ebook img

Could a plasma in quasi-thermal equilibrium be associated to the "orphan" TeV flares ? PDF

6.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Could a plasma in quasi-thermal equilibrium be associated to the "orphan" TeV flares ?

Couldaplasmainquasi-thermalequilibriumbeassociatedto the”orphan”TeVflares? N. Fraija∗ Instituto de Astronom´ıa, Universidad Nacional Auto´noma de Me´xico, Circuito Exterior, C.U., A. Postal 70-264, 04510 Me´xico D.F., Me´xico TeVγ-raydetectionsinflaringstateswithoutactivityinX-raysfromblazarshaveattractedmuchattention duetotheirregularityofthese”orphan”flares. Althoughthesynchrotronself-Comptonmodelhasbeenvery successfulinexplainingthespectralenergydistributionandspectralvariabilityofthesesources,ithasnotbeen abletodescribetheseatypicalflaringevents.Ontheotherhand,anelectron-positronpairplasmaatthebaseof theAGNjetwasproposedasthemechanismofbulkaccelerationofrelativisticoutflows.Thisplasmainquasi- themalequilibriumcalledWeinfireballemitsradiationatMeV-peakenergiesservingastargetofaccelerated 5 protons. In this work we describe the ”orphan” TeV flares presented in blazars 1ES 1959+650 and Mrk421 1 assuminggeometricalconsiderationsinthejetandevokingtheinteractionsofFermi-acceleratedprotonsand 0 MeV-peak target photons coming from the Wein fireball. After describing successfully these ”orphan” TeV 2 flares,wecorrelatetheTeVγ-ray,neutrinoandUHECRfluxesthroughpγinteractionsandcalculatethenumber r ofhigh-energyneutrinosandUHECRsexpectedinIceCube/AMANDAandTAexperiment, respectively. In p addition, thermalMeVneutrinosproducedmainlythroughelectron-positronannihilationattheWeinfireball A willbeabletopropagatethroughit. Byconsideringtwo-(solar,atmosphericandacceleratorparameters)and three-neutrinomixing,westudytheresonantoscillationsandestimatetheneutrinoflavorratiosaswellasthe 8 numberofthermalneutrinosexpectedonEarth. 2 ] E H . h p - o r t s a [ 2 v 5 6 1 4 0 . 1 0 5 1 : v i X r a ∗LucBinette-Fundacio´[email protected] 2 I. INTRODUCTION Flaresobservedinvery-high-energy(VHE)γ-rayswithabsenceofhighactivityinX-rays,areverydifficulttoreconcilewith thestandardsynchrotronself-Compton(SSC)althoughithasbeenverysuccessfulinexplainingthespectralenergydistribution (SED)ofblazars[1–3]. AlthoughmostoftheflaringactivitiesoccuralmostsimultaneouslywithTeVγ-rayandX-rayfluxes, observationsof1ES1959+650[4–6]andMrk421[7,8]haveexhibitedVHEγ-rayflareswithouttheircounterpartsinX-rays, called”orphan”flares. Leptonic and hadronic models have been developed to explain orphan flares. A leptonic model based on geometrical consid- erations about the jet has been explored to reconcile the SSC model [9] whereas hadronic models where accelerated protons interactwithbothexternalphotonsgeneratedbyelectronsynchrotronradiation[10]andSSCphotonsatthelow-energytail[11] havebeenperformedtoexplainthisanomalousbehaviorintheseblazars. BasedonthesemodelsHEneutrinoemissionhasbeen studiedbyReimeretal.[12]andHalzenandHooper[13].Inparticularfortheblazar1ES1959+650,HalzenandHooper(2005) based on proton-proton (pp) and proton-photon (pγ) interactions estimated the number of events expected in Antarctic Muon AndNeutrinoDetectorArray(AMANDA).Theyfoundthattheneutrinorateswere1.8(10−3)eventsforpp(pγ)interactions. Ithasbeenwidelysuggestedthatrelativisticjetsofactivegalacticnuclei(AGN)containelectron-positronpairsproducedfrom accretiondisks[14–16]. Alsoelectron-positronpairplasmahasbeenproposedasamechanismofbulkaccelerationofrelativis- ticoutflows. Ingammarayburst(GRB)jets,thisplasma”fireball”formedinsidetheinitialscale∼107 cmismadeofphotons, asmallamountofbaryonsande± pairsinthermalequilibriumatsomeMeV[17]. However,inAGNjetsthefireballcannotbe formedbecausethecharacteristicsizeistoolarge(3r ∼ 1014 cm)incomparisonwithGRBjets. Someauthorsfoundthatif g thepairplasmaisexpectedtobeopticallythintoabsorptionbutthicktoscattering,the”Weinfireball”couldexist,eventhough forthesizeandluminosityofAGNs[18–20]. Afterward,simulationswithprotonsinsidethisplasmawereperformedbyAsano