ebook img

Country data on energy consumption in different agro- production sectors in the European countries PDF

70 Pages·2012·2.41 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Country data on energy consumption in different agro- production sectors in the European countries

Country data on energy consumption in different agro- production sectors in the European countries ThisprojectisfundedbytheEuropeanUnion The sole responsibility of this publication lies with the authors. The European Union is not responsible for any use that may be madeoftheinformationcontainedtherein. Country data on energy consumption in different agro- production sectors in the European countries This project was founded by the FP7 Program of the EU with the Grant Agreement Number 289139 Project Deliverable 2.1 Janusz Gołaszewski, Chris de Visser UWM, WUR Zbigniew Brodziński, Ryszard Myhan, Ewelina Olba- UniversityofWarmiaandMazury Zięty, Mariusz Stolarski FridtjofdeBuisonjé,HilkoEllen,CeciliaStanghellini, WageningenUR MarcelvanderVoort FátimaBaptista,LuísLeopoldoSilva,DinaMurcho UniversityofEvora AndreasMeyer-Aurich,ThomasZiegler Leibniz-InstituteforAgricultural EngineeringPotsdam-Bornim JukkaAhokas,TapaniJokiniemi,HannuMikkola, UniversityofHelsinki MariRajaniemi, AthanasiosBalafoutis,DemetresBriassoulis,Antonis AgriculturalUniversityofAthens Mistriotis,PanagiotisPanagakis,GeorgiosPapadakis ©2012agrEE AgricultureandEnergyEfficiency 1 State of the Art on Energy Efficiency in Agriculture Summary Energy efficiency is the goal of efforts to reduce the amount of energy required to provide products and services. The general term "energy efficiency", when applied to agriculture, reflects changes in technology, governmental and EC policies – including the Common Agricultural Policy, climate change on a broad scale and local weather patterns, and farming management practices. There is not a single measure to describe, ensure, or improve energy efficiency. Instead, in the energy balance for a given production process, a variety of indicators may serve andsupportenergyefficiency analysis. The results of this study are based on the specific input of primary energy per cultivation area (GJ ha-1) and on the specific input of primary energy per ton of agricultural product (GJ t-1). All the measures that are suitable to reduce the specific energy input, will improve energy efficiency (the energy efficiency measures). Improving energy efficiency of agricultural production contributes directly to the reduction of greenhouse gas (GHG) emissions, particularlycarbondioxide. This State of the Art analysis has been determined on the basis of the data provided by six countries: Finland, Germany, Greece, the Netherlands, Poland, and Portugal. The approach based on the life cycle analysis (LCA) has been chosen with the system boundary at the farm gate and have thus excluded processing into consumer goods. Specific energy input has been established for those agricultural products which have a decisive role in the EU foodstuff production,including: – crop production:wheat, sugar beet,potatoes, cotton,and sunflower; – greenhouseproductionoftomatoes, cucumber, and sweetpepper; – productionofperennialcrops suchas vineyards andolive trees; – livestock productionsuchasdairycows(milk),pigs, and broilers. The analysis is based on average production figures, or best estimates, (should average figures be unavailable). In several cases figures have been found for different production systems within one country and up to three scenarios have been described. In this way, low, average, and high primary energy consumption (PEC) of the various production processes have been takenintoconsideration. Key Points (1) The actual energy consumption of the European agriculture reported in the Eurostat statistics is underestimated (Table 1). The main reason is that energy which is definitely required for the production of agricultural inputs and the fuels are not allocated or not allocated entirely to the sector of "agriculture/forestry" in the Eurostat statistics, e.g. production of fertilizers, consumption of fuels is reported in transportation sector. The efficiency of energy use in agricultural production is specific to the EU country and geographical location. The total and specific energy consumption varies substantially for all crops considered across Europe. Reasons have been identified, and discussed, in terms AgricultureandEnergyEfficiency 2 of various cropping practices, different agricultural machinery types, varying yields and dissimilar climates. Table1.Totalprimaryenergyconsumptionfortheagriculturalsubsectorsconsideredinthe studyincomparisonwiththeEurostatdata(2008). Finland