ebook img

Could Solar Radiation Pressure Explain ’Oumuamua’s Peculiar Accelaration PDF

5 Pages·2018·0.248 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Could Solar Radiation Pressure Explain ’Oumuamua’s Peculiar Accelaration

DRAFTVERSIONNOVEMBER1,2018 PreprinttypesetusingLATEXstyleemulateapjv.12/16/11 COULDSOLARRADIATIONPRESSUREEXPLAIN‘OUMUAMUA’SPECULIARACCELERATION? SHMUELBIALY(cid:63)ANDABRAHAMLOEB HarvardSmithsonianCenterforAstrophysics,60Gardenst.,Cambridge,MA,02138 DraftversionNovember1,2018 ABSTRACT ‘Oumuamua (1I/2017 U1) is the first object of interstellar origin observed in the Solar System. Recently, Michelietal.(2018)reportedthat‘OumuamuashoweddeviationsfromaKeplerianorbitatahighstatistical significance. The observed trajectory is best explained by an excess radial acceleration ∆a∝r−2, where r is 8 thedistanceof‘OumuamuafromtheSun. Suchanaccelerationisnaturallyexpectedforcomets,drivenbythe 1 evaporating material. However, recent observational and theoretical studies imply that ‘Oumuamua is not an 0 activecomet. WeexplorethepossibilitythattheexcessaccelerationresultsfromSolarradiationpressure. The 2 requiredmass-to-arearatiois(m/A)≈0.1gcm−2. Forathinsheetthisrequiresawidthof≈0.3−0.9mm. t Wefindthatalthoughextremelythin,suchanobjectwouldsurviveaninterstellartraveloverGalacticdistances c O of∼5kpc,withstandingcollisionswithgasanddust-grainsaswellasstressesfromrotationandtidalforces. Wediscussthepossibleoriginsofsuchanobjectincludingthepossibilitythatitmightbealightsailofartificial 0 origin. Ourgeneralresultsapplytoanylightprobesdesignedforinterstellartravel. 3 Subjectheadings:ISM:individualobjects(1I/2017U1)–minorplanets,asteroids: individual(1I/2017U1)– General: extraterrestrialintelligence–Minorplanets,asteroids: general ] P E 1. INTRODUCTION If not cometary activity, what can drive the non- h. OnOctober19,2017,thefirstinterstellarobjectintheSo- gravitationalaccelerationobserved? InthisLetterweexplore p larSystem,‘Oumuamua(1I/2017U1)wasdiscoveredbythe thepossibilityof‘Oumuamuabeingathinobjectaccelerated - PAN-STARRS1survey. Ithasahighlyhyperbolictrajectory bySolarradiationpressure,whichwouldnaturallyresultinan o (witheccentricitye=1.1956±0.0006)andpre-entryveloc- excessacceleration∆a∝r−2. 1 However,forradiationpres- r t ity of v ≈26 km s−1 (Meech et al. 2017). Based on the suretobeeffective,themass-to-arearatiomustbeverysmall. s ∞ In §2 we derive the required mass-to-area ratio (or effective a surveypropertiesandthesingledetection,Doetal.(2018)es- [ timatedtheinterstellardensityofobjectslike‘Oumuamuaor width), and find (m/A)≈0.1 g cm−2, corresponding to an largertoben≈2×1015pc−3,2-8ordersofmagnitudelarger effective thin sheet of width w≈0.3−0.9 mm. We explore 2 the ability of such an unusually thin object to survive inter- than expected by previous theoretical models (Moro-Martin v stellartravel,consideringcollisionswithinterstellardustand et al. 2009). The large variations in its apparent magnitude 0 gas (§3), as well as to withstand the tensile stresses caused and the non-trivial periodicity of the lightcurve, suggest that 9 by rotation and tidal forces (§4). Finally, in §5 we discuss ‘Oumuamuaisrotatinginanexcitedspinstate(tumblingmo- 4 the possible implications of the unusual requirements on the 1 tion),andhasanextremeaspectratioofatleast5:1(Fraser shapeof‘Oumuamua. 