andTakahara[21,22]. AttheinitialstageoftheWeinfireball,thermalneutrinoswillbemainlycreatedbyelectron-positronannihilation(e++e− → Z → ν +ν¯ ). By considering a small amount of baryons, neutrinos could also be generated by processes of positron cap- j j ture on neutrons (e+ +n → p+ν¯), electron capture on protons (e− +p → n+ν ) and nucleon-nucleon bremsstrahlung e e (NN → NN +ν +ν¯ )forj = e,ν,τ. TakingintoaccountthatthetemperatureofWeinfireballisrelativistic[19,20],then j j neutrinosof1-5MeVcanbeproducedandfractionsofthemwillbeabletogothroughthisplasma. Asknown,theneutrino properties are modified when they propagate through a thermal medium, and although neutrino cannot couple directly to the magneticfield,itseffectcanbeexperimentedthroughcouplingtochargedparticlesinthemedium[23]. Theresonanceconver- sionofneutrinofromoneflavortoanotherduetothemediumeffect,knownasMikheyev-Smirnov-Wolfensteineffect[24],has beenwidelystudiedintheGRBfireball[25–27]. Telescope Array (TA) experiment reported the arrival of 72 ultra-high-energy cosmic rays (UHECRs) above 57 EeV with a statisticalsignificanceof5.1σ. Theseeventscorrespondtotheperiodfrom2008May11to2013May4. Assumingtheerror reportedbyTAexperimentinthereconstructeddirections,someUHECRsmightbeassociatedtothepositionofMrk421[28]. In addition, IceCube collaboration reported the detection of 37 extraterrestrial neutrinos at 4σ level above 30 TeV [29, 30], althoughnoneofthemlocatedinthedirectionofneither1ES1959+650norMrk421,asshowninfig. 1. BecauseTeVγ-ray”orphan”flaresareverydifficulttoreconcilewithSSCmodel,inthisworkweintroduceahadronicmodel bymeansofpγinteractionstoexplaintheseatypicalTeVflaresregisteredinblazars1ES1959+650andMrk421. Inthismodel, weconsidersomegeometricalassumptionsofthejetandtheinteractionsbetweentheMeV-peakphotonscomingfromtheWein fireballandrelativisticprotonsacceleratedattheemittingregion. Then,wecorrelatetheTeVγ-ray,neutrinoandUHECRfluxes tocalculatethenumberofHEneutrinoandUHECRevents. Inaddition, westudytheresonanceoscillationsofthermalMeV neutrinos. The paper is arranged as follows. In Section 2 we show the dynamic model of the radiation coming from Wein fireballanditsinteractionswiththeprotonsacceleratedattheemittingregion. Insection3westudytheemission,production andoscillationofneutrinos. InSection4wediscussthemechanismsforacceleratingUHECRsandalsoestimatethenumberof theseeventsexpectedintheTAexperiment,supposingthattheprotonspectrumisextendeduptoenergiesgreaterthan57EeV. InSection5wedescribetheTeVorphanflaresoftheblazars1ES1959+650andMrk421andgiveadiscussiononourresults;a briefsummaryisgiveninsection6. Wehereafteruseprimes(unprimes)todefinethequantitiesinacomoving(observer)frame, naturalunits(c=(cid:126)=k=1)andredshiftsz(cid:39)0. II. ORPHANTEVγ-RAYEMISSION Different hadronic models have been considered to explain TeV γ-ray observations presented in blazars [31–34]. In those models, SEDs are described in terms of co-accelerated electrons and protons at the emitting region. In this hadronic model, we describe the TeV γ-ray emission through π0 decay products generated in the interactions of accelerated protons and seed photonscomingfromtheWeinfireball,asshowninfig. 2. 3 II.1. MeVradiationfromtheWeinfireball TheWeinfireballconnectsthebaseofthejetwiththeblackhole(BH).Weassumethatattheinitialstate,itisformedbye± pairswithphotonsinsidetheinitialscaler =2r =4GM,beingGthegravitationalconstantandMtheBHmass. Theinitial o g temperaturecanbedefinedthroughmicroscopicprocessesatthebaseofthejet(Comptonscattering,γγ pairproduction,etc). Atthefirststate,photonsinsidetheWeinfireballareatrelativistictemperature. Theinternalenergystartstobeconvertedinto kinetic energy and the Wein fireball begins to expand. As a result of this expansion, temperature decreases and bulk Lorentz factorincreasesatthefirststate. Theinitialopticaldepthis[19,20] n σ r τ (cid:39) e,o T o , (1) o Γ W,o (cid:113) whereσ =6.65×10−25cm2istheThompsoncrosssection,Γ =1/ 1−β2 istheinitialLorentzfactoroftheplasma T W,o W,o andn istheinitialelectrondensitywhichisgivenby e,o 1 1 (cid:18)m (cid:19)(cid:18)r (cid:19)2(cid:18) L (cid:19) n = p g j , (2) e,o 4σ G M Γ2 β (cid:104)γ (cid:105) m r L T N W,o W,o e,o e o Edd whereL isthetotalluminosityofthejet,L =2πm r /σ istheEddingtonluminosity,(cid:104)γ (cid:105)=K (1/θ )/K (1/θ )−θ j Edd p g T e,o 3 o 2 o o is the average Lorentz factor of electron thermal velocity, θ = T /m is the initial temperature normalized to electron mass o o e (m ), m is the proton mass and K is the modified Bessel function of integral order. For a steady and spherical flow, the e p i conservationequationsofenergyandmomentumcanbewrittenas 1 d [r2(ρ +P )Γ2 β ]=0, (3) r2dr T T W W 1 d dP [r2(ρ +P )Γ2 β2 ]+ T =0. (4) r2dr T T W W dr Hereρ isthetotalenergydensityofpairs(ρ =2m n (cid:104)γ (cid:105))andphotons(ρ =3m n θ)andP isthetotalpressureofpairs T e e e e γ e γ T (P = 2m n θ) and photons (P = m n θ). The number density of electrons and photons in the Wein equilibrium, and the e e e γ e γ numberconservationequationsaregivenby[35] n K (1/θ) e = 2 ≡f(θ), (5) n 2θ2 γ and 1 d (r2n Γ β )=n˙ , (6) r2dr e W W e 1 d (r2n Γ β )=n˙ , (7) r2dr γ W W γ respectively. Takingintoaccountthemomentumconservationlaw 1dΓ+ 1 dPT =0,eqs. from(3)to(7)andfollowingto Γdr (ρT+PT) dr IwamotoandTakahara[19,20],itispossibletowritetheevolutionoftheLorentzfactor,thetemperatureandthetotalnumber densityofphotonsandpairsas r Γ =Γ , (8) W 0,Wr 0 r θ =θ 0, (9) 0 r and (cid:16)r (cid:17)3 n +2n =3n 0 , (10) γ e e,0 r respectively. Eqs. (8),(9)and(10)representtheevolutionoftheWeinfireballintheopticalthickregime. AstheWeinfireball expands,thephotondensity,opticalthicknessandtemperaturedecrease.Atacertainradius,flowbecomesopticallythin(τ =1), thenphotonemissionwillberadiatedaway. Definingthisradiusasthephotosphereradius(r=r ),thenfromeqs. (1),(2),(5) ph and(10),thephotondensity,radius,temperatureandLorentzfactoratthephotospherecanbewrittenas θ 3L n = 0 γ , (11) γ θ (1+2f(θ ))4πr2 (cid:15)Γ2 β m (cid:104)γ (cid:105) ph ph ph W,ph W,ph e e,o 4 r (cid:39)τ1/3r , (12) ph o o θ =τ−1/3θ , (13) ph o o and Γ =τ1/3Γ , (14) W,ph o W,o respectively. HereL =(cid:15)L istheluminosityradiatedatthephotosphereand(cid:15)isaparameter0≤(cid:15)≤1. Onecanseethatn , γ j γ r , θ and Γ only depend on the initial conditions (θ , r , Γ and L /L ). The numerical results exhibit a radiation ph ph ph o o W,o j Edd centeredaround5MeV[19]. Hence,theoutputspectrumofsimulatedphotonscouldbedescribedby (cid:26) dnγ((cid:15)γ) ∝ ((cid:15)γ)−βl, if (cid:15)γ <(cid:15)γb, (15) d(cid:15)γ ((cid:15)γb)−βl+βh((cid:15)γ)−βh, if (cid:15)γ ≥(cid:15)γb, whereβ (cid:39) 2,β (cid:39) 1[36]andthepeakenergyaround(cid:15) (cid:39)5MeV.Alsowecandefinetheopticalthicknesstopaircreation h l γb aroundthepeakas[37] σ (cid:15) r τ (cid:39) T γb ph n , (16) γγ 4m Γ γ e W,ph wherewehavetakenintoaccountthatthecrosssectionofpairproductionreachesamaximumvalueclosetotheThomsoncross section. Additionally,itisveryimportanttosaythatintheopticallythickregimen,theangulardistributionofMeVphotonsis almostisotropic,whereasintheopticallythinregimeithasaskewdistribution. Specificallyatadistancer (cid:29) r ,theoutgoing g photonsaredistributedintherange0◦ ≤φ ≤60◦[19]. ph II.2. Geometricalconsiderationsandassumptions We consider a spherical emitting region with a uniform particle density and radius r , located at a distance R from the BH j and moving at relativistic speed with bulk Lorentz factor Γ , as shown in fig. 2 (above) [38, 39]. Seed photons coming from j thephotosphereofthe’Wein’fireballwillinteractwithFermi-acceleratedelectronsandprotonsinjectedintheemittingregion. Taking into account R (cid:29) r , these photons (with an angular distribution; Iwamoto and Takahara [19]) will arrive and go ph throughtheemittingregionfollowingdifferentpathswithanangle(φ );longerpathsaroundthecenterandshorteronesasthe ph trajectories get farther away from the center. To estimate the distances of any path, we find the common points of the circle, (y−y(cid:48))2+(x−x(cid:48))2 = r2,andthestraightline,y−y = m(x−x ),throughtheirintersections(pointsaandb)(seefig. 0 0 j 0 0 2(below)). Asshowninfig. 