ebook img

Cosmology PDF

114 Pages·2004·1.145 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cosmology

Cosmology Matthias Bartelmann Institut fu¨r Theoretische Astrophysik Universita¨t Heidelberg Contents 1 TheHomogeneousUniverse 4 1.1 GeometryandDynamics . . . . . . . . . . . . . . . . 5 1.1.1 Assumptions . . . . . . . . . . . . . . . . . . 5 1.1.2 Metric . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 Redshift . . . . . . . . . . . . . . . . . . . . . 7 1.1.4 Dynamics . . . . . . . . . . . . . . . . . . . . 8 1.1.5 RemarkonNewtonianDynamics . . . . . . . 9 1.2 Parameters,AgeandDistances . . . . . . . . . . . . . 11 1.2.1 FormsofMatter . . . . . . . . . . . . . . . . 11 1.2.2 Parameters . . . . . . . . . . . . . . . . . . . 12 1.2.3 ParameterValues . . . . . . . . . . . . . . . . 14 1.2.4 AgeandExpansionoftheUniverse . . . . . . 15 1.2.5 Distances . . . . . . . . . . . . . . . . . . . . 17 1.2.6 Horizons . . . . . . . . . . . . . . . . . . . . 20 1.3 ThermalEvolution . . . . . . . . . . . . . . . . . . . 21 1.3.1 Assumptions . . . . . . . . . . . . . . . . . . 21 1.3.2 QuantumStatistics . . . . . . . . . . . . . . . 21 1.3.3 PropertiesofIdealQuantumGases . . . . . . . 23 1.3.4 AdiabaticExpansionofIdealGases . . . . . . 26 1.3.5 ParticleFreeze-Out . . . . . . . . . . . . . . . 26 1.4 RecombinationandNucleosynthesis . . . . . . . . . . 29 1.4.1 TheNeutrinoBackground . . . . . . . . . . . 29 1.4.2 PhotonsandBaryons . . . . . . . . . . . . . . 30 1 CONTENTS 2 1.4.3 TheRecombinationProcess . . . . . . . . . . 31 1.4.4 Nucleosynthesis . . . . . . . . . . . . . . . . 34 2 TheInhomogeneousUniverse 38 2.1 TheGrowthofPerturbations . . . . . . . . . . . . . . 39 2.1.1 NewtonianEquations . . . . . . . . . . . . . . 39 2.1.2 PerturbationEquations . . . . . . . . . . . . . 40 2.1.3 DensityPerturbations . . . . . . . . . . . . . . 41 2.1.4 VelocityPerturbations . . . . . . . . . . . . . 43 2.2 StatisticsandNon-linearEvolution . . . . . . . . . . . 45 2.2.1 PowerSpectra . . . . . . . . . . . . . . . . . 45 2.2.2 EvolutionofthePowerSpectrum . . . . . . . 46 2.2.3 TheZel’dovichApproximation . . . . . . . . . 48 2.2.4 NonlinearEvolution . . . . . . . . . . . . . . 49 2.3 SphericalCollapse . . . . . . . . . . . . . . . . . . . 52 2.3.1 CollapseofaHomogeneousOverdenseSphere 52 2.3.2 CollapseParameters . . . . . . . . . . . . . . 53 2.3.3 ThePress-SchechterMassFunction . . . . . . 55 2.4 HaloFormationasaRandomWalk . . . . . . . . . . . 57 2.4.1 Correct Normalisation of the Press-Schechter MassFunction . . . . . . . . . . . . . . . . . 57 2.4.2 ExtendedPress-SchechterTheory . . . . . . . 58 2.4.3 HaloDensityProfiles . . . . . . . . . . . . . . 60 3 TheEarlyUniverse 63 3.1 StructuresintheCosmicMicrowaveBackground . . . 64 3.1.1 Simplified Theory of CMB Temperature Fluc- tuations . . . . . . . . . . . . . . . . . . . . . 64 3.1.2 CMB Power Spectra and Cosmological Param- eters . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.3 Foregrounds . . . . . . . . . . . . . . . . . . 71 3.2 CosmologicalInflation . . . . . . . . . . . . . . . . . 72 CONTENTS 3 3.2.1 Problems . . . . . . . . . . . . . . . . . . . . 72 3.2.2 Inflation . . . . . . . . . . . . . . . . . . . . . 74 3.3 DarkEnergy . . . . . . . . . . . . . . . . . . . . . . . 81 3.3.1 ExpansionoftheUniverse . . . . . . . . . . . 81 3.3.2 ModifiedEquationofState . . . . . . . . . . . 82 3.3.3 ModelsofDarkEnergy . . . . . . . . . . . . . 