Astronomy&Astrophysicsmanuscriptno.4454 (cid:13)c ESO2008 February5,2008 COSMOGRAIL: the COSmological MOnitoring of ⋆ GRAvItational Lenses III. 6 0 Redshift of the lensing galaxy in eight gravitationally lensed quasars 0 2 A.Eigenbrod1,F.Courbin1,G.Meylan1,C.Vuissoz1,andP.Magain2 n a J 1 Laboratoired’Astrophysique,EcolePolytechniqueFe´de´raledeLausanne(EPFL),Observatoire,1290Sauverny,Switzerland 9 2 Institutd’AstrophysiqueetdeGe´ophysique,Universite´deLie`ge,Alle´edu6aouˆt17,Sart-Tilman,Bat.B5C,B-4000Lie`ge,Belgium 2 Received...;accepted... v 6 2 ABSTRACT 0 1 Aims.WemeasuretheredshiftofthelensinggalaxyineightgravitationallylensedquasarsinviewofdeterminingtheHubbleparameterH 0 1 fromthetimedelaymethod. 5 Methods.DeepVLT/FORS1spectraoflensedquasarsarespatiallydeconvolvedinordertoseparatethespectrumofthelensinggalaxiesfrom 0 the glare of the much brighter quasar images. A new observing strategy is devised. It involves observations in Multi-Object-Spectroscopy / h (MOS)whichallowsthesimultaneousobservationofthetargetandofseveralPSFandfluxcalibrationstars.Theadvantageofthismethod p overtraditionallong-slitobservationsisamuchmorereliableextractionandfluxcalibrationofthespectra. - Results.Forthefirsttimewemeasuretheredshiftofthelensinggalaxyinthreemultiply-imagedquasars:SDSSJ1138+0314(z =0.445), o lens SDSSJ1226−0006(z = 0.517),SDSSJ1335+0118(z = 0.440),andwegiveatentativeestimateoftheredshiftofthelensinggalaxyin r lens lens st Q1355−2257 (zlens= 0.701).Weconfirmfourpreviouslymeasuredredshifts:HE0047−1756 (zlens= 0.407), HE0230−2130 (zlens= 0.523), HE 0435−1223 (z = 0.454) and WFI J2033−4723 (z = 0.661). In addition, we determine the redshift of the second lensing galaxy in a lens lens : HE 0230−2130 (zlens= 0.526). The spectra of all lens galaxies are typical for early-type galaxies, except for the second lensing galaxy in v HE0230−2130whichdisplaysprominent[OII]emission. i X r a Key words. Gravitational lensing: time delay, quasar, microlensing — Cosmology: cosmological parameters, Hubble constant. Quasars: general. Quasars:individual HE0047−1756, HE0230−2130, HE0435−1223, SDSSJ1138+0314, SDSSJ1226−0006, SDSSJ1335+0118, Q1355−2257,WFIJ2033−4723. 1. Introduction through the determination of detailed mass maps for lensing galaxies,especiallytheirdarkmattercontent. Gravitationally lensed quasars have become a truly efficient The second most important application of quasar lens- source of new astrophysical applications, since the discovery ing involves microlensing by stars in the lensing galaxy. of the first case by Walsh et al. (1979). These objects are po- Microlenses produce chromatic magnification events in the tentially useful for measuring the Hubble parameter H from 0 lightcurveoftheimagesofthesource,astheycrosstheirline thetimedelaybetweentheirlensedimages(Refsdal1964),as- of sight. The amplitude, durationand frequencyof the events sumingamodelforthemassdistributioninthelensinggalaxy. dependonthetransversevelocityofstarsinthelensinggalaxy, Conversely,foranassumedormeasuredvalueofH ,themass 0 on their surface density, and on the relative sizes of the mi- distributioninthelenscanbereconstructedfromthetimede- crolensing caustics with respect to the regions of the source lay measurement. The study of lensed quasars is therefore a affected by microlensing. Photometric monitoring of lensed “no-lose” game, either because of its cosmological implica- quasars in several bands or, better, spectrophotometric moni- tions (H ) or for the study of galaxy formationand evolution 0 toring can therefore yield constraints on the energy profile of quasaraccretiondisksandonthesize ofthevariousemission ⋆ Based on observations made withthe ESO-VLTUnit Telescope lineregions(e.g.Agol&Krolik1999,Mineshige&Yonehara 2 Kueyen (Cerro Paranal, Chile; Proposals 074.A-0563 and 075.A- 1999,Abajasetal.2002). 