2(below),weassumey(cid:48) = R−r ,x(cid:48) = 0 = x = y = 0andm = π/2−φ . Solvingthis 0 ph 0 0 0 ph equationsystem,weobtainthatthedistancebetweentwopoints(aandb)asafunctionofφ canbewrittenas ph (cid:115) (cid:2) (cid:3) 4(R−r )2−4(1+tanφ2 ) (R−r )2−r2 d= ph ph ph j . (17) 1+tanφ2 ph Photonscomingfromthe’Wein’fireballwillbeabletogoornotthroughtheemittingregiondependingontheirpaths(distances) andthemeanfreepathλ =1/(σ n )insideofit. Forinstance,photosphericphotonsgoingthroughtheemittingregionwill γ,e T e be absorbed in it if the paths are longer than the mean free path (d > λ ); otherwise, (d < λ ), they will be transmitted. γ,e γ,e Definingtheopticaldepthasafunctionofthesetwoquantities(dandλ ) γ,e d τ = (18) λ γ,e (cid:115)(R−r )2−(1+tanφ2 ) (cid:2)(R−r )2−r2(cid:3) =2σ n ph ph ph j , T e 1+tanφ2 ph itispossibletorelatethisanglewiththeelectronparticledensity. Takingintoaccountthatamediumissaidtobeopticallythick or opaque when τ > 1 and optically thin or transparent when τ < 1, we write the electron particle density for this transition (τ =1)as (cid:115) 1 1+tanφ2 ne = 2σT (R−rph)2−(1+tanφ2ph)ph(cid:2)(R−rph)2−rj2(cid:3). (19) Thepreviousequationgivesthevaluesofelectrondensityforwhichphotosphericphotonsgoingthroughtheemittingregion withaparticularanglecouldbetransmittedorabsorbed. 5 II.3. Pγinteractions Onceemitted,theMeV-peakphotonsalsointeractwithprotonsacceleratedattheemittingregion.Assumingabaryoncontent inthisregion[32,40–43],acceleratedprotonslosetheirenergiesbyelectromagneticandhadronicinteractions. Electromagnetic interactionsuchasprotonsynchrotronradiationandinverseComptonwillnotbeconsideredhere,weonlyassumethatprotons willbecooleddownbypγ interactions. Theopticaldepthofthisprocessis r n σ τ (cid:39) j γ pγ, (20) pγ Γ j where the photon density (n ) is given by eq. (11) and σ is the cross section for pγ interactions. The photopion process γ pγ pγ →Nπhasathresholdphotonenergy(cid:15) =m +m2/2m wheretheneutralandchargedpionmassarem =135MeV th π π p π0 andm =139.6MeV,respectively[44]. Thetwomaincontributionstothetotalphotopioncrosssectionatlowenergiescome π0 fromtheresonanceproductionanddirectproduction. ResonanceProduction(∆+). Thephotopionproductionisgiventhroughtheresonances∆+(1.232),∆+(1.700),∆+(1.905) and∆+(1.950)wherethemassm andLorentzianwidthΓ forallresonancesarereportedbyMu¨ckeetal.[45]. Theπ0 ∆+ ∆+ thresholdis(cid:39)145MeV,andonlythepγ −→∆+ −→pπ0iscinematicallyallowed. Direct Production. This channel exhibits the non resonant contribution to direct two-body channels consisting of outgoing chargedpions. Thischannelincludesthereactionpγ →nπ+,pγ →∆++π−,andpγ →∆π0. Fortheπ+ threshold,thedirect pionchannelpγ →nπ+isdominantforanenergybetween0.150GeVand0.25GeV. Othercontributionstothetotalphotopioncrosssection(multipionproductionanddiffraction)areonlyimportantathighener- gies. II.3.1. π0decayproducts Neutral pion decays into two photons, π0 → γγ, and each photon carries less than 15% of the proton’s energy (cid:15) (cid:39) γ ξ /2E =0.15E . Theπ0coolingtimescaleforthisprocessis[46,47] π0 p p 1 (cid:90) (cid:90) dn t(cid:48)−1 = d(cid:15)σ ((cid:15))ξ (cid:15) dxx−2 γ((cid:15) =x), (21) π0 2Γ2 π π0 d(cid:15) γ p γ where Γ is the proton Lorentz factor, σ ((cid:15) ) (cid:39) σ is the cross section of pion production. The target photon spectrum p π γ pγ dn /d(cid:15) isgivenbyeq. (15)whichisnormalizedthrough(cid:82)∞ (cid:15) (dn /d(cid:15) )d(cid:15) =U (cid:39)(cid:15) n /2Γ2 . Thethresholdforpγ γ γ 0 γ γ γ γ γ γb γ W,ph interactioniscomputedthroughtheminimumprotonenergy,whichcanbewrittenas (m2 +2m m ) E =Γ Γ π0 p π0 p,min j W,ph 2(cid:15) (1−cosφ) γb Γ Γ (cid:15)−1 (cid:39)0.14TeV j W,ph γb,MeV , (22) (1−cosφ) whereφistheangleofthisinteraction. Thephotopionproductionefficiencyfπ0 = tt(cid:48)(cid:48)d canbedefinedthroughthedynamical π0 (t(cid:48) (cid:39) r /Γ )andphotopiontimescales[48,49] d j j fπ0 = tt(cid:48)π(cid:48)d0 (cid:39) rp24hΓnjγΓσWpγ,pξhπr0j∆(cid:15)(cid:48)p(cid:15)e(cid:48)paekak ×(cid:40)(cid:16)1(cid:15)π0(cid:15),0γ,c(cid:17)−1(cid:16)(cid:15)π(cid:15)00,γ(cid:17) (cid:15)(cid:15)ππ00,,γγ,c<<(cid:15)π(cid:15)0π,0γ,,γc, wherethebreakphotopionenergyisgivenby (cid:15) (cid:39)0.25Γ Γ ξ (m2 −m2)(cid:15) −1, (23) π0,γ,c j W,ph π0 ∆+ p γb (cid:15)(cid:48) and∆(cid:15)(cid:48) correspondtotheenergyandthewidtharoundtheresonanceoftotalcrosssection,respectively. Takinginto peak peak accounttheprotonspectrumasasimplepowerlaw (cid:18)dN(cid:19) (cid:18) E (cid:19)−α =A p , (24) dE p GeV p thephotopionproductionefficiency(f ),andf E (dN/dE) dE = (cid:15) (dN/d(cid:15)) d(cid:15) ,thenwecanwritethepho- π0 π0 p p p π0,γ π0,γ π0,γ topionspectrumas (cid:18)(cid:15)2 dN(cid:19) =A ×(cid:16)(cid:15)π0(cid:15),0γ,c(cid:17)−1(cid:16)(cid:15)π(cid:15)00,γ(cid:17)−α+3 (cid:15)π0,γ <(cid:15)π0,γ,c d(cid:15) π0,γ p,γ (cid:16)(cid:15)π(cid:15)00,γ(cid:17)−α+2 (cid:15)π0,γ,c <(cid:15)π0,γ, 6 withtheproportionalityconstantgivenby (cid:16) (cid:17)1−α 3r2 n (cid:15)2σ 2 ∆(cid:15)(cid:48) A (cid:39) ph γ 0 pγ ξπ0 peak A . (25) p,γ 4Γ Γ r (cid:15)(cid:48) p j W,ph j peak Fromeqs. (24)and(25),theprotonluminosityL (cid:39)4πD2F =4πD2E2(cid:0)dN(cid:1) canbewrittenas p z p z p dE p (cid:16) (cid:17)α−1 L (cid:39) 8πΓjΓW,phrjDz2 ξπ20 (cid:15)(cid:48)peak A (cid:18) Ep (cid:19)2−α, (26) p (α−2)r2 n σ ∆(cid:15)(cid:48) p,γ GeV ph γ pγ peak whereA isobtainedthroughthephotopionspectrum(eq. 25). p,γ II.3.2. π±decayproducts Muons and positrons/electrons are produced through charged pion decay products (π± → µ± +ν /ν¯ → e± +ν /ν¯ + µ µ µ µ E(cid:48) ν¯ /ν +ν /ν¯ ). Althoughmuon’slifetimet(cid:48) = µ+ τ isveryshortwithτ =2.2µsandm = 105.7MeV,muons µ µ e e µ+,dec mµ µ+ µ+ µ couldberapidlyacceleratedforashortperiodoftimeinthepresenceofamagneticfield(B(cid:48))andradiatephotonsbysynchrotron emission(cid:15)(cid:48) = 3πqeB(cid:48) E(cid:48)2 [31,34,40,50]. Aftermuonsdecay,positrons/electronscouldradiatephotons(cid:15)(cid:48) = 3πqeB(cid:48) E(cid:48)2 at γ 8m3 µ γ 8m3 e µ e thesameplace. Therefore, muonsandpositrons/electronscooldowninaccordancewiththecoolingtimescalecharacteristic, t(cid:48) = 6πm4/(σ m2B(cid:48)2E(cid:48))uptoamaximumaccelerationtimescalegivenbyt(cid:48) = 16E(cid:48)/(3q B(cid:48)). Hereq isthe syn,i i T e i syn,max i e e elementarychargeandthesubindexiisforµande. Hence,thebreakandmaximumphotonenergiesintheobservedframeare m5 (cid:15) = i(cid:15) , γ,c m5 γ,c−e me (cid:15) = i(cid:15) , (27) γ,max m γ,max−e e where we have taken into account the Lorentz factor ratios γ = m2/m2γ . Assuming that Fermi-accelerated muons and i i e e electrons/positrons within a volume (cid:39) 4πr3/3 with energies γ m and maximum radiation powers P (cid:39) dE/dt are j i i ν,max,i (cid:15)γ(γi) well described by broken power laws N (γ ): γ−α for γ < γ and γ γ−(α+1) for γ ≤ γ < γ , then the observed i i i i i,b i,b i i,b i i,max synchrotronspectrumcanbewrittenas[51,52] (cid:16) (cid:17)−1/2(cid:16) (cid:17)−(α−3)/2 (cid:18)(cid:15)2 dN(cid:19) =A × (cid:15)(cid:15)γ0,c (cid:15)(cid:15)γ0 (cid:15)γ <(cid:15)γ,c, d(cid:15) syn,γ syn,γ−i (cid:16)(cid:15)(cid:15)γ0(cid:17)−(α−2)/2 (cid:15)γ,c <(cid:15)γ <(cid:15)γ,max, with 4σ m4 A = T i r3D−2Γ (cid:15) B(cid:48)N . (28) syn,γ−i 27π2q m3 j z j γ,c−e i e e HereN isthenumberofradiatingmuonsand/orpositrons/electrons. i III. NEUTRINOEMISSION Althoughinthecurrentmodeltherearemultipleplaceswhereneutrinoswithdifferentenergiescouldbegenerated,onlywe aregoingtoconsiderthethermalneutrinoscreatedattheinitialstageoftheWeinfireballandtheHEneutrinosgeneratedbypγ interactionsattheemittingregion(seefig. 