tomakequan- asmighthappen ifthevariabilityisduetoorbitalmotionsovera titativecomparisonsofrealdatawithsimulatedbicoherences,itis range of radii (see Maccarone & Schnittman 2005), and what is importanttousethesamefrequencybinninginbothcases. observedisdifferentfromboth. Anon-zerobicoherencecanbeusedtoruleout,forexample, modelswherethevariabilityondifferenttimescalescomesfromin- dependentGaussianmodelcomponentswhicharethenaddedlin- early. Beyond that, it is often difficult to interpret the results of bicoherenceanalysis,butcomparisonofobservedresultswithre- 4.2 The“hypotenuse”pattern sultsfromsimulatedlightcurvescanbeaverypowerful tool.As Athighercountratesofthe“radioquiet”stateC,thebicoherence shown already, for example, in Maccarone &Schnittman (2005), pattern changes dramatically (see the results from ObsID 30184- lightcurveswithverysimilarpowerspectracanhaveeasilydistin- 01-01-000plottedinfigure1cforthebicoherenceandfigure2cfor guishablebicoherenceplots. the corresponding power spectrum) . A high bicoherence is seen Forthiswork,wewillconsidervariabilityonlyatfrequencies primarilywherethetwonoisefrequenciesadduptotheQPOfre- which are low enough that the intrinsic variability of the source quency–thatis,theregionsoflargebicoherencemakeadiagonal is strong, so that neither Poisson noise nor dead time affects the line. Werefer to thisas the“hypotenuse” pattern because there- Fourierspectrumsubstantially.Wedonotethattheseproblemsmay gionofstrongbicoherenceformsthehypotenuseofatrianglewith bemoreimportantathigherfrequenciesandthattheywillneedto its other two sides being the axes of the plot. The “hypotenuse” beconsideredinfutureanalyses. patterntypicallyalsoshowsaroughlycircularspotofhighbicoher- encewithf1=f2=fQPO,sincethereispowerbothatthefundamen- talandatthefirstharmonicandthesetwovariabilitycomponents 4 BICOHERENCERESULTS are coupled. A few other observations at similar count rates and We have computed the bicoherence for many observations of withsimilarQPOfrequenciesinthenon-plateauχstatehavebeen GRS1915+105.Forthesakeofbrevity,wepresentonlythreerep- examined,andshowthesamequalitativefeaturesintheirbicoher- resentativeresults,aimingtopresentthreeobservations withvery ences.Wealsonotethatthediagonalelongationinthebicoherence similarpowerspectra,butqualitativelydifferentbicoherences.We plotfromlowerlefttoupperrightforf1 = f2 = fQPO islikely findthreephenomenologicalpatternsofvariabilityhere,whichwe to be related to the frequency drift during the observation that is describedas“web”,“cross”,and“hypotenuse”. Thebicoherences mentionedabove. 4 Maccaroneet al. 4.3 The“web”pattern theintegralofthepowerdumpedintoitoveralongtimescale,and hencenotstronglycorrelatedwiththeinstantaneousdrivingpower. Ahybridclassofbicoherenceplotscanbeseenforsomeoftheob- In our observations, the Q values of the QPOsare typically servations,wherefeaturesresemblingthoseseeninthe“cross”and ∼3−10,andtheQPOsareoverresolvedinfrequencyspacebyfac- ofthe“hypotenuse”patternscanbeseentogether.Whenthesource torsofabout 10-20.Thisyieldsexpectedmaximaforthesquared isintheradioplateaustate, asinObsID 10408-01-25-00, thebi- bicoherence of ∼ 0.05 (with the exact value depending both on coherenceshowsaratherstrongsignalfortwocombinations(see whichobservationisconsidered,andwhethermultiplenoisecom- figure1aandfigure2aforthecorrespondingpowerspectrum)–a ponents interact nonlinearly toproduce the QPO,or the QPOin- diagonallinefromupperlefttolowerright,withf1+f2 =fQPO, teractsnonlinearly