1 et al. 2018; Drahus et al. 2018), an unprecedented value for . previously known asteroids and comets in the Solar System. 0 2. ACCELERATIONBYRADIATIONPRESSURE Belton et al. (2018) have shown that if ‘Oumuamua rotates 1 in its highest rotational energy state, it should be extremely Micheli et al. (2018) had shown that Oumuamua’s experi- 8 oblate(pancake-like). encesanexcessradialacceleration,withtheirbestfitmodel 1 : Recently, Micheli et al. (2018) reported the detection of (cid:16) r (cid:17)n v non-gravitational acceleration in the motion of ‘Oumuamua, ∆a=a0 (1) AU i at a statistical significance of 30σ. Their best-fit to the data X with n=−2, is obtainedfor a modelwith a non-constantexcess accelera- r tionwhichscaleswithdistancefromtheSun,r,as∆a∝r−2, a =(4.92±0.16)×10−4cms−2. (2) a 0 butotherpower-lawindexvaluesarealsopossible.Theycon- cludedthattheobservedaccelerationismostlikelytheresult Thevaluefora0isaveragedovertimescalesmuchlongerthan ofacometaryactivity. Yet,despiteitscloseSolarapproachof ‘Oumuamua’srotationperiod. r=0.25AU,‘Oumuamuashowsnosignsofaanycometary Anaccelerationofthisformisnaturallyproducedbyradi- activity, no cometary tail, nor gas emission/absorption lines ationpressure, L wereobserved(Meechetal.2017;Knightetal.2017;Jewitt (cid:12) P=C , (3) et al. 2017; Ye et al. 2017; Fitzsimmons et al. 2017). From R4πr2c a theoretical point of view, Rafikov (2018) has shown that whereL istheSolarluminosity,cisthespeedoflight,and (cid:12) if outgassing was responsible for the acceleration (as origi- C is a coefficient of order unity which depends on the ob- R nally proposed by Micheli et al. 2018), then the associated ject’s composition and geometry. For a sheet perpendicular outgassing torques would have driven a rapid evolution in totheSun-objectvectorC =1+ε whereε isthereflectivity. R ‘Oumuamua’sspin,incompatiblewithobservations. 1Interestingly,asimilarapproachwasadoptedhistoricallyregardingthe (cid:63)[email protected] anomalousorbitofPhobus(Shklovskii1962). 2 3.1. MomentumTransfer-SlowDown AnobjectwithacrosssectionalareaAtravelingadistance LthroughtheISMwouldaccumulateanISMgasmassof, M =AΣ =1.4m (cid:104)n(cid:105)LA, (7) gas gas p whereΣ istheaccumulatedmasscolumndensityofinter- gas stellar gas, m is the proton mass, (cid:104)n(cid:105) is the mean proton p number density averaged along the object’s trajectory, and the factor 1.4 accounts for the contribution of helium to the mass density of the ISM. For trajectories that span Galactic distancesthecontributionoftheSolarSystemtotheaccumu- lated column is negligible. The contribution of accumulated dusttothemomentumtransferisalsonegligible,becausethe typicaldust-to-gasmassratiointheGalaxyis≈1/100. Once M approaches the object’s mass, m, the momen- ISM tum of the traveling object will decrease by a significant amount. TherequirementM /m(cid:28)1translatesintoamax- ISM FIG.1.— Themaximumallowedtraveldistancethroughtheinterstellar imumallowedvalueontheobject’smass-to-arearatio,giving medium(ISM),asafunctionof(m/A). Theblueandredlinesarelimita- tionsobtainedbyslow-downduetogasaccumulation,andvaporizationby (cid:16)m(cid:17) =Σ =1.4m (cid:104)n(cid:105)L (8) dust-collisions,respectively. TheplottedresultsareforameanISMproton A min,p gas p densityof(cid:104)n(cid:105)∼1cm−3. Alllinesscaleas1/(cid:104)n(cid:105). Thedashedmagentaline isourconstrainton‘Oumuamuabasedonitsexcessacceleration. TheSolar =7.2×10−3(cid:104)n(cid:105) L gcm−2. 