Germany Greece Netherlands Poland Portugal Numberofsubsectors 4 10 6 9 6 7 consideredinthestudy TotalPEC(PJ)forthe 18.8 223.9 83.0 158.4 169.6 16.9 subsectorsinthestudy TotalFEC(PJ)in Agriculture/Forestry 35.0 42.0 46.0 132.0 152.0 15.0 acc.toEurostat(2008) (2) The main energy input for the field crops is associated with the use of fertilizers and diesel. Often energy input for irrigation, drying and/or storage is important but it depends ongeographicallocationand relatedclimate, andintensityofthe productionsystems. (3) Greenhouse vegetable production in the Central and Northern EU countries is characterized by a very intensive direct energy input and differs significantly from the production system in the Southern EU countries. For the crops grown in the Southern countries little or even no energy input is needed when grown directly on soil; and a higherenergyinputis onlyneeded inhydroponic systems. (4) The olive grove production is limited to the Southern EU countries but the specific energy input for olives production is higher in the southwest European countries than in southeastEuropeancountries. (5) In dairy cow (milk) and broiler production in these countries there is a highly differentiated amount of energy accumulated in feed. However, energy use for feed in pig production is very similar across the studied countries, but the specific energy input does dependonthe level ofdirectenergy inputs. (6) The potential contribution of agricultural subsectors to energy saving measures in agriculture is country specific. The primary energy consumption in agriculture for a given countryhasthe highestlevelsinthe followingsubsectors: Finland: dairy cows, pigs Germany: dairycows,wheat,pigs Greece: wheat, cotton Netherlands:dairycows, pigs,potatoes,tomatoes,sweetpepper Poland:dairycows, wheat,pigs, potatoes Portugal:dairycows,olive groves,broilers AgricultureandEnergyEfficiency 3 Preface As energy prices rise againstthe background ofsevere environmentalhazards associatedwith continued fossilenergy use,theneedtomake agriculture more energyefficient is becoming more and more prominent.A more energyefficientagriculture willbe increasinglydemanded byfood-chainpartners and societyand is alsoa necessityinview ofcompetitiveness. This reportis a partof Work Package 2ofthe KBBE.2011.4-04project“Energy Efficiencyin Agriculture” (AGREE) supported bythe 7th FrameworkProgram.Itgives aninsightinto energyuseand energy efficiency ofagriculture invarious agroclimaticzonesofEurope. In the followingchapters,the energy efficiencyofimportant individualsubsectors ofEuropean agricultural productioni.e. crops, perennials, greenhouse vegetables, andlivestock husbandry is described.The data onenergyinputs, provided byparticipants fromeach ofthe six countries:Finland, Germany, Greece, theNetherlands,Poland, and Portugal, has been the basisofthe analysis onenergyefficiency List of Abbreviations Countries: FI–Finland DE–Germany EL– Greece NL–Netherlands PL– Poland PT– Portugal Economic Indicators: GDPinPPS –Gross Domestic ProductinPurchasingPowerStandard GVA –Gross Value Added PEC –PrimaryEnergy Consumption FEC –FinalEnergy Consumption Agricultural productionmeasures UAA –UtilizedAgricultural Area LU –Livestock Unit Units kWh –kilowatt-hour MJ –megajoule = 106J GJ –giga joule =109J PJ –peta joule =1015J kgoe –kilogramofoilequivalent toe –tonofoilequivalent ha -hectare L–litre t–metric ton AgricultureandEnergyEfficiency 4 Contents Summary................................................................................................................................................1 Preface...................................................................................................................................................3 ListofAbbreviations..............................................................................................................................3 Contents.................................................................................................................................................4 ListofFigures.........................................................................................................................................6 ListofTables..........................................................................................................................................8 Introduction.........................................................................................................................................10 AgricultureinNationalEconomies.......................................................................................................10 