withone noise component to produce another forall0 < f1,f2 < fQPO.Additionally, onevertical/horizontal noisecomponent).Largervaluesarepossiblefortheharmonicsof streak is seen with one of the frequencies equal to the QPO fre- theQPOs,wherethewidthofthedrivingspectrumissmallerthan quency,andtheotherafrequencygreaterthanthetwiceQPOfre- thewidthofthenoisecomponentinfrequencyspace. quency.Nosignificantvertical/horizontalsignalisseenforthecase Ifweassumethattheperturbationswhicharecoupledtoone thatf1 < 2fQPO.Thevalueofthebicoherencetapersoffforfre- anothergiveanX-raycountratewhichislinearlyproportionalto quencieswherethepowerinthenoisecomponentbecomessmall. theamplitudeoftheperturbation,wecanthenusethemagnitudeof We refer to this pattern of behavior as the “web” pattern. A few thebicoherencetogainsomeinsightintowhethertheinteractions other observations at similar count ratesin theplateau statehave canbethroughanarrowresonanceattheQPOfrequency.Ourfind- beenexamined,andshowthesamequalitativefeaturesintheirbi- ingsthat themaximum valuesof thesquared bicoherence for the coherences. caseswhere theQPO and thenoise areinteracting are∼ 10−1.5 would then imply that the coupling between the noise and QPO isrelativelyclosetoitsmaximalvalue.Thisplacessomeimmedi- 4.4 Afewbriefremarksonotherobservations ateconstraintson theclasses of models whichcan be considered –modelsmusthavealargefractionofthepowercomingfroman In some observations not plotted in this paper, with the highest emission region which behaves as a single “system”, and, if the count rates seen from GRS1915+105 in itsχ class, the bicoher- interactionsbetweennoisecomponents produceaQPOthrougha enceseemstotendtowardszeroentirely.However,atthehighest resonantinteraction,itmustbeahighlydampedresonance. count rates, the QPO frequency can also change substantially on the timescale of a single RXTE observation. The bicoherence is notwellsuitedtodealingwithdatasetswhicharenon-stationary 5.1 Simulatedlightcurveanalysis inthismanner.Thisproblemmayexisteveninsomeofthelower count ratedata sets, but at a much lower level. Wenote that ina We now consider several different mathematical forms for light fewoftheobservations,thebicoherenceisextendedalongtheline curves which correspond, at least approximately, tophysical sce- f1 = f2 around the location where the interactions are between nariosfor producing QPOsandnoise components which arecor- theQPO and itsfirst harmonic – thiseffect can be seen showing relatedinsomemanner. Weshowthat thesedifferent modelscan upweaklyinFigure1a.ItwasshowninMaccarone&Schnittman producerelativelysimilarpowerspectrawhileproducingbicoher- (2005)thatthisischaracteristicofaQPOwhichisbroadeneddue encediagramswhicharequalitativelyquitedifferentfromonean- totheexistenceof power at manyfrequencies, rather thandueto other. Two of the patterns of behaviour found – the “cross” and phasedisconnections. the “hypotenuse” – are reproduced reasonably well by relatively straightforwardmodels.Thethird,the“web”isonlyapproximately reproducedherewitharelativelysimplemodel. 