0 0 Galactrocentricdistanceisalsoindicated. Inthelastequalitywenormalizedtothetypicalvalues(cid:104)n(cid:105) = 0 Foraperfectreflectorε=1,andCR=2,whereasforaperfect (cid:104)n(cid:105)/(100cm−3)andL =L/(100kpc). 0 absorberε =0andC =1. R Givenamass-to-arearatio,themaximumtraveldistanceis ForanobjectofmassmandareaAtheaccelerationwould be 1 (cid:16)m(cid:17) L = (9) max,p PA (cid:18) L (cid:19)(cid:18)A(cid:19) 1.4mp(cid:104)n(cid:105) A (cid:12) a= m = 4πr2c m CR (4) =14(cid:104)n(cid:105)−1(cid:16)m(cid:17) kpc. (cid:16) r (cid:17)−2(cid:18) m/A (cid:19)−1 0 A −1 =4.6×10−5 C cms−2. In the second equation we denoted (m/A) ≡ AU gcm−2 R −1 (m/A)/(10−1gcm−2). Figure 1 shows the results from ComparingEq.(1)and(4)wefindthattherequirementonthe Eq. (9) as a function of (m/A). The dashed vertical line mass-to-arearatiois indicates our constraint on (m/A) for ‘Oumuamua (Eq. 5). (cid:16)m(cid:17) Evidently, ‘Oumuamua can travel Galactic distances before =(9.3±0.3)×10−2CRgcm−2. (5) encounteringappreciableslow-down. A For a planer body with mass density ρ, this translates into a 3.2. EnergyTransfer-CollisionswithDust-Grains requirementonthebody’swidth Collisions with dust grains at high velocities will induce m craterformationbymeltingandevaporationofthetargetma- w = =(9.3±0.3)×10−2ρ−1C cm, (6) Aρ 0 R terial. Since the typical time between dust collisions is long comparedtothesolidificationtime,anymoltenmaterialwill where ρ =ρ/(100 gcm−3). Typically, ρ ≈1−3, giving solidify before the next collision occurs, and thus will only 0 0 athinsheetof0.3–0.9mmwidth. Othergeometriesarealso cause a deformation of the object’s surface material, not re- possible, and are discussed in §5. The force exerted by the ductioninmass. Ontheotherhand,atomsvaporizedthrough Solarwindonasolidsurfaceisnegligiblecomparedtothatof collisionscanescapeandthuscauseamassablation. theSolarradiationfieldandisneglectedhereafter. Wewouldliketoestimatetheminimummass-to-arearatio Theobservedmagnitudeof‘Oumuamuaconstrainsitsarea required for the object to not lose significant fraction of its to be A ≈ 8×106α−1 cm2, where α is the albedo (Jewitt massupondust-graincollisions. Letmd bethecollidingdust- et al. 2017). This corresponds to an effective radius, R ≡ grain mass, and φ the fraction of the kinetic energy that is √ eff A/π =16α−1/2 meters. Forourestimationofthemass-to- converted into vaporization of the object’s body. The total numberofvaporizedatomspercollisionisthen, arearatio,thisareatranslatesintoamassofm≈740(C /α) R kg. m m v2 v d N = =φ , (10) v 3. MAXIMUMDISTANCEFORINTERSTELLARTRAVEL m¯ 2Uv Nextweexploretheimplicationsofimpactswithinterstel- wherem isthemassofvaporizedmaterialintheobject,m¯ is v lar dust-grains and gas particles, in terms of momentum and the mean atomic mass of the object, andU is the vaporiza- v energy transfer. We obtain general requirements for the ob- tionenergy.Althoughhighlysimplistic,thisanalysiscaptures ject’s mass-to-area ratio, or alternatively, for the maximum the results of the detailed theoretical model of Tielens et al. interstellar distance that can be traveled before it encounters (1994)andtheempiricaldatafromOkeefe&Ahrens(1977). appreciableslow-downorevaporation. Agoodmatchtothenumericalresultsisobtainedforφ =0.2. 