ebook img

Cosmological Applications of Algebraic Quantum Field Theory in Curved Spacetimes PDF

129 Pages·2016·1.713 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cosmological Applications of Algebraic Quantum Field Theory in Curved Spacetimes

SPRINGER BRIEFS IN MATHEMATICAL PHYSICS 6 Thomas-Paul Hack Cosmological Applications of Algebraic Quantum Field Theory in Curved Spacetimes 123 SpringerBriefs in Mathematical Physics Volume 6 Series editors Nathanaël Berestycki, Cambridge, UK Mihalis Dafermos, Cambridge, UK Tohru Eguchi, Tokyo, Japan Atsuo Kuniba, Tokyo, Japan Matilde Marcolli, Pasadena, USA Bruno Nachtergaele, Davis, USA More information about this series at http://www.springer.com/series/11953 Thomas-Paul Hack Cosmological Applications of Algebraic Quantum Field Theory in Curved Spacetimes 123 Thomas-Paul Hack Institute for Theoretical Physics University of Leipzig Leipzig Germany ISSN 2197-1757 ISSN 2197-1765 (electronic) SpringerBriefs inMathematical Physics ISBN978-3-319-21893-9 ISBN978-3-319-21894-6 (eBook) DOI 10.1007/978-3-319-21894-6 LibraryofCongressControlNumber:2015946991 SpringerChamHeidelbergNewYorkDordrechtLondon ©TheAuthor(s)2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com) Preface Thismonographprovidesalargelyself-containedandbroadlyaccessibleexposition oftwocosmologicalapplicationsofalgebraicquantumfieldtheory(QFT)incurved spacetime: a fundamental analysis of the cosmological evolution according to the Standard Model of Cosmology and a fundamental study of the perturbations in Inflation. The two central sections of the book dealing with these applications are precededbysectionscontainingapedagogicalintroductiontothesubjectaswellas introductory material on the construction of linear QFTs on general curved spacetimeswithandwithoutgaugesymmetryinthealgebraicapproach,physically meaningful quantum states on general curved spacetimes, and the backreaction of quantum fields in curved spacetimes via the semiclassical Einstein equation. The target reader should have a basic understanding of General Relativity and QFT on Minkowski spacetime, but does not need to have a background in QFT on curved spacetimes or the algebraic approach to QFT. In particular, I took a great deal of care to provide a thorough motivation for all concepts of algebraic QFT touched upon in this monograph, as they partly may seem rather abstract at first glance. Thus,itismyhopethatthisworkcanhelpnon-expertstomake‘firstcontact’with the algebraic approach to QFT. I would like to thank my colleagues and friends Claudio Dappiaggi, Klaus Fredenhagen, Hanno Gottschalk, Valter Moretti, Nicola Pinamonti and Alexander Schenkel, among others, for their past and ongoing support and the fruitful collaborationsonsomeofthetopicscoveredinthismonograph.Specialthanksare duetoJanMöllerforthepersistentencouragementtoapplyalgebraicquantumfield theory to cosmology. I would also like to thank Aldo Rampioni and Kirsten Theunissen at Springer for their patient collaboration on the realisation of this monograph. Leipzig, Germany Thomas-Paul Hack v Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 A Pedagogical Introduction to Algebraic Quantum Field Theory on Curved Spacetimes. . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Outline of the Cosmological Applications. . . . . . . . . . . . . . . . . 7 1.2.1 The Cosmological Expansion in QFT on Curved Spacetimes . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 A Birds-Eye View of Perturbations in Inflation . . . . . . . . 9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Algebraic Quantum Field Theory on Curved Spacetimes. . . . . . . . 13 2.1 Globally Hyperbolic Spacetimes and Related Geometric Notions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Linear Classical Fields on Curved Spacetimes . . . . . . . . . . . . . . 18 2.2.1 Models Without Gauge Symmetry. . . . . . . . . . . . . . . . . 18 2.2.2 Models with Gauge Symmetry. . . . . . . . . . . . . . . . . . . . 27 2.3 Linear Quantum Fields on Curved Spacetimes. . . . . . . . . . . . . . 33 2.4 Hadamard States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.5 Locality and General Covariance . . . . . . . . . . . . . . . . . . . . . . . 50 2.6 The Quantum Stress-Energy Tensor and the Semiclassical Einstein Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.6.1 Local and Covariant Wick Polynomials . . . . . . . . . . . . . 55 2.6.2 The Semiclassical Einstein Equation and Wald’s Axioms. . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.6.3 A Conserved Quantum Stress-Energy Tensor. . . . . . . . . . 66 2.7 Further Reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 vii viii Contents 3 Cosmological Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.1 A Brief Introduction to Cosmology . . . . . . . . . . . . . . . . . . . . . 77 3.2 The Cosmological Expansion in QFT on Curved Spacetimes. . . . 81 3.2.1 The Renormalisation Freedom of the Quantum Stress-Energy Tensor in the Context of Cosmology . . . . . 82 3.2.2 States of Interest in Cosmological Spacetimes . . . . . . . . . 