AgricultureinNationalEnergyUse......................................................................................................12 EnergyAccumulatedinMeansofAgriculturalProduction..................................................................13 Methodology........................................................................................................................................15 DirectEnergyInputs..................................................................................................................16 IndirectEnergyInputs................................................................................................................17 Energyoutput............................................................................................................................18 EnergyInputsinSubsectorsofAgriculturalProduction.......................................................................18 Cropproduction–keypoints.....................................................................................................18 Wheat(PEC)..............................................................................................................................20 SugarBeet(PEC)........................................................................................................................23 Potatoes(FEC)...........................................................................................................................24 Sunflower(PEC).........................................................................................................................25 Cotton(PEC)..............................................................................................................................26 Greenhouseproduction–keypoints.........................................................................................27 Tomatoes(PEC).........................................................................................................................29 Cucumbers(PEC).......................................................................................................................30 Sweetpepper(PEC)...................................................................................................................31 Perennialproduction–keypoints.............................................................................................31 Olivegroves(PEC)......................................................................................................................33 Vineyards(PEC).........................................................................................................................33 Livestockproduction–keypoints..............................................................................................35 AgricultureandEnergyEfficiency 5 DairyCows(PEC).......................................................................................................................36 Pigs(PEC)...................................................................................................................................37 Broilers(PEC).............................................................................................................................38 TotalPECfromAgriculturalSubsectors...............................................................................................40 Annex...................................................................................................................................................41 Differentscenariosforproductionsystems................................................................................41 Energyparameters....................................................................................................................44 EnergyInputsandStructureoftheInputs..................................................................................46 Wheat.......................................................................................................................................46 SugarBeet.................................................................................................................................47 Potatoes....................................................................................................................................48 Sunflower..................................................................................................................................50 Tomatoes..................................................................................................................................51 