5 DISCUSSION 5.1.1 Bicoherenceintermsofreservoirmodels The overall values of the bicoherence inthese data can also give ussomecluesastothetypesofprocessesthatmightbeproducing Wherethebicoherence’svalueislarge,thevariabilitymustbecou- the phase correlations. The bicoherence relates the instantaneous pled on the three timescales corresponding to the three frequen- responseofthedrivenoscillationtochangesinthedrivingmodes. cies included for the computation of the bicoherence. A natural As stated above, Greb & Rusbridge (1988) have shown that the waytocouplevariabilityondifferenttimescalesiswithareservoir maximum value of the squared bicoherence isδω/Σ, whereδω is model,wheretherearemultiplevariabilitycomponentsthatdrain thefrequencyresolutionintheobservation(orthewidthofaQPO, thesamereservoir.Inthisway,thedifferentcomponents“compete” iftheQPOisresolved),andΣisthefrequencywidthofthedriving forpower–whenthenoisecomponentbecomesstronger,therewill spectrum.Therefore,ifaQPOisdrivenbyinteractionsofallnoise belessenergyinthereservoiravailablefortheQPOandviceversa, frequencieslessthantheQPOfrequency,thenthelargestpossible leadingtoaphasecoupling.Ananalogousideahasbeenputforth value of the squared bicoherence is Q−1, where Q is the quality toexplainthecouplingbetweenopticalvariabilityandX-rayvari- factoroftheQPO. abilityinXTEJ1118+480(Malzac,Merloni&Fabian2004). Greb&Rusbridge(1988)alsoconsidertheeffectsofhavinga Todeterminewhattheoutputlightcurvewilllooklikeforthe relativelynarrowresonance.Inthiscase,thesquaredbicoherenceis simulations, wedefine, ineach case,twopower spectratouseas reducedbyafactoroftheratioofthecoherencetimeinthedriven outputs. One, the noise component, is a broad Lorentzian with a modetothatinthedrivingmode.Thus,forresonantmodes,which peakfrequencyofzero.Theother,thequasi-periodicoscillation,is remaincoherent forlongperiodsoftimerelativetothetimescale amuchnarrowerLorentzianwithapeakatahigherfrequency(we onwhichthedrivingsignalremainscoherent,thebicoherencewill useQ=30here,whereQisthequalityfactoroftheLorentzian). besubstantiallyreduced.Thiscanbegraspedintuitivelyinaquali- Thetimeseriesforthesecomponents aremadeusingthemethod tativesense–astrongresonancewillhaveanamplituderelatedto ofTimmer&Ko¨nig(1995).Thismethodgeneratessimulatedtimes Couplingbetween QPOsandbroadbandnoisecomponentsin GRS1915+105 5 seriesfromapowerspectrumundertheassumptionthattheprocess componentsassumedtobeLorentzianswithparameter valuesset isGaussian–thuswecanbeassuredthatanynon-linearitywede- tovaluessimilartothoseseeninthedataforvariousobservations. tectisbecauseofthephysicsweputinaftergeneratingtheinitial For a very small number of time bins, the value of one of these randomtimeseries. timeserieswillbenegative,inwhichcasewesetittozero.Alter- Then,areservoirisdefined.Energyisinjectedintothereser- natively,theenergyextractedinatimeintervalmaybelargerthan voireitherataconstantrate,oratapurelyrandomrate(i.e.aran- thesizeofthereservoir,inwhichcasewesetthepowersuchthat dom number uniformly distributed between zeroand one timesa thewholereservoirisdrainedinthattimestep. normalisation).Energyisdrawnfromthereservoirbyeachofthe Whentheamplitudeofvariabilityislarge,thereservoir’slevel twocomponents.Thefluxofacomponentistakentobethevalue fluctuatesstrongly.Thisleadstotheproductionofharmonicsinthe ofitstimeseriesmultipliedbythesizeofthereservoiratthatin- QPO(sincetheoscillationsbecomenon-sinusoidalwhenthereser- stant times some normalization. The flux is then subtracted from voir fluctuates in response to the oscillations themselves). It also thereservoir.Specifically,wedothefollowing: leadstophasecouplingofalltypesbetweentheQPOandthenoise. ′ Thisproducesa“web-like”patterninthebicoherence;however,the R(t)=R(t−∆t)+Yr(t), (3) web-likepattern hereisnot identical tothe oneseen inthe radio whereR′(t)isthesizeofthereservoirattimet,aftertheenergy plateau state.In thereal data, the“cross-like” structures