83 3.3.4 EffectsonCosmology . . . . . . . . . . . . . 84 4 TheLateUniverse 87 4.1 GalaxiesandGas . . . . . . . . . . . . . . . . . . . . 88 4.1.1 EllipticalsandSpirals . . . . . . . . . . . . . 88 4.1.2 Spectra,Magnitudesand K-Corrections . . . . 89 4.1.3 LuminosityFunctions . . . . . . . . . . . . . 91 4.1.4 CorrelationFunctionsandBiasing . . . . . . . 93 4.1.5 InterveningGas . . . . . . . . . . . . . . . . . 95 4.2 GravitationalLensing . . . . . . . . . . . . . . . . . . 98 4.2.1 Assumptions,IndexofRefraction . . . . . . . 98 4.2.2 DeflectionAngleandLensEquation . . . . . . 99 4.2.3 LocalLensMappingandMassReconstruction 101 4.2.4 DeflectionbyLarge-ScaleStructures . . . . . 102 4.2.5 Limber’s Equation and Weak-Lensing Power Spectra . . . . . . . . . . . . . . . . . . . . . 103 4.3 GalaxyClusters . . . . . . . . . . . . . . . . . . . . . 106 4.3.1 GalaxiesinClusters . . . . . . . . . . . . . . 106 4.3.2 X-RayEmission . . . . . . . . . . . . . . . . 108 4.3.3 GravitationalLensingbyGalaxyClusters . . . 110 4.3.4 Sunyaev-Zel’dovichEffects . . . . . . . . . . 111 4.3.5 ClustersasCosmologicalTracers . . . . . . . 112 4.3.6 ScalingRelations . . . . . . . . . . . . . . . . 112 Chapter 1 The Homogeneous Universe 4 CHAPTER1. THEHOMOGENEOUSUNIVERSE 5 1.1 Geometry and Dynamics 1.1.1 Assumptions • cosmologyrestsontwofundamentalassumptions: 1. when averaged over sufficiently large scales, the observable properties of the Universe are isotropic, i.e. independent of direction; it remains to be clarified what sufficiently large scales are; nearby galaxies are very anisotropically distributed, distant If the universe is isotropic about all galaxiesapproachisotropy,themicrowavebackgroundisal- points,itmustbehomogeneous. mostperfectlyisotropic 2. ourpositionintheUniverseisbynomeanspreferredtoany other(cosmologicalprinciple); reflects Copernican revolution of the world model, when it was realised that the Earth is not at the centre of the Uni- verse; by the second assumption, the first must hold for every observer in the Universe; if the Universe is in fact isotropic around all of its points, it is also homogeneous; thus, these two assumptions The galaxy distribution is mani- areoftenphrasedas festlyanisotropic... theUniverseishomogeneousandisotropic • theseareboldassumptions,whichhavetobejustified;obviously, an ideally homogeneous and isotropic universe would not allow ustoexist;itneedstobecarefullystudiedhowanidealisedworld model following from these two assumptions can accomodate structures ... butthemicrowavebackgroundis phantasticallyisotropic. • ofthefourinteractions(strong,weak,electromagneticandgravi- tational), strong and weak are limited to length scales typical for elementary-particle interactions; electromagnetism is limited in range by the shielding of opposite charges, although magnetic fields can bridge very large scales; the remaining force relevant forcosmologyisgravity • gravity is described by general relativity; Newtonian gravity was constructedforisolatedbodiesandhasfundamentaldifficultiesin explainingspacefilledwithhomogeneousmatter • general relativity describes space-time as a four-dimensional manifold whose metric tensor g is a dynamical field; its dy- µν namics is governed by Einstein’s field equations which couple themetrictothematter-energycontentofspace-time CHAPTER1. THEHOMOGENEOUSUNIVERSE 6 • as the structure of space-time determines the motion of matter and energy, which determine