3 OveradistanceLtherewillbemanycollisions. Adopting TABLE1 theconservativeassumptionthatforeachcollisionalltheva- TENSILESTRENGTHS porizedmaterialescapestotheISM,wecanaccountforallthe collisionsalongapath-length,L,byreplacingm inEq.(10) material tensilestrength(dynecm−2) d withthetotalaccumulateddustmass, 67P/Churyumov-Gerasimenko1 10-50 Meteorites2 (1−5)×107 Md =ΣdustA=ΣgasϕdgA=1.4mp(cid:104)n(cid:105)LϕdgA, (11) Iron 3×107 Diamond 2×1010 whereΣ isthedustcolumndensityandφ isthedust-to- dust dg Silicon(monocrystalline) 7×1010 gasmassratio. Thisgives, 1Attreeetal.(2018) m 1.4m (cid:104)n(cid:105)Lϕ Av2 2Petrovic(2001) v p dg =φ . (12) m¯ 2U v Theminimalmass-to-arearatiobelowwhichhalfoftheob- Requiringthatthetotalvaporizedmassnotexceedhalfofthe ject’smasswillbesputteredis, object’smass, weobtainaconstraintontheminimummass- (cid:16)m(cid:17) to-arearatiooftheobject, =m¯(cid:104)n(cid:105)LYtot (17) A min,s (cid:16)m(cid:17) =1.4m (cid:104)n(cid:105)L(cid:18)φϕdgm¯v2(cid:19) (13) =6.2×10−5m¯12(cid:104)n(cid:105)0L0Y−3gcm−2. p A min,m Uv In the second equality we normalized toY =10−3, corre- =3.1×10−4(cid:104)n(cid:105) L (cid:18)ϕ−2m¯12v226(cid:19) gcm−2. spondingtokineticenergiesE≈30−100etoVt,corresponding 0 0 U tov≈40−70kms−1. Forlowerspeeds,asthatof‘Oumua- 4 mua, the yield is even lower, further decreasing the value of Herewedefinedthenormalizedparameters,ϕ−2=ϕdg/10−2, (m/A)min,s.Athigherspeeds,theyieldincreasesbuttypically m¯12 =m¯/(12mp), as appropriate for carbon based materials remainsbelow0.01(Tielensetal.1994),thusatanyvelocity, (e.g.,graphiteordiamond);U4=U/(4eV),asappropriatefor vaporizationandslow-downremainthedominatingprocesses typicalvaporizationenergies(e.g.,forgraphite,Uv=4.2eV); limitingthealloweddistanceanobjectcantravelthroughthe andv =v/(26kms−1),thevelocityatinfinityof‘Oumua- ISM. 26 mua. For a given mass-to-area ratio, the maximum allowed Cosmic-rays are expected to cause even less damage. Al- distancebeforesignificantevaporationis thoughtheirenergydensityiscomparabletothatoftheISM 1 (cid:18) U (cid:19)(cid:16)m(cid:17) gas,theydepositonlyaverysmallfractionoftheirenergyas L = m (14) theypenetratethroughthethinobject. max,d 1.4m (cid:104)n(cid:105) φϕ m¯v2 A p dg (cid:18) U (cid:19)(cid:16)m(cid:17) 4. TENSILESTRESSES =330(cid:104)n(cid:105)−01 ϕ−2m¯412v226 A −1 kpc. forAcetshiinfiotbsjteecntscilaensbtreetnogrtnhaipsanrottbsyucffienctireinfutlgyasltfroorncge.sToyrptiidcaall Forourconstrainedvalueforthemass-to-arearatio,‘Oumua- valuesforthetensilestrengthsofvariousmaterialsareshown mua can travel through the entire galaxy before a significant in Table 1. Next, we calculate whether centrifugal or tidal fraction of its mass is evaporated. Evaporation becomes im- forcescandestroy‘Oumuamua. portantathigherspeeds.ComparingEqs.