begin to injection hastaken place, but before thedraining of thereservoir manifestthemselvesonlyfornoisefrequencieslargerthanthefre- hastakenplace,∆tisthetimestep,R(t−∆t)isthesizeofthe quencyofthefirstharmonic,whileinthesesimulations,thecross energyreservoirattheendoftheprevioustimestep,andYr(t)is structuresappearatallnoisefrequencies.Furthermore,insomeof theinjectionrateintothereservoirpertimestep; thesimulations,therearediagonalsfromupperlefttolowerright ′ related to the cross structure which are strong features at all fre- YQPO(t)=yQPO(t)×R(t)×kQPO, (4) quencies adding up to at least one of the harmonics. These are whereYQPO istheoutput fluxfromthe QPOcomponent, yQPO not present in the real data. The strong diagonals manifest them- is the time series of the QPO produced by the Timmer & Ko¨nig selves when the total variability in the reservoir is dominated by method,andkQPOisanormalizationconstant; thenoisecomponent,ratherthanbytheQPO.Themodelbicoher- ′ enceisshowninFigure3btorepresentacasewherethejetextracts YN(t)=yN(t)×R(t)×kN, (5) power (i.e.sothattheextractednoise-component power doesnot whereYN istheoutput fluxfromthenoisecomponent, yN isthe leaddirectlytoobservedemission),andinFigure4bforthecase timeseriesofthenoiseproducedbytheTimmer&Ko¨nigmethod, where the noise component is added back in to the model light andkN isanormalizationconstant;and,finally, curve.Figure5bshowsthesimulatedpowerspectrumcorrespond- ingtothebicoherenceshowninFigure3b. ′ R(t)=R(t)−YQPO(t−∆t)−YN(t−∆t). (6) In the numerical calculations where the noise component is Two general cases areconsidered, and we search a range of notaddedtothefinallightcurve,theQPOhasameancountrate parameterspaceforeachcase.Thefirstiswheretheoutput“light of8000,witharootmeansquaredvariabilitylevelof1200,while curve”isthesumofthefluxesofthetwocomponents.Thismight thenoisecomponenthasameanvalueof20000,withanrootmean correspondtoacasewhereaccretionpowerisdissipatedeitherin squaredvariabilitylevelof8000.Were-fillthereservoirbyadding someoscillatingregionwhichproducestheQPO,oranon-resonant arandomnumberdrawnfromauniformdistributionbetween0and part of the accretion disc, which produces the noise component. 8000. The draining of the reservoir takes place by summing the ThesecondiswheretheoutputlightcurveisonlytheQPO’sflux. twotimeseries, multiplying bythesizeof thereservoir, dividing ThismightcorrespondtothecasewherethebroadLorentzianrep- 200000,andsubtractingthatfromthereservoirvalue. resents a jet which extracts power from the system, but does not Wherethenoisecomponentisaddedtothefinallightcurve,a emitintheX-rays(seee.g.Malzacetal.2004). slightlydifferentprocedureisadopted.TheQPOandnoisecompo- Ifthereservoirisdrainedbyacomponentwhichdoesnotcon- nentsareaddedtogetherintheinitialpowerspectrummadebefore tribute to the X-ray light curve, then the size of the reservoir in theinversionintoatimeseriesusingtheTimmer&Ko¨nigmethod. “view”oftheX-raylightcurve,willeffectivelybesomequantity TheQPOisgivenanormalizationinthepowerspectrum200times minus the integral of the power drained by the other component. higher than the noise component’s. The actual value in the final Asaresult,thereservoiritselfwillhaveasignatureofitsmodula- power spectrum comes fromconverting thispower spectrum into tion,sowhentheoutputlightcurveisobtainedbymultiplyingthe atimeserieswithmeanvalueof8000andrmsamplitudeof6000. reservoirsizebythetimeseriesfortheQPO,the“QPO”compo- Allotherproceduresareasabove. nentwillnowbemodulatedonthetimescaleofthe“noise,”andthe