the structure of space-time, general relativityisinevitablynon-linear(incontrasttoelectrodynamics); solutionsofEinstein’sfieldequationsarethusthustypicallyvery difficulttoconstruct 1.1.2 Metric • duetosymmetry,the4×4tensorg hastenindependentcompo- µν nents, the time-time component g , the three space-time compo- 00 nentsg ,andthesixspace-spacecomponentsg 0i ij • the two fundamental assumptions greatly simplify the metric; phrasedinamorepreciselanguage,theyread 1. when averaged over sufficiently large scales, there exists a mean motion of matter and energy in the Universe with re- specttowhichallobservablepropertiesareisotropic; 2. all fundamental observers, i.e. imagined observers follow- ing this mean motion, experience the same history of the Universe,i.e.thesameaveragedobservableproperties,pro- videdtheysettheirclockssuitably • considertheeigentimeelementds, ds2 = g dxµdxν (1.1) µν spatial coordinates attached to fundamental observers are called comoving coordinates; in such coordinates, dxi = 0 for funda- mentalobservers;requiringthattheireigentimeequalthecoordi- natetimedt,wehave ds2 = g dt2 = c2dt2 ⇒ g = c2 (1.2) 00 00 • isotropy requires that clocks can be synchronised such that g = 0i 0; if that was impossible, the components of g singled out a 0i preferreddirectioninspace,violatingisotropy;thus g = 0 (1.3) 0i • thelineelementisthusreducedto ds2 = c2dt2 +g dxidxj (1.4) ij thus, spacetime can be decomposed into spatial hypersurfaces of constanttime,i.e.itpermitsafoliation;withoutviolatingisotropy CHAPTER1. THEHOMOGENEOUSUNIVERSE 7 and homogeneity, the spatial hypersurfaces can be scaled by a functiona(t)whichcanonlydependontime, ds2 = c2dt2 −a2(t)dl2 (1.5) where dl is the line element of homogeneous and isotropic three- space; a special case of (1.5) is Minkowski space, for which dl is theEuclideanlineelement • isotropyrequiresthree-spacetohavesphericalsymmetry;wethus introducepolarcoordinates(w,θ,φ)wherewistheradialcoordi- nateand(θ,φ)arethepolarangles: The space-time of the universe can h i dl2 = dw2 + f2(w) dφ2 +sin2θdθ2 = dw2 + f2(w)dω2 , (1.6) be foliated into flat or positively or K K negatively curved spatial hypersur- where dω is the solid-angle element; the radial function f (w) is K faces. permitted because the relation between the radial coordinate w andtheareaofspheresofconstantwisstillarbitrary • the metric expressed by the line element (1.6) is manifestly isotropic; it can be shown that homogeneity requires f (w) to be K trigonometric,hyperbolic,orlinearinw,  f (w) =  wK−1/2sin(K1/2w) ((KK >= 00)) (1.7) K  |K|−1/2sin(|K|1/2w) (K < 0) where K is a constant parameterising the curvature of spatial hy- persurfaces; f (w)and|K|−1/2 havethedimensionofalength K • analternativeformofthelineelementdsisobtainedsubstituting theradialcoordinatebyr for f (w),then K dr2 dl2 = +r2dω2 (1.8) 1−Kr2 this is often used, but has the disadvantage of becoming singular for K > 0andr = K−1/2 • we thus arrive at the metric for the homogeneous and isotropic universe, h i ds2 = c2dt2 −a2(t) dw2 + f2(w)dω2 (1.9) K with f (w)givenby(1.7);thisiscalledRobertson-Walkermetric K 1.1.3 Redshift • spatialhypersurfacescanexpandorshrinkcontrolledbythescale functiona(t);thisleadstoared-orblueshiftofphotonspropagat- ingthroughspace-time CHAPTER1. THEHOMOGENEOUSUNIVERSE 8 • considerlightemittedfromacomovingsourceattimet reaching e a comoving observer at w = 0 at time t ; since ds = 0 for light, o themetric(1.9)requires