2(above)). III.1. ThermalNeutrinos At the initial stage of the Wein fireball, thermal neutrinos are created by electron-positron annihilation (e+ +e− → Z → ν +ν¯ ). Byconsideringasmallamountofbaryons,neutrinoscouldbegeneratedbyprocessesofpositroncaptureonneutrons j j (e++n→p+ν¯),electroncaptureonprotons(e−+p→n+ν )andnucleon-nucleonbremsstrahlung(NN →NN+ν +ν¯ ) e e j j 7 forj =e,ν,τ. Electronantineutrinoscanbedetectedindirectly(inwaterCherenkovdetector)throughtheinteractionswiththe positronscreatedbytheinverseneutrondecayprocesses(ν¯ +p→n+e+). Theexpectedeventratecanbeestimatedby e (cid:90) (cid:18)dN(cid:19) N =T ρ N V σν¯ep(E ) dE , (29) ev N A w cc ν dE ν Eν¯e ν where N = 6.022 × 1023 g−1 is the Avogadro’s number, ρ = 2/18gcm−3 is the nucleons density in water [53], V A N w is the volume of the detector, σν¯ep (cid:39) 9 × 10−44E2 /MeV2cm2 is the cross section [54, 55], T is the observation time cc ν¯e and (dN/dE) is the neutrino spectrum. Taking into account the relation between the luminosity L and neutrino flux F , ν ν ν L =4πD2F (<E >)=4πD2(E2dN/dE) ,thenthenumberofeventsexpectedwillbe ν z ν z ν (cid:18) (cid:19) T dN N (cid:39) V N ρ σν¯ep <E >2 ev <E > w A N cc ν¯e dE ν¯e ν¯e T (cid:39) V N ρ σν¯epL . (30) 4πD2 <E > w A N cc ν¯e z ν¯e Here we have averaged over the electron antineutrino energy. After thermal neutrinos are produced, they oscillate firstly in matter(duetoWeinplasma)andsecondlyinvacuumontheirpathtoEarth. III.1.1. Neutrinoeffectivepotential As known, neutrino properties get modified when they propagate in a heat bath. A massless neutrino acquires an effective mass and undergoes an effective potential in the background. Because electron neutrino (ν ) interacts with electrons via both e neutralandchargedcurrents(CC),andmuon/tau(ν /ν )neutrinosinteractonlyviatheneutralcurrent(NC),ν experimentsa µ τ e differenteffectivepotentialincomparison with ν and ν . Thiswould induceacoherenteffectinwhichmaximalconversion µ τ ofν intoν (ν )takesplaceevenforasmallintrinsicmixingangle[24]. Ontheotherhand,althoughneutrinocannotcouple e µ τ directlytothemagneticfield, itseffectwhichisentangledwiththemattercanbeundergonebymeansofcouplingtocharged particlesinthemedium. Recently,Fraija[27]derivedtheneutrinoself-energyandeffectivepotentialuptoorderm−4atstrong, W moderateandweakmagneticfieldapproximationasafunctionoftemperature,chemicalpotential(µ)andneutrinoenergy(E ) ν for moving neutrinos along the magnetic field. In this approach, we will use the neutrino effective potential in the weak field approximation,whichisgivenby V = √2GF m3e(cid:34)(cid:88)∞ (−1)lsinhα(cid:40)(cid:18)2+ m2e (cid:18)3+4 Eν2 (cid:19)(cid:19)×(cid:18)K0(σl) +2K1(σl)(cid:19)−2(cid:18)1+ m2e (cid:19) B K (σ)(cid:41) eff π2 l m2 m2 σ σ2 m2 B 1 l l=0 W W l l W c −4 m2e Eν (cid:88)∞ (−1)lcoshα(cid:40)(cid:18) 2 − B (cid:19)K (σ)+(cid:18)1+ 4 (cid:19)K1(σl)(cid:41)(cid:35). m2 m l σ2 4B 0 l σ2 σ W e l=0 l c l l (31) Takingintoaccounttheconditionthattheplasmahasequalnumberofelectronsandpositrons(N −N¯ =0),thentheneutrino e e effectivepotentialisreducedto V =−4√2GF m4eEν (cid:88)∞ (−1)l(cid:40)(cid:18) 2 − B (cid:19)K (σ)+(cid:18)1+ 4 (cid:19)K1(σl)(cid:41), eff π2m2 σ2 4B 0 l σ2 σ W l=0 l c l l (32) √ where K is once again the modified Bessel function of integral order i, G = 2g2/8m2 is the Fermi coupling constant, i F W B =m2/eisthecriticalmagneticfield,m istheW-bosonmass,α =(l+1)µ/(θ m )andσ =(l+1)/θ . c e W l o e l o III.1.2. Resonantoscillations Whenneutrinooscillationsoccurinmatter,aresonancecouldtakeplacethatwoulddramaticallyenhancetheflavormixing and lead to a maximal conversion from one neutrino flavor to another. This resonance depends on the effective potential and neutrino oscillation parameters. The equations that determine the neutrino evolution in matter for two and three flavors are relatedasfollows[27,56]. 8 III.1.2.1. Two-NeutrinoMixing. Theevolutionequationforneutrinosthatpropagateinthemedium(ν ↔ ν )isgiven e µ,τ by[57] i(cid:18)ν˙e(cid:19)=(cid:32)Veff − δ2mEν2 cos2ψ δ4mEν2 sin2ψ(cid:33)(cid:18)νe(cid:19), (33) ν˙µ δm2 sin2ψ 0 νµ 4Eν whereδm2 isthemassdifference,ψ istheneutrinomixingangleandV istheneutrinoeffectivepotential(eqs. 31and32). eff Theoscillationlengthfortheneutrinoisgivenby 4πE l = ν , (34) osc (cid:113) δm2 cos22ψ(1− 2EνVeff )2+sin22ψ δm2cos2ψ andtheconversionprobabilityby δm4sin22ψ (cid:18)ωt(cid:19) P (t)= sin2 , (35) νe→νµ(ντ) 4ω2E2 2 ν (cid:112) withω= (V −(δm2/2E )cos2ψ)2+(δm4/4E2)sin22ψ. Takingintoaccounttheresonancecondition eff ν ν δm2 V =5×10−7eV eV cos2ψ, (36) eff E ν,MeV thentheresonancelength(l )canbewrittenas res 4πE