Atlowvariabilityamplitude,onlythecross-likestructuresare noisepowerspectrumwillaffectfinalpowerspectrum.Asweshow seenstrongly,althoughaweak“hypotenuse”featureisstillpresent below,thequalitativepropertiesofthebicoherencearelargelythe whenthenoisecomponentisaddedtotheoutput“lightcurve.”The sameregardlessofwhetherthetwodrainsontheenergyreservoir bicoherenceisshownwithoutthenoisecomponent addedbackin bothcontributetotheoutputflux,oronlyoneofthesedoes.Again, in Figure 3a, and with it added back in in Figure 4a. The power the logic we follow here is quite similar to that in Malzac et al. spectrumcorresponding tothelowvariabilityamplitudemodelis (2004). Giventhat,aswewillshow below, thesemodels seemto shown inFigure5a. Thesimulated bicoherence plots inthiscase match the data for the plateau states more closely than the more look quite a bit like the bicoherence plot seen from observation radioquietχstates,itwouldnotbesurprisingifenergyextraction 20402-01-15-00(comparetheobservationaldatainFigure1bwith byajetwereanimportantfactorindeterminingthepropertiesof thesimulationsinFigure3a). thelightcurve. Theprocedureforconvertingthemodelintoasimulatedlight After the basicmodel equations aredefined, atimeseries is curveisthesameasabove, except forsomechanges invaluesof producedforthemodel.TheQPOandnoisecomponentsarepro- parameters. For the case where the noise component is not seen ducedastimeseriesusingtheTimmer&Ko¨nigmethod,withboth in the output simulated light curve, the noise component in this 6 Maccaroneet al. casehasanrmsamplitudeof1000insteadof8000,withallother theonewhosepowerspectrumandbicoherenceareshowninFig- parametervaluesthesame.Wherethenoisecomponentisaddedto ures 45b and 3b, respectively, matches many of the properties of thefinalsimulatedlightcurve,thermsamplitudeofthesimulated thedata, but not all;however, here, the problem isprimarilythat lightcurveis2500insteadof6000. themodelshowstoostrongabicoherenceinstreakswherethereis onlynoise,ratherthanpowerintheQPOoritsharmonics. 5.1.2 Bicoherenceintermsofdampedforcedharmonic oscillators 5.1.3 Caveats Wehavealsoconsideredthecaseofadamped,forcedharmonicos- Therearefurtherstepswhichwillbeneededtomakemodelswhich cillator.Thisisconceptuallysimilartothemechanismsuggestedby matchallthestatisticalpropertiesoftheobservedlightcurves.For Psaltis&Norman(2000)forproducingbothquasi-periodicoscil- example,inmostcases,theobservedfluxdistributionswillfollowa lationsandnoisecomponentsfromasingleperturbationspectrum log-normaldistribution(Uttleyetal.2005)-wedonotattempthere –the quasi-periodic oscillation appears at the resonant frequency toenforcethisrequirement.WedonotethatitwasfoundbyUtt- ofthesystem,whileawhitenoiseinputspectrumisturnedintoa leyetal.(2005)thatexponentiatingthefluxvaluesinalightcurve rednoisecomponentbythefactthatdampedoscillatorsactaslow- canpushafluxdistributiontowardsalog-normaldistribution.We passfilters.However,theresponseofthesystemwasconsideredto havedonethisinafewcases,andhavefoundthatthebicoherence belinear inthat work, meaning that non-linear featureslike non- plotschangeverylittlewhenthefluxvaluesareexponentiated.Ut- zerobicoherencecannotbeexplainedwithoutsomemodifications. tley et al. (2005) have already shown that power spectra are not Whenmodifyingthesystemofequations,toallowforanon-linear typicallyaffected strongly bythis transformation. Therefore, flux restoringforce,wefindthattheresultingpatternofbicoherencethat