Cucumber..................................................................................................................................52 Olivegroves...............................................................................................................................53 Vineyards..................................................................................................................................55 Dairycows.................................................................................................................................56 Pigs...........................................................................................................................................59 Broilers......................................................................................................................................60 References...........................................................................................................................................63 AgriculturalSubsectors..............................................................................................................64 AgricultureandEnergyEfficiency 6 List of Figures Figure1:TheenergyintensityoftheeconomyintheEuropeanUnionandselected countries.Source:EUROSTAT 10 Figure2:Thegrossvalueaddedbyagriculture(1999-2010),huntingandfishing,%ofall branches.Source:EUROSTAT 10 Figure3:Thepercentageshareofuseofpesticidesandtotalquantityofactiveingredients (a.i.)ofpesticidesperhectareofutilizedagriculturalarea(UAA)(Eurostat: 2008–DK,DE,PL,PT;2007–NL;2006–FI;2001–EL) 14 Figure4:Totalprimaryenergyconsumption(weightedmeansfromscenarios)incrop productionbycountry. 17 Figure5:Specificenergyinputincropproductionbycountry(averagescenarios). 18 Figure6:Direct(darkerboxes)andindirectenergyinputsincropproductionbycountry (averagescenarios). 19 Figure 7: The relation of the total energy inputs in GJ·ha-1andyieldsintha-1 20 Figure8:TheefficiencyofenergyuseinrelationbetweentonofgrainperGJofdirect andindirectenergyinputs. 21 Figure 9: The structure of energy inputs in wheat production in GJ·ha-1. 21 Figure10:Thepercentageshare-baseddistributionofspecificenergyuse(PEC,inGJt-1) inwheatproductionbyprocess(averagescenarios). 22 Figure11.Thestructureofenergyinputsinsugarbeetproduction. 23 Figure 12: The relation of total energy inputs in GJ·ha-1andyieldsintha-1 24 Figure13.Thestructureofenergyinputsforpotatoproduction(averagescenarios). 24 Figure14:Thestructureofembodiedenergyinputsperhectareinsunflowerproduction (L,A,H–Low-Average-Highenergy inputsscenarios). 25 Figure15.Thestructureofenergyinputsincottonproduction(L,A,-H–low-,average-, andhighenergyinputsscenarios). 26 Figure16.Totalenergyconsumption(weightedmeansfromscenarios)ingreenhouse productionbycountry. 27 Figure17.Direct(darkerboxes)andindirectspecificenergyinputincropproductionby country(averagescenarios). 27 Figure18.Thestructureofenergyinputsintomatoproduction(thefiguresinboxesarein GJ·ha-1) 29 Figure19.Thestructureofenergyinputsincucumberproduction(thefiguresinboxesare inGJha-1). 30 Figure20.Totalenergyconsumption(weightedmeansfromscenarios)inperennial productionbycountry. 31 Figure21:Direct(darkerboxes)andindirectenergyinputsinperennialproductionby country(averagescenarios). 31 Figure22.ThestructureofenergyinputsinGJha-1foroliveproduction(average scenarios). 32 Figure23.Thestructureofenergyinputsinvineyardproduction(averagescenarios). 34 Figure24.Totalenergyconsumption(weightedmeansfromscenarios)inlivestock productionbycountry. 34 Figure25.Direct(darkerboxes)andindirectspecificenergyinputinlivestockproduction bycountry(averagescenarios). 35 Figure26.Thestructureofenergyinputsindairycowproduction. 36 Figure27.Structureofenergyinputsinpigproduction(averagescenarios,Portugal– highenergyinputsscenario). 37 AgricultureandEnergyEfficiency 7 Figure28.Thestructureofenergyinputsinbroilerproduction(averagescenarios). 39 Figure 29: The structure of embodied energy inputs in GJ·ha-1indifferentscenariosof wheatproduction(L,A,H–Low-Average-Highenergy inputsscenarios). 45 Figure30:ThestructureofembodiedenergyinputsinGJt-1indifferentscenariosof wheatproduction(L,A,H–Low,Average,andHighenergy inputsscenarios). 46 Figure 31: The structure of embodied energy inputs in GJ·ha-1indifferentscenariosof sugarbeetproduction(L,A,H–Low,Average,andHighenergy inputs scenarios). 47 Figure32:ThestructureofenergyinputsinGJt-1indifferentscenariosofsugarbeet production(L,A,H–Low,Average,andHighenergy inputsscenarios). 47 Figure33:Thestructureofembodiedenergyinputsperhectareofpotatoproduction(L, A,H–Low-Average-Highenergy inputsscenarios). 48 Figure34:Thestructureofembodiedenergyinputsperton ofpotatoproduction(L,A,H –Low-Average-Highenergy inputsscenarios). 