l = ν . (37) res δm2sin2ψ Thebestfitvaluesofthetwoneutrinomixingare:SolarNeutrinos:δm2 =(5.6+1.9)×10−5eV2andtan2ψ =0.427+0.033[58], −1.4 −0.029 Atmospheric Neutrinos: δm2 = (2.1+0.9)×10−3eV2 and sin22ψ = 1.0+0.00 [59] and Accelerator Neutrinos: δm2 ≈ −0.4 −0.07 0.5eV2andsin22ψ ∼0.0049[60,61]. III.1.2.2. Three-NeutrinoMixing. Inthethree-flavorframework,theevolutionequationoftheneutrinosysteminthematter canbewrittenas d(cid:126)ν i =H(cid:126)ν, (38) dt where the state vector is (cid:126)ν ≡ (ν ,ν ,ν )T, the effective Hamiltonian is H = U ·Hd ·U† +diag(V ,0,0) with Hd = e µ τ 0 eff 0 1 diag(−δm2 ,0,δm2 ), the neutrino effective potential V is defined by eqs. (31) and (32) and U is the three neutrino 2Eν 21 32 eff mixingmatrix[62–65]. Theoscillationlengthfortheneutrinoisgivenby 4πE /δm2 l = ν 32 . (39) osc (cid:113) cos22ψ13(1− δm2322EcνoVse2ψ13)2+sin22ψ13 Theresonanceconditionandresonancelengthare δm2 V −5×10−7 32,eV cos2ψ =0, (40) eff E 13 ν,MeV and 4πE /δm2 l = ν 32, (41) res sin2ψ 13 respectively.Inadditiontotheresonancecondition,thedynamicsofthistransitionfromoneflavortoanothermustbedetermined byadiabaticconversionwhichisgivenby κres ≡ π2 (cid:18)δ2mE232 sin2ψ13(cid:19)2(cid:12)(cid:12)(cid:12)(cid:12)dVderff(cid:12)(cid:12)(cid:12)(cid:12)−1 ≥1. ν π2 (cid:18)δ2mE232 sin2ψ13(cid:19)2 (cid:18)θoθ2ro(cid:19)(cid:12)(cid:12)(cid:12)(cid:12)∂V∂eθff(cid:12)(cid:12)(cid:12)(cid:12)−1 ≥1. ν (42) Combining solar, atmospheric, reactor and accelerator parameters, the best fit values of the three neutrino mixing are, for sin2 <0.053:∆m2 =(7.41+0.21)×10−5eV2andtan2ψ =0.446+0.030and,forsin2 <0.04:∆m2 =(2.1+0.5)×10−3eV2 13 21 −0.19 12 −0.029 13 23 −0.2 andsin2ψ =0.50+0.083,[58,66]. 23 −0.093 9 III.1.2.3. NeutrinoflavorratioexpectedonEarth. Theprobabilityforaneutrinotooscillatefromaflavorstateαtoanother flavorstateβ initspath(fromthesourcetoEarth)is (cid:32) (cid:33) P =δ −4(cid:88) U U U U sin2 δm2ijL , (43) να→νβ αβ αi βi αj βi 4E ν j>i whereU aretheelementsofthethree-neutrinomixingmatrix[62–65]. Usingthesetofoscillationparameters[58,66], the ij mixingmatrixcanbewrittenas (cid:32) 0.817 0.545 0.191(cid:33) U = −0.505 0.513 0.694 . (44) 0.280 −0.663 0.694 Additionally, averagingthetermsin∼ 0.5[67]fordistanceslongerthanthesolarsystem, theneutrinoflavorvectoratsource (ν ,ν ,ν ) andEarth(ν ,ν ,ν ) arerelatedthroughtheprobabilitymatrixgivenby e µ τ source e µ τ Earth (cid:32)ν (cid:33) (cid:32)0.534 0.266 0.200(cid:33)(cid:32)ν (cid:33) e e ν = 0.266 0.367 0.368 ν . (45) µ µ ν 0.200 0.368 0.432 ν τ Earth τ source III.2. High-energyneutrinos HE neutrinos are created in pγ interactions through nπ+ channel. The charged pion decays into leptons and neutrinos, π± → e± +ν /ν¯ +ν¯ /ν +ν /ν¯ . AssumingthatTeVflarescanbedescribedasπ0 decayproducts, wecanestimatethe µ µ µ µ e e numberofneutrinosassociatedtotheseflares[68–70]. Forpγ interactions,theneutrinoflux,dNν/dEν = AνEν−αν,isrelated withthephotopionfluxby[see,e.g.13,71,andreferencetherein] (cid:90) (cid:18)dN(cid:19) 1(cid:90) (cid:18)dN(cid:19) E dE = (cid:15) d(cid:15) . (46) dE ν ν 4 d(cid:15) π0,γ π0,γ ν π0,γ Assuming that the spectral indices of neutrino and photopion spectra are similar α (cid:39) α [72], taking into account that each ν neutrinocarries∼5%oftheprotonenergy(E (cid:39)1/20E )[73]andalsofromeq. (25),wecanwritethenormalizationfactors ν p ofHEneutrinoandphotopionas 1 A (cid:39) A (10ξ )−α+2 TeV−2, (47) ν 4 p,γ π0 withA givenbyEq. (25). Therefore,wecouldinferthenumberofeventsexpectedthrough p,γ (cid:90) ∞ (cid:18)dN(cid:19) N ≈Tρ N V σ (E ) dE , (48) ev ice A i νN ν dE ν Eth ν whereE isthethresholdenergy,T correspondstotheobservationtimeoftheflare[13],σ (E )=6.78×10−35(E /TeV)0.363 th νN ν ν cm2isthechargedcurrentcrosssection[74],ρ =0.9gcm−3isthedensityoftheiceandV istheeffectivevolumeofdetector, ice i thentheexpectednumberofneutrinosinferredfromthisflareis Tρ N V (cid:18)E (cid:19)β N ≈ ice A i A (6.78×10−35cm2) ν,th TeV, (49) ev α−1.363 ν TeV withthepowerindexβ =−α+1.363andA givenbyeq.