distributionsandbicoherenceplotsarelargelyindependenttestsof resultsfromthisscenarioisrelativelysimilartothe“hypotenuse” thevariability’scoupling,althoughthefluxdistributionsproduced pattern, although we do have trouble reproducing a strong bico- inthesesimulateddatasetsdonotdeviatestronglyfromlog-normal herence with a realistic power spectrum. An alternative physical distributions in any event. Furthermore, in cases where there are mechanismforproducing suchaquasi-periodicoscillationwould strongQPOswithverylowfrequencies,therearecleardeviations be to have variations in the accretion rate excite inertial-acoustic ofthefluxdistributionfrombeinglog-normal(Misraetal.2006). modesintheinneraccretiondisc(Chen&Taam1992;1995). Wehaveadditionallynotensuredthatthepowerspectraofrealob- Quantitatively,thisscenarioismodelledinthesamewayasa servations are matched exactly by these simulations. In essence, spring which does not follow Hooke’s Law (i.e. F = −kx),but sincetheinputmodelsdonothaveanyradiativetransferinthem, ratherhasanasymmetric,higherorderrestoringforce,F whichis we are assuming that the radiative efficiency of any perturbation givenbyF =−k1x+k2x2,wherexisthedisplacement,andk1 will be constant when we call the output time series “simulated and k2 are constants parameterizing the strength of the restoring lightcurves.”Deviationsfromthisassumptionarelikelytoaffect force. If k2 = 0, this does reduce to Hooke’s Law, and the lack thepowerspectra,and,especially, thefluxdistributions,farmore of a non-linear term leads to a lack of observable features in the seriouslythantheyaffectthemorphologyofthebicoherenceplots. bicoherenceplot. Suchdeviationsarequiteeasytoimagineinsituationswherethere Thefullequationsofmotionforthis“oscillator”are: existsaresonance. 2 Anadditionalpotentialproblemexistswithconnectingthetoy F(t)=−k1x(t)+k2x (t)−γv(t)+YWN(t), (7) modelspresentedheretoreality.Muchofthephenomenologyap- whereγ isthedampingcoefficientandYWN isthemagnitudeof pearstobesimilarbetweenthedifferentsub-typesofχclasses.It thedrivingforce,whichisassumedtobeawhitenoiseprocess; wouldthereforebesurprisingiftherewereaqualitativechangein themechanismforproducingtheQPOs.Itwouldthusbeusefulto v(t)=v(t−∆t)+∆t×F(t)/m, (8) identifyameanstounitethedifferentmechanismsdescribedhere, wheremisthemassoftheoscillator,whichwesettounityforthese ortodevelopanentirelynewphysicalmodeltoexplainalltheob- calculations,and∆tis0.001.Thecalculatedsimulatedlightcurve servedphenomenologyinamoreunifiedway,withjustthechange isthetimeseriesx(t),andhas1048576points.Thebicoherenceis of one or two parameters causing the broad range of phenomena computedfrom256chunksof4096points. seenintermsofbicoherencepatterns. Forthefirstcalculation,wesettheparametervaluestok1 = 50000.0,k2 = 0.2,andγ = 7.0. Weshowtheplotofsimulated datain3c.Wenotethereisonesubstantialdifferencebetweenthe 6 CONCLUSIONS modeldataandtherealdatafor30184-01-01-000,whichisthatthe modeldatahasstrongerbicoherencealongthe“hypotenuse”when We have shown clearly that the variability in the noise compo- thetwofrequenciesaremostdifferentfromoneanother,whilethe nents and quasi-periodic oscillations of GRS 1915+105 are cor- real data shows the opposite trend. This trend makes the model related with one another. The bicoherence provides a good dis- valuesmoreseriouslydeviant fromthereal dataforthestrongest criminatoramongvariabilitymodelswhichproducesimilarpower dampingofthemotionoftheoscillator. spectrathroughquitedifferentphysicalprocesses.Wehavefound