84 3.2.3 Setup and (Computational) Strategy for Approximately Solving the Semiclassical Einstein Equation . . . . . . . . . . 88 3.2.4 Computation of the Energy Density . . . . . . . . . . . . . . . . 92 3.2.5 Deviations from the Standard Model and Their Phenomenological Consequences: εJ 00 and Dark Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.3 A Birds-Eye View of Perturbations in Inflation . . . . . . . . . . . . . 105 3.3.1 The Linearised Einstein-Klein-Gordon System on General Curved Spacetimes . . . . . . . . . . . . . . . . . . . 106 3.3.2 The Standard Approach to Perturbations in Inflation and Comparison of Approaches. . . . . . . . . . . . . . . . . . . 113 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Chapter 1 Introduction Abstract Inthischapterwegiveapedagogicalintroductiontoalgebraicquantum fieldtheoryandexplaintheconceptsandtherelevanceofthisframeworkinquantum fieldtheoryoncurvedspacetimes.Thisintroductionshouldserveasaguideforthe nextchapter,wheremanyconceptsofandconstructionsinalgebraicquantumfield theory on curved spacetimes are reviewed in detail. Afterwards, we give a non- technicaloverviewofthecosmologicalapplicationsdiscussedinthefinalchapterof thismonograph. 1.1 APedagogicalIntroductiontoAlgebraicQuantumField TheoryonCurvedSpacetimes Algebraic Quantum Field Theory (AQFT) [12] is a framework which focusses on the local and algebraic properties of QFT and thus aims for understanding struc- tural properties of relativistic quantum field theory from first principles and in a model-independentfashion.InstandardtextbooktreatmentsofQFTinMinkowski spacetime,theformalismofQFTisdevelopedbyconstructingoperatorsandderiv- ingrelationsbasedonthevacuumstateandtheassociatedHilbertspace.However, thisapproachisnotdirectlygeneralisabletocurvedspacetimesasweshallexplain now. To this avail, we consider a quantized Hermitean scalar field φ(x) and assume thatitcanbedecomposedintwodifferentwaysas (cid:2) (cid:2) φ(x)= A (x)a + A (x)a† = B (x)b +B (x)b† (1.1) i i i i i i i i i i where a†,a and b†,b are two sets of creation and annihilation operators with i i i i correspondingmodes A (x), B (x)andvacua|Ω (cid:2),Ω (cid:2) i i a b a |Ω (cid:2)=0, b |Ω (cid:2)=0. i a i b ©TheAuthor(s)2016 1 T.-P.Hack,CosmologicalApplicationsofAlgebraicQuantumFieldTheory inCurvedSpacetimes,SpringerBriefsinMathematicalPhysics6, DOI10.1007/978-3-319-21894-6_1 2 1 Introduction The two sets of creating and annihilation operators are related by a Bogoliubov transformation b =α a +β a†. i i i i i Mathematically the two possible decompositions of φ(x) seem to be equivalent, whereas physically we would ask the question: Which of the two decompositions ofφ(x)isbetter,or,alternatively,isthereapreferredwaytodecompose φ(x)?In Minkowski spacetime, we have Poincaré symmetry at our disposal, in particular Minkowskispacetimeistime-translationinvariantandwecanconstructaHamilton operator H andobtainarelatednotionof‘energy’.If H|Ω (cid:2)=0,but H|Ω (cid:2)(cid:3)=0, a b wewouldcall|Ω (cid:2)thegroundstateorvacuumstateandchoosetoworkwiththe a decomposition of φ(x) in terms of a†,a . In other words, we would consider— i i i.e.represent—φ(x)asanoperatorintheFockspaceofthevacuumstate.Incurved spacetimes,theseideasfailingeneralbecausegenericcurvedspacetimesarenottime- translation invariant; prominent examples of such backgrounds are cosmological spacetimeswithametriclineelement ds2 =−dt2+a(t)2dx(cid:4)2, (1.2) where thefunctiona(t)isnon-constant intime.Inthe absence of time-translation invariance,nomeaningfulnotionofaHamiltonoperatoror‘energy’exists,andthus wehavenomeanstoselectordefineavacuumstate.Evenunderthesecircumstances, onemightstillthinkthatvariouspossibledecompositionsoftheform(1.1)areina senseequivalent,sothatitdoesnotreallymatterwhichoftheseonechoosestowork with.However,ingeneraloneisfacingtheadditionalproblemthat (cid:2) . N = (cid:5)Ω |b†b |Ω (cid:2)=∞, ba a i i a i i.e. the ‘a-vacuum’ contains infinitely many ‘b-particles’, which in mathematical termsimpliesthat|Ω (cid:2)and|Ω (cid:2)cannotlieinthesameHilbertspace.Anexample a b ofthissituationcanbeconstructedbyconsideringacosmologicalspacetimeofthe form (1.2) with a(t) = tanh(ct) where c is a constant with dimension of inverse time. The asymptotic regions of this spacetime for t → ±∞ are time-translation invariantandonecandefinecorrespondingasymptoticvacua|Ω±(cid:2).Onemaythen computethate.g.the‘+’-vacuumcontainsinfinitelymany‘−’-particleswhichcanbe physicallyinterpretedbysayingthattheexpansionofspaceencodedinthefunctional formofa(t)createsinfinitelymanyparticles.Thisoccursbecausethequantumfield φ(x)hasinfinitelymanydegreesoffreedom,whichareallexcitedbytheexpansion. Consequently,thesecondequalitysignin(1.1)isingeneralpurelyheuristicbecause thetwodecompositionsofφ(x)listedthereareingeneralnotrelatedinaphysically andmathematicallymeaningfulway. Fromtheabovediscussionwecaninferthatinthecontextofcurvedspacetimes the very notion of ‘particle’ is strictly speaking meaningless, because it relies on apreferredchoiceofvacuumstate,whichingeneraldoesnotexist.Consequently,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.