(47). ν IV. ULTRA-HIGH-ENERGYCOSMICRAYS IthasbeensuggestedthatTeVγ-rayobservationsfromlow-redshiftsourcescouldbegoodcandidatesforstudyingUHECRs[75]. Also special features in these γ-ray observations coming from blazars favor acceleration of UHECRs in blazars [76]. In the current model we considerthattheprotonspectrumisextendedupto∼ 1020 eVenergiesandbasedonthisassumption, wecalculatethenumberofevents expectedinTAexperiment. 10 IV.1. HillasCondition By considering that the BH has the power to accelerate particles up to UHEs by means of Fermi processes, protons accelerated in the emittingregionarelimitedbytheHillascondition[77]. AlthoughthisrequirementisanecessaryconditionandaccelerationofUHECRsin AGNjets[75,76,78],itisfarfromtrivial(seee.g.,Lemoine&Waxman2009foramoredetailedenergeticslimit[79]). TheHillascriterion saysthatthemaximumprotonenergyachievedis E =eB(cid:48)r Γ , (50) p,max j j whereB(cid:48)isthestrengthofthemagneticfield.Alternatively,duringflaringintervalsforwhichtheapparentluminositycanachieveL∗ ≈1047 ergs−1andfromtheequipartitionmagneticfield(cid:15) ,themaximumenergyofUHECRscanbederivedandwrittenas[43,80] B (cid:112) E ≈1.0×1021 e (cid:15)BL∗/1047ergs−1 eV, (51) max Φ Γ j whereΦ(cid:39)1istheaccelerationefficiencyfactor. IV.2. Deflections ThemagneticfieldsintheUniverseplayimportantrolesbecauseUHECRsaredeflectedbythem.UHECRstravelingfromsourcetoEarth arerandomlydeviatedbygalactic(B )andextragalactic(B )magneticfields.Byconsideringaquasi-constantandhomogeneousmagnetic G EG fields,thedeflectionangleduetotheB is G ψ (cid:39)3.8◦(cid:18) Ep,th (cid:19)−1(cid:90) LG| dl × BG |, (52) G 57EeV kpc 4µG 0 andduetoB canbewrittenas[81] EG (cid:18) E (cid:19)−1(cid:18)B (cid:19) (cid:18) L (cid:19)1/2 (cid:18) l (cid:19)1/2 ψ (cid:39)4◦ p,th EG EG c , (53) EG 57EeV 1nG 100Mpc 1Mpc whereL correspondstothedistanceofourGalaxy(20kpc)andl isthecoherencelength. Duetothestrengthofextragalactic(B (cid:39)1 G c EG nG)andgalactic(B (cid:39)4µG)magneticfields,UHECRsaredeflected(ψ (cid:39)4◦andψ (cid:39)3.8◦)betweenthetruedirectiontothesource, G EG G andtheobservedarrivaldirection,respectively.EvaluationofthesedeflectionangleslinksthetransientUHECRsourceswiththehigh-energy neutrinoandγ-rayemission.Regardingeqs.(52)and(53),itisreasonabletoassociateUHECRslyingwithin5◦ofasource. IV.3. Expectednumberofevents TA experiment located in Millard Country, Utah, is made of a scintillator surface detector (SD) array and three fluorescence detector (FD)stations[82]. Withanareaof∼700m2, itwasdesignedtostudyUHECRswithenergiesabove57EeV.Toestimatethenumberof UHECRsassociatedto”orphan”flares, wetakeintoaccounttheTAexposure, whichforapointsourceisgivenbyΞt ω(δ )/Ω, where op s Ξt =(5)7×102km2yr,t isthetotaloperationaltime(from2008May11and2013May4),ω(δ )isanexposurecorrectionfactorfor op op s thedeclinationofthesource[83]andΩ(cid:39)π.TheexpectednumberofUHECRsaboveanenergyE yields p,th N =F (TAExpos.)× N , (54) UHECR r p whereF isthefractionofpropagatingcosmicraysthatsurvivesoveradistance>D [84]andN iscalculatedfromtheprotonspectrum r z p extendeduptoenergieshigherthanE (eq.24).Theexpectednumbercanbewrittenas p,th Ξt ω(δ )(α−2) N =F op s L , (55) UHECR r 4π(α−1)Ωd2E p z p,th whereL isobtainedfromtheTeVγ-rayobservationsoftheflaringactivities(eq.26). p V. APPLICATIONTO1ES1959+650ANDMRK421 FollowingIwamotoandTakahara[19,20], wehaveconsideredthedynamicsofaplasmamadeofe± pairsandphotons, andgenerated bytheWeinequilibrium[35]. WehaveobtainedtheevolutionequationsofthebulkLorentzfactor(eq. 8),temperature(eq. 9)anddensity ofphotonsandpairs(eq. 10). Inparticular, wehavecomputedtheradius(eq. 12), temperature(eq. 13), Lorentzfactor(eq. 14)andthe photondensity(eq. 11)atthephotosphereasafunctionoftheinitialconditions(r ,Γ ,θ andL /L ). Byconsideringthevaluesof o W,o o j Edd initialradiusr =2r andLorentzfactorΓ =(3/2)1/2,weplot(seefig. 3)theinitialopticaldepth(left-handfigureabove)andphoton o g W,o density(right-handfigureabove)asafunctionofL /L andL ,respectively,andtheLorentzfactor(left-handfigurebelow)andradius j Edd γ

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.