Whenthedampingfactorisverylow,thentheresultingbico- that it is plausible that in the “plateau” state of GRS 1915+105, herenceplotscanlookquitesimilartothe“web”pattern.Infigure thevariabilityiscausedbyareservoirofenergybeingdrainedbya 6, we show the power spectrum and bicoherence plot for a low noisecomponent(whichcouldbetheradiojet)andaquasi-periodic dampingcase.Thecalculationsaredoneinthesamemannerasthe component,whileinthebrighterpartoftheχstate,thevariability onesdescribedinthepreviousparagraph,exceptwithk2=0.25and isconsistent withawhitenoiseinput spectrumdrivingadamped γ =0.6.Forvaluesofγintermediatebetween0.6and7.0,the“hy- harmonic oscillator with a non-linear restoring force. While the potenuse”canbecomemuchbroaderwithoutcreatingsuchstrong modelspresentedherearealmostcertainlynotuniquesolutionsfor additionalharmonicsinthepowerspectrum.Thissimulation,like whatisoccuringphysicallyinthesesystems,itisquiteclearthat Couplingbetween QPOsandbroadbandnoisecomponentsin GRS1915+105 7 4 3 2 1 0 0 1 2 3 4 Frequency 1 (Hz) 6 4 2 0 0 2 4 6 Frequency 1 (Hz) 6 4 2 0 0 2 4 6 Frequency 1 (Hz) Figure 1. The bicoherence plots from the observations. (a) the data for Figure2.Thepowerspectrafortherealdata:(a)observation10408-01-25- observation 10408-01-25-00, the prototypical “web” source. The colour 00(b)observation20402-01-15-00(c)observation30184-01-01-000. schemeisgivenfordifferent values ofthelog10b2 asfollows:red:-1.0; green:-1.25;darkblue:-1.5;lightblue:-1.75(b)thedataforobservation 20402-01-15-00,theprototyical“cross”source.Thecolourschemeisgiven thebicoherencewillprovideexcellent constraintsonmorephysi- fordifferentvaluesofthelog10b2asfollows:red:-1.0;green:-1.25;dark callymotivatedmodelsforthevariability,andthatwecandefinitely blue:-1.5;lightblue:-1.75(c)thedataforobservation30184-01-01-000, identifycaseswherethepropertiesofthepower spectraarequite theprototypical“hypotenuse”source.Thecolourschemeisgivenfordif- ferentvaluesofthelog10b2asfollows:red:-1.0;green:-1.25;darkblue: similar,butthepropertiesofthelightcurvesarequitedifferent. -1.5; light blue: -1.75. The equality ofthe values of the bicoherence for reflectionsaboutx=yistrivial. 7 ACKNOWLEDGMENTS WearegratefultoRonElsnerforsendingusanunpublisheddraft writtenbyhimself,R.BussardandM.Weisskopfmanyyearsago discussingsomeof thefundamental propertiesofthebispectrum, 8 Maccaroneet al. andtoPatriciaAre´valo,MikeNowakandSimonVaughanforuse- Timmer,J.,Schwarz,U.,Voss,H.U.,Wardinski,I.,Belloni,T.,Hasinger, fuldiscussionsrelatedtovariabilitystatistics,andtoMarcKlein- G.,vanderKlis,M.&Kurths,J.,2000,PhRvE,61,1342 Wolt, Mariano Me´ndez and Luciano Rezzolla for more general, Uttley,P.&McHardy,I.M.,2001,MNRAS,323L,26 butequallyinterestingdiscussions,andtoRobFenderforhelping UttleyP.,McHardyI.M.,VaughanS.,2005,359,345 vanStraaten,S.,vanderKlis,M.,DiSalvo,T.,Belloni,T.,2002,ApJ,568, toclarifysomeofthenomenclature surrounding GRS1915+105, 912 andTomaso Bellonifor useful comments onadraftof thepaper. WarnerB.,WoudtP.A.,PretoriusM.L.,2003,MNRAS,344,1193 Wealsothanktheanonymousrefereeforsomeusefulsuggestions Wijnands,R.&vanderKlis,M.,1999,ApJ,514,939 whichhavehopefullyimprovedtheclarityofthepaper.TJMalso wishestothankDaveSmithoftheQuantumandFunctionalMatter group in the Southampton School of Physics and Astronomy for usefuldiscussions. REFERENCES AbramowiczM.A.,KluzniakW.,2001,A&A,374L,19 Belloni T.,Klein-Wolt M.,Me´ndezM.,vanderKlisM.,vanParadijs J., 2000,A&A,355,271 BelloniT.,PsaltisD.,vanderKlisM.,2002,ApJ,572,392 Chen,X.