(8)and(13)wefind thatonlyforspeedsabove 4.1. Rotation (cid:115) Omuamua’s lightcurve shows periodic modulations on an 2Um orderof6-8hours. Ignoringthetumblingmotion,letusesti- v = (15) crit m¯ϕφ matethetensilestressoriginatingfromthecentrifugalforce. The largest stress is produced if the object is elongated such =130(cid:18) U4 (cid:19)1/2 kms−1, that the longest dimension is perpendicular to the rotation ϕ m¯ axis. Wedenotethisdimensionasd. Consideringtheobject −2 12 asmadeoftwohalves,eachlocatedwithacenterofmassata vaporizationdominatesoverslow-down. distanced/4fromtherotationaxis,andigonringselfgravity, aradialforceofmagnitude, 3.3. EnergyTransfer-CollisionswithGasParticles 1 d When an object travels at a high speed, collisions with F = mΩ2 , (18) atomsintheISMcanpotentiallytransfersufficientenergyto 2 4 producesputtering.Thisprocesswasstudiedinthecontextof willbeexertedoneachhalf. Theassociatedtensilestressis, dustgrainsinhotshocks(Tielensetal.1994). Foranobject 1 traveling at a velocity v, over a distance L through the ISM, P = ρd2Ω2 (19) rot thetotalnumberofsputteredparticlesis, 4 ms =0.25ρ0d42Ω2−4dynecm−2, N = =2AL(cid:104)n(cid:105)Y , (16) s tot m¯ whered ≡d/(104 cm),Ω ≡Ω/(10−4 s−1). Thisismuch 4 −4 where Ytot = ∑iYixi is the total sputtering yield (which de- smallerthantypicaltensilestrengthsofnormalmaterials,and pends on the kinetic energy), summed over collisions with evenofthatofthecomet67P/Churyumov-Gerasimenko(see differentspecies(i.e.,H,He,andmetals),andx istheabun- Table 1). Thus, even when self-gravity is ignored, ‘Oumua- i danceofthecollidingspeciesrelativetohydrogen. muacaneasilywithstanditscentrifugalforce. 4 4.2. TidalForces estimatefor‘Oumuamua. Ifradiationpressureistheacceler- ating force, then ‘Oumuamua represents a new class of thin Thetidalforcewillbemaximalifthelongdimensionofthe interstellar material, either produced naturally,through a yet object is parallel to the Sun-object vector. Again, modeling unknownprocessintheISMorinproto-planetarydisks,orof theobjectasconsistingoftwohalvesasin§4.1,thedifference anartificialorigin. inthegravitationalforceexperiencedbythefarandnearends Considering an artificial origin, one possibility is that oftheobjectis, ‘Oumuamuaisalightsail,floatingininterstellarspaceasade- 1 GM m (cid:12) δF ≈ d , (20) brisfromanadvancedtechnologicalequipment(Loeb2018). 4 r3 Lightsails with similar dimensions have been designed and where r is the distance of the center of mass from the Sun. constructed by our own civilization, including the IKAROS Theassociatedtensilestress, project and the Starshot Initiative2. The lightsail technol- 1 GM ogy might be abundantly used for transportation of cargos Ptid≈ 4ρd2 r3(cid:12) (21) betweenplanets(Guillochon&Loeb2015)orbetweenstars (Lingam&Loeb2017). Intheformercase, dynamicalejec- (cid:16) r (cid:17)−3 =9.9×10−7ρ d2 dynecm−2. tion from a planetary System could result in space debris of 0 4 AU equipment that is not operational any more 3 (Loeb 2018), Evenatperihelion(r=0.25AU),thetensilestressisnegligi- and is floating at the characteristic speed of stars relative ble. to each other in the Solar neighborhood. This would ac- The critical distance below which tidal forces dominate count for the various anomalies of ‘Oumuamua, such as the overcentrifugalis unusual geometry inferred from its lightcurve (Meech et al. 2017; Fraser et al. 2018; Drahus et al. 2018; Belton et al. (cid:18)GM(cid:19)1/3 −2/3(cid:18) M (cid:19)1/3 2018), its low thermal emission, suggesting high reflectivity R = =3.4Ω R . (22) tid Ω2 −4 M (cid:12) (Trilling et al. 2018), and its deviation from a Keplerian or- (cid:12) bit (Micheli et al. 2018) without any sign of a cometary tail Thus,unless‘Oumuamuaencounteredanextremelycloseap- (Meech et al. 2017; Knight et al. 2017; Jewitt et al. 