48 Figure35:Thestructureofembodiedenergyinputsperhectareinsunflowerproduction (L,A,H–Low,Average,andHighenergy inputsscenarios). 49 Figure36:ThestructureofenergyinputsinGJt-1indifferentscenariosinsunflower production(L,A,H–Low,Average,andHighenergy inputsscenarios). 49 Figure37:Thestructureofembodiedenergyinputsperhectareoftomatoproduction(L, A,H–Low,Average,andHighenergy inputsscenarios). 50 Figure38:Thestructureofembodiedenergyinputspertonoftomatoproduction(L,A,H –Low,Average,andHighenergy inputsscenarios). 51 Figure39:ThestructureofenergyinputsinGJt-1(valuesinboxes)incucumber production(L,A,H–Low,Average,andHighenergy inputsscenarios). 52 Figure40:ThestructureofenergyinputsinGJperhectareforoliveproduction(L,A,H– Low-Average-Highenergy inputsscenarios). 53 Figure41.ThestructureofenergyinputsinGJpertonforoliveproduction(L,A,H– Low-Average-Highenergyinputsscenarios). 53 Figure 42. The structure of energy inputs in GJ·ha-1forvineyardproduction(L,A,H– Low,Average,andHighenergy inputsscenarios). 55 Figure43.ThestructureofenergyinputsinGJperlargeanimalunit(LU)peryearin dairycowproduction(L,A,H–Low-Average-Highenergy inputsscenarios). 56 Figure44.ThetonofmilkperGJofenergyinputsindairycowproduction(L,A,H– Low,Average,andHighenergy inputsscenarios). 57 Figure45.ThestructureofenergyinputsinGJt-1inpigproduction(L,A,H–Low- Average-Highenergyinputs). 58 Figure46.ThetonofporkperGJofenergyinputsinpigproduction(L,A,H–Low- Average-Highenergyinputs). 59 Figure47.ThestructureofenergyinputsinGJt-1inbroilerproduction(L,A,H–Low- Average-Highenergyinputs). 60 Figure48.ThetonofchickenmeatperGJofenergyinputsinbroilerproduction(L,A,H –Low-Average-Highenergyinputs). 61 AgricultureandEnergyEfficiency 8 List of Tables Table1.Totalprimaryenergyconsumptionfortheagriculturalsubsectorsconsideredinthe 2 studyincomparisonwiththeEurostatdata(2008). Table2:Thegrossdomesticproduct(GDP),percentageshareofagricultureinthegross 11 valueadded(GVA)andemploymentinagriculture(2010). Table3:Thetotalfinalenergyconsumption(FEC)andFECofagriculture(including 11 forestry)fortheyears1998and2008accordingtotheEurostatdata. Table4:Thepercentageshareofannualandperennialcropsinutilizedagriculturalarea 12 (UAA)–2007. Table5:Thetotalyearlyconsumptionofinorganicfertilizers(2007). 13 Table6:Theenergyinput(PEC)inwheatproductionindifferentcountries(average 20 scenarios). Table7:Theenergyinput(PEC)forsugarbeetproductionbycountry(averagescenarios) 22 Table8:Theenergyinput(PEC)forpotatoproductionbycountry(averagescenarios). 23 Table9:Theenergyuse(PEC)forsunflowerproductionbycountryandproduction 25 scenarios. Table10:Theenergyuse(PEC)forcottonproductioninGreece(thethreeenergyinput 26 scenarios). Table11:Thepercentageshare-baseddistributionofprimaryenergyconsumption(PEC)in 26 cottonproductionbyprocess. Table12:Theenergyinput(PEC)fortomatogreenhouseproductionbycountry(average 28 scenarios). Table13:Theenergyinput(PEC)forcucumbergreenhouseproductionbycountry(average 29 scenarios) Table14:Theenergyinput(PEC)forsweetpeppergreenhouseproduction(average 30 scenario). Table 15: The structure of energy inputs in sweet pepper production, in GJ·ha-1. 30 Table16:Energyinput(PEC)inoliveproductioninGreeceandPortugal(average 32 scenarios). Table17:Theenergyinput(PEC)invineyardproduction(forwine)bycountry(average 33 scenarios). Table18:Theenergyinput(PEC)formilk productionbycountry(averagescenarios). 36 Table19:Theenergyinput(PEC)forpork productionbycountry(averagescenarios). 37 Table20:Theenergyinput(PEC)forbroiler productionbycountry. 38 Table21.ThetotalPECasweightedmeansfromscenariosfortheagriculturalsubsectorsin 39 PJ. Table22.Scenariosofenergyinputsinagriculturalproduction. 40 Table23:Theenergyparametersfordirectandindirectenergyinputsinagricultural 43 production. Table24:Theenergyuse(PEC)inwheatproductionbycountryandproductionscenario. 45 Table25:Theenergyuse(PEC)insugarbeetproductionbycountryandproduction 46 scenario. Table26:Thepercentageshareofspecificenergyuse(PEC,inGJt-1)insugarbeet 47 productionbyprocess. Table27:Theenergyuse(PEC)inpotatoproductionbycountryandproductionscenario. 47 Table28:Thepercentageshareofspecificenergyuse(PEC,inGJt-1)in potatoproduction 48 byprocess. Table29:Theenergyuse(PEC)insunflowerproductionbycountryandproduction 49 scenario. Table30:Thepercentageshareofspecificenergyuse(PEC,inGJt-1)insunflower 49

Description:
higher energy input is only needed in hydroponic systems. (4) The olive grove production is limited to the Southern EU countries but the specific energy input for olives production is higher in the southwest European countries than in southeast European countries. (5) In dairy cow (milk) and broile
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.