c|dt| = dw (1.10) where the modulus on the left-hand side indicates that time can run with or agains w, depending on whether w is measured to- wardsorfromtheobserver • thecoordinatedistancebetweensourceandobserveris Z Z to to cdt w = dw = = const. (1.11) eo a(t) te te thusthederivativeofw withrespecttotheemissiontimet must eo e vanish dw 1 dt 1 dt a eo = o − ⇒ o = o (1.12) dt a(t )dt a(t ) dt a e o e e e e • timeintervalsdt atthesourcearethuschangeduntiltheyarriveat e the observer in proportion to changes in the scale of the universe betweenemissionandabsorption • letdt = ν−1 bethecycletimeofalightwave,then ν λ λ −λ a(t ) e = o = 1+ o e = 1+z = e (1.13) ν λ λ a(t ) o e e o thus, light is red- or blueshifted by the same amount as the Uni- verseexpandedorshrunkbetweenemissionandobservation 1.1.4 Dynamics • thedynamicsofthemetric(1.9)isreducedtothedynamicsofthe scale factor a(t); differential equations for a(t) now follow from Einstein’sfieldequations,whichread 8πG G = T +Λg (1.14) αβ αβ αβ c2 Λ is the cosmological constant originally introduced by Einstein inordertoallowstaticcosmologicalmodels • G is the Einstein tensor constructed from the curvature tensor, αβ whichdependsonthemetrictensoranditsfirstandsecondderiva- tives • T isthestress-energytensorofthecosmicfluid,whichmustbe αβ of the form of the stress-energy tensor of a perfect fluid, charac- terised by pressure p and (energy) density ρ, which can only be functionsoftimebecauseofhomogeneity, p = p(t) , ρ = ρ(t) (1.15) CHAPTER1. THEHOMOGENEOUSUNIVERSE 9 • when specialised to the metric (1.9), Einstein’s equations (1.14) reducetotwodifferentialequationsforthescalefactora(t): (cid:18)a˙(cid:19)2 8πG Kc2 Λ = ρ− + a 3 a2 3 ! a¨ 4πG 3p Λ = − ρ+ + (1.16) a 3 c2 3 these are Friedmann’s equations; a Robertson-Walker metric whose scale factor satisfies (1.16) is called Friedmann-Lemaˆıtre- Robertson-Walkermetric;thescalefactorisuniquelydetermined onceitsvalueatafixedtimet ischosen;weseta = 1today; • the Friedmann equations can be combined to yield the adiabatic equation AlexanderFriedmann d (cid:16) (cid:17) d (cid:16) (cid:17) a3ρc2 + p a3 = 0 (1.17) dt dt which intuitively states energy conservation: the left-hand side is the change in internal energy, the right-hand side is the pressure work; this is the first law of thermodynamics in absence of heat flow(whichwouldviolateisotropy) • since energy conservation (1.17) follows from the Friedmann equations(1.16),anytwoequationsfrom(1.16)and(1.17)canbe used equivalently to all three of them; we follow common prac- tise and use the first-order equation from (1.16), which we will calltheFriedmannequationhenceforth,and(1.17)whereneeded 1.1.5 Remark on Newtonian Dynamics GeorgesLemaˆıtre • note that (1.16) can also be derived from Newtonian gravity, ex- cept for the Λ term; the argument runs like this: in a homoge- neousandisotropicuniverse,asphericalregionofradiusRcanbe identifiedaroundanarbitrarypoint,thematterdensitywithinthat sphere must be homogeneous; the matter surrounding the sphere cannot have any influence on its dynamics because it would have to pull into some direction, which would violate isotropy; thus, thesizeofthesphereisarbitrary • suppose now a test mass m is located on the boundary of the sphere;it’sequationofmotionis ! G 4π 4πG r¨ = − r3ρ = − rρ (1.18) r2 3 3 thisisalreadythesecondeq.(1.16)exceptforthepressureterm

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.