2017; proachtoastarinitspast,itisunlikelythattidalforcesplayed Ye et al. 2017; Fitzsimmons et al. 2017) or spin-up torques anysignificantrole. (Rafikov 2018). Although ‘Oumuamua has a red surface 5. SUMMARYANDDISCUSSION color,similartoorganic-richsurfacesofSolar-Systemcomets and D-type asteroids (Meech et al. 2017), this does not con- We have shown that the observed non-gravitational accel- tradicttheartificialscenario,sinceirrespectiveoftheobject’s eration of ‘Oumuamua, may be explained by Solar radia- composition,asittravelsthroughtheISMitssurfacewillbe tion pressure. This requires a small mass-to-area ratio for covered by a layer of interstellar dust, which is itself com- ‘Oumuamua of (m/A)≈0.1 g cm−3. For a planar geome- posedoforganic-richmaterials(Draine2003). try and typical mass densities of 1–3 g cm−3 this gives an Alternatively, a more exotic scenario is that ‘Oumuamua effective width of only 0.9–0.3 mm, respectively. For a ma- may be a fully operational probe sent intentionally to Earth terialwithlowermassdensity,theinferredeffectivewidthis vicinitybyanaliencivilization.BasedonthePAN-STARRS1 proportionally larger. We find that although very thin, such surveycharacteristics,andassumingnaturaloriginsfollowing an object can travel over galactic distances, maintaining its random trajectories, Do et al. (2018) derived that the inter- momentumandwithstandingcollisionaldestructionbydust- stellarnumberdensityof‘Oumuamua-likeobjectsshouldbe grains and gas, as well as centrifugal and tidal forces. For extremelyhigh,∼2×1015pc−3,equivalentto∼1015ejected ‘Oumuamua, the limiting factor is the slow-down by accu- planetisimals per star, and a factor of 100 to 108 larger than mulated ISM mass, which limits its maximal travel distance predicted by theoretical models (Moro-Martin et al. 2009). to ∼10 kpc (for a mean ISM particle density of ∼1 cm−3). This discrepancy is readily solved if ‘Oumuamua does not Our inferred thin geometry is consistent with studies of its followarandomtrajectorybutisratheratargetedprobe. In- tumbling motion. In particular, Belton et al. (2018) inferred terestingly, ‘Oumuamua’s entry velocity is found to be ex- that‘Oumuamuaislikelytobeanextremelyoblatespheroid tremelyclosetothevelocityoftheLocalStandardofRest,in (pancake)assumingthatitisexcitedbyexternaltorquestoits akinematicregionthatisoccupiedbylessthan1to500stars highestenergystate. (Mamajek2017). Whileourscenariomaynaturallyexplainsthepeculiarac- Sinceitistoolatetoimage‘Oumuamuawithexistingtele- celerationof‘Oumuamua,itopensupthequestionwhatkind scopesorchaseitwithchemicalrockets(Seligman&Laugh- ofobjectmighthavesuchasmallmass-to-arearatio? Theob- lin 2018), its likely origin and mechanical properties could servations are not sufficiently sensitive to provide a resolved only be deciphered by searching for other objects of its type imageof‘Oumuamua,andonecanonlyspeculateonitspos- in the future. In addition to the vast unbound population, siblegeometryandnature.Althoughperiodicvariationsinthe thousands of interstellar ‘Oumuamua-like space-debris are apparentmagnitudeareobserved,therearestilltoomanyde- expected to be trapped at any given time in the Solar Sys- grees of freedom (e.g., observing angle, non-uniform reflec- temthroughgravitationalinteractionwithJupiterandtheSun tively, etc.) to definitely constrain the