&Taam,R.E.,1992,MNRAS,255,51 Chen,X.&Taam,R.E.,1995,ApJ,441,354 Fackrell,J1996,Ph.D.Thesis,UniversityofEdinburgh FenderR.&BelloniT.,2004,ARA&A,42,317 Foster, R.S., Waltman, E.B., Tavani, M., Harmon, B.A., Zhang, S.N., Peciesas,W.S.&Ghigo,F.D.,1996,ApJL,467,81 GianniosD.,SpruitH.C.,2004,A&A,251 Greb,U.&Rusbridge,M.G.,1988a,PlasmaPhysicsandControlledFusion, 30,537 HinichM.,WolinskyM.,2005,JournalofStatistical Planning andInfer- ence,130,405 HomanJ.,BelloniT.,2005,Ap&SS,300,107 KimY.C.,PowersE.J.,1979,IEEETransactionsonPlasmaScience,Vol. PS-7,Issue2,120 KylafisN.D.,KlimisG.S.,1987,ApJ,323,678 Lochner,J.C.,Swank,J.H.,Szymkowiak,A.E.,1989,ApJ,337,823 LyubarskiiY.E.,1997,MNRAS,296,696 Maccarone,T.J.&Coppi,P.S.,2002,336,817 MaccaroneT.J.,SchnittmanJ.D.,2005,MNRAS,357,12 Malzac,J.,Merloni,A.,&Fabian,A.C.,2004,MNRAS,351,253 Mauche,C.W.,2002,ApJ,580,423 Mendel,J.1991,ProcIEEE,79,278 Merloni,A.&Fabian,A.C.,2001,MNRAS,321,549 Misra R., Harikrishnan K.P., Mukhopadhyay B., Ambika G., Kembhavi A.K.,2004,ApJ,609,313 Misra R.,Harikrishnan K.P.,Ambika G.,Kembhavi K.,2006, ApJ,643, 1114 Muno,M.P.,Remillard,R.A.,Morgan,E.H.,Waltman,E.B.,Dhawan,V., Hjellming,R.M.&Pooley,G.,2001,ApJ,556,515 Nowak,M.A.&Vaughan,B.A.,1996,MNRAS,280,227 Nowak,M.A.,2000,MNRAS,318,361 Olive J.F., Barret D., Boirin L., Grindlay J.E., Swank J.H., Smale A.P., 1998,A&A,333,942 Pottschmidt,K., Wilms, J., Nowak, M.A., Pooley, G.G., Gleissner, T., Heindl,W.A.,Smith,D.M.,Remillard,R.&Staubert,R.,2003,A&A, 407,1039 Priedhorsky,W., Garmire, G.P., Rothschild, R., Boldt,E., Serlemitsos, P., Holt,S.,1979,ApJ,233,350 Psaltis,D.,Belloni,T.&vanderKlis,M.,1999,ApJ,520,262 PsaltisD.,NormanC.,2000,astro-ph/0001391 RezzollaL.,YoshisaS’i.,MaccaroneT.J.,ZanottiO.,2003,MNRAS,344L, 37 SchnittmanJ.D.,BertschingerE.,2004,ApJ,606,1098 Takeuchi,M.,Mineshige,S.,Negoro,H.,1995,PASJ,47,617 Takeuchi,M.,Mineshige,S.,1997,ApJ,486,160 Terrell,N.J.,1972,ApJL,174L,35 TimmerJ.,Ko¨nigM.,1995,A&A,300,707 Couplingbetween QPOsandbroadbandnoisecomponentsin GRS1915+105 9 4 4 3 3 2 2 1 1 0 0 0 1 2 3 4 0 1 2 3 4 Frequency 1 (Hz) Frequency 1 (Hz) 4 4 3 3 2 2 1 1 0 0 0 1 2 3 4 0 1 2 3 4 Frequency 1 (Hz) Frequency 1 (Hz) 2 Figure 4. The model bicoherence plots for reservoir models where the noisecomponentcontributestotheobservedflux.Forallplots,thecolour schemesareasfortheprevious plotofsimulateddata.Theplotsare:(a) lowvariabilityamplitude(b)highvariabilityamplitude.Theequalityofthe 1.5 valuesofthebicoherenceforreflectionsaboutx=yistrivial. 1 0.5 0 0 0.5 1 1.5 2 Frequency 1 (Hz) Figure3.Themodelbicoherence plots.Forallplots,thecolourschemes areasfortherealdata, exceptthatforthemodelplots,thereisanaddi- tionalcontour,inpurple,atlog10b2 = −2.0.Theplotsare:(a)thecase of“jet” extraction withahighvariability amplitude (b)thecase of“jet” extractionwithalowvariabilityamplitude(c)dampedforcedoscillations. Theequalityofthevaluesofthebicoherenceforreflectionsaboutx=yis trivial. 10 Maccaroneet al. 10 8 6 4 2 0 0 2 4 6 8 10 Frequency 1 (Hz) Figure 6. (a) the power spectrum for the low-damping forced oscillator (b)thebicoherence forthelowdampingforcedoscillator, withthesame contourvaluesasusedintheothersimulations’plots.Theequalityofthe valuesofthebicoherenceforreflectionsaboutx=yistrivial. Figure5.Thepowerspectraforthesimulateddata:(a)web-like(b)cross- like(c)dampedforcedoscillations–notethatthesearethepowerspectra forthesametimeseries,inthesameorder,aspresentedinFigure3.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.