geometry. The geom- (Lingam&Loeb2018). Deepwide-areasurveysofthetype etryshouldnotnecessarilybethatofaplanarsheet,butmay acquireothershapes,e.g.,involvingacurvedsheet,ahollow cone or ellipsoidal, etc. Depending on the geometry our es- 2 A list of books and papers on lightsails is provided in http://breakthroughinitiatives.org/research/3. The IKAROS project is timatedvalueforthemass-to-arearatiowillchange(through discussedinhttp://global.jaxa.jp/projects/sat/ikaros/. CRinEq.5),butthecorrectionistypicallyoforderunity. 3Notethat‘Oumuamuawasfoundnottoshowanyradioemissiondown Known Solar System objects, like asteroids and comets toafractionofthepowerofacellphonetransmission(Enriquezetal.2018; have mass-to-area ratios orders of magnitude larger than our Tingayetal.2018;Harpetal.2018). 5 expectedwiththeLargeSynopticSurveyTelescope(LSST)4 WethankManasviLingam,PaulDuffell,QuanzhiYe,and willbeparticularlypowerfulinsearchingforadditionalmem- ananonymousrefereeforhelpfulcomments. Thisworkwas bersof‘Oumuamua’spopulationofobjects. supported in part by a grant from the Breakthrough Prize AsurveyforlightsailsastechnosiganuresintheSolarSys- Foundation. temiswarranted,irrespectiveofwhether‘Oumuamuaisone ofthem. REFERENCES Attree,N.,Groussin,O.,Jorda,L.,etal.2018,Astronomy&Astrophysics, Mamajek,E.2017,ResearchNotesoftheAmericanAstronomicalSociety, 611,A33 1,21 Belton,M.J.S.,Hainaut,O.R.,Meech,K.J.,etal.2018,TheAstrophysical Meech,K.J.,Weryk,R.,Micheli,M.,etal.2017,Nature,552,378 Journal,856,L21 Micheli,M.,Farnocchia,D.,Meech,K.J.,etal.2018,Nature,559,223 Do,A.,Tucker,M.A.,&Tonry,J.2018,TheAstrophysicalJournal,855,10 Moro-Martin,A.,Turner,E.L.,&Loeb,A.2009,TheAstrophysical Drahus,M.,Guzik,P.,Waniak,W.,etal.2018,NatureAstronomy,2,407 Journal,704,733 Draine,B.T.2003,TheAstrophysicalJournal,598,1017 Okeefe,J.D.,&Ahrens,T.J.1977,Proc.LunarScienceConference,8, Enriquez,J.E.,Siemion,A.,Lazio,T.J.W.,etal.2018,ResearchNotesof 3357 theAmericanAstronomicalSociety,2,9 Petrovic,J.J.2001,JournalofMaterialsScience,36,1579 Fitzsimmons,A.,Snodgrass,C.,Rozitis,B.,etal.2017,NatureAstronomy, Rafikov,R.R.2018,arXivpreprint1809.06389 2,133 Seligman,D.,&Laughlin,G.2018,TheAstronomicalJournal,155,217 Fraser,W.C.,Pravec,P.,Fitzsimmons,A.,etal.2018,NatureAstronomy,2, Shklovskii,I.S.1962,TheUniverse,LifeandMind(translated)(Academy 383 ofSciencesUSSR,Moscow),239 Guillochon,J.,&Loeb,A.2015,TheAstrophysicalJournalLetters,811, Tielens,A.G.G.M.,McKee,C.F.,Seab,C.G.,&Hollenbach,D.J.1994, L20 TheAstrophysicalJournal,431,321 Harp,G.R.,Richards,J.,Jenniskens,P.,Shostak,S.,&Tarter,J.C.2018, Tingay,S.J.,Kaplan,D.L.,Lenc,E.,etal.2018,TheAstrophysicalJournal, eprintarXiv:1808.09355 857,11 Jewitt,D.,Luu,J.,Rajagopal,J.,etal.2017,TheAstrophysicalJournal Trilling,D.,McNeill,A.,Mommert,M.,etal.2018,American Letters,850,L36 AstronomicalSociety,DPSmeeting#50,50,301.04 Knight,M.M.,Protopapa,S.,Kelley,M.S.P.,etal.2017,The Ye,Q.-Z.,Zhang,Q.,Kelley,M.S.P.,&Brown,P.G.2017,The AstrophysicalJournalLetters,851,L31 AstrophysicalJournalLetters,851,L5 Lingam,M.,&Loeb,A.2017,TheAstrophysicalJournalLetters,837,L23 —.2018,TheAstronomicalJournal,156,193 Loeb,A.2018,ScientificAmerican; https://blogs.scientificamerican.com/observations/how-to-search-for- dead-cosmic-civilizations/ 4Seehttps://www.lsst.org/

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.