0377, PI: G. Meylan). and on archive data taken with the ESO- VLTUnitTelescope1Antu(CerroParanal,Chile;Proposals064.O- All the above applications of quasar lensing require the 0259(A),PI:L.Wisotzki) knowledgeof the redshift of the lensing galaxy,which is fre- 2 A.Eigenbrodetal.:COSMOGRAILIII:Redshiftofthelensinggalaxyineightgravitationallylensedquasars Table1.JournaloftheobservationsofHE0047−1756.Grism Table 5. Journal of the observations for SDSS J1226−0006. and filter: G300V+GG435. HR collimator: 0.1′′ per pixel. Grism and filter: G300V+GG435. SR collimator: 0.2′′ per Slitletswidth:1.0′′(R=210at5900Å). pixel.Slitletswidth:1.0′′(R=400at5900Å). ID Date Seeing[′′] Airmass Weather ID Date Seeing[′′] Airmass Weather 1 18/07/2005 0.49 1.281 Photometric 1 16/05/2005 0.85 1.109 Photometric 2 18/07/2005 0.53 1.191 Photometric 2 16/05/2005 0.84 1.099 Photometric 3 16/05/2005 0.92 1.105 Photometric 4 16/05/2005 1.02 1.125 Photometric 5 16/05/2005 0.78 1.221 Photometric Table2.JournaloftheobservationsofHE0230−2130.Grism 6 16/05/2005 0.89 1.299 Photometric and filter: G600R+GG435. SR collimator: 0.2′′ per pixel. 7 16/05/2005 0.82 1.422 Photometric Slitletswidth:0.5′′(R=1910at6200Å). 8 16/05/2005 0.88 1.576 Photometric ID Date Seeing[′′] Airmass Weather 1 15/12/2004 0.60 1.166 Lightclouds Table 6. Journal of the observations for SDSS J1335+0118. 2 15/12/2004 0.58 1.248 Lightclouds Grism and filter: G300V+GG435. HR collimator: 0.1′′ per 3 01/03/2005 0.78 1.800 Photometric pixel.Slitletswidth:1.0′′(R=210at5900Å). ID Date Seeing[′′] Airmass Weather Table3.JournaloftheobservationsforHE0435−1223.Grism 1 03/02/2005 0.73 1.167 Photometric and filter: G300V+GG435. HR collimator: 0.1′′ per pixel. 2 03/02/2005 0.71 1.133 Photometric Slitletswidth:1.0′′(R=210at5900Å). 3 03/03/2005 0.69 1.112 Photometric 4 03/03/2005 0.77 1.123 Photometric 5 03/03/2005 0.68 1.153 Photometric ID Date Seeing[′′] Airmass Weather 6 03/03/2005 0.62 1.198 Photometric 1 11/10/2004 0.47 1.024 Photometric 2 11/10/2004 0.45 1.028 Photometric 3 12/10/2004 0.46 1.024 Photometric 4 12/10/2004 0.53 1.028 Photometric Table 7.JournaloftheobservationsforQ1355−2257.Grism 5 11/11/2004 0.57 1.093 Photometric and filter: G300V+GG435. HR collimator: 0.1′′ per pixel. 6 11/11/2004 0.56 1.145 Photometric Slitletswidth:1.0′′(R=210at5900Å). ID Date Seeing[′′] Airmass Weather Table 4. Journal of the observations for SDSS J1138+0314. 1 05/03/2005 0.68 1.016 Photometric Grism and filter: G300V+GG435. HR collimator: 0.1′′ per 2 05/03/2005 0.73 1.040 Photometric pixel.Slitletswidth:1.0′′(R=210at5900Å). 3 20/03/2005 0.63 1.038 Photometric 4 20/03/2005 0.54 1.015 Photometric 5 20/03/2005 0.57 1.105 Photometric ID Date Seeing[′′] Airmass Weather 6 20/03/2005 0.56 1.166 Photometric 1 10/05/2005 0.82 1.191 Photometric 2 11/05/2005 0.70 1.155 Photometric 3 11/05/2005 0.67 1.133 Photometric 4 11/05/2005 0.66 1.132 Photometric Table 8.JournalofobservationsforWFI J2033−4723.Grism 5 11/05/2005 0.64 1.148 Photometric and filter: G300V+GG435. HR collimator: 0.1′′ per pixel. Slitletswidth:1.4′′(R=160at5900Å). ID Date Seeing[′′] Airmass Weather quentlyhiddenin the glare of the quasar images. The present 1 13/05/2005 0.50 1.256 Lightclouds paperispartofalargerefforttocarryoutlongtermphotometric 2 13/05/2005 0.58 1.198 Lightclouds 3 13/05/2005 0.60 1.148 Lightclouds monitoringoflensedquasarsinthecontextofCOSMOGRAIL 4 13/05/2005 0.48 1.117 Lightclouds (e.g. Eigenbrod et al. 2005a). In this paper we focus on the 5 13/05/2005 0.53 1.095 Lightclouds determination of the redshifts of the lensing galaxies in sev- eralgravitationallylensedquasars,usingdeepspectraobtained with the ESO Very Large Telescope (VLT). The targets were simplyselectedinfunctionoftheirvisibilityduringtheperiod ofobservation. A.Eigenbrodetal.:COSMOGRAILIII:Redshiftofthelensinggalaxyineightgravitationallylensedquasars 3 Epoch 1 Epoch 1 Epoch 3 Epoch 5 A A B G D G B C Fig.1.HE0047−1756.Slitwidth:1.0′′.MaskPA:10◦ Fig.4.SDSSJ1138+0314.Slitwidth:1.0′′.MaskPA:−84◦ Epoch 1 Epoch 3 Epoch 1 Epoch 2 Epoch 4 Epoch 6 Epoch 8 C B G2 B G D A G1 A Fig.2.HE0230−2130.Slitwidth:0.5′′.MaskPA:−60◦ Fig.5.SDSSJ1226−0006.Slitwidth:1.0′′.MaskPA:−90◦ Epoch 1 Epoch 3 Epoch 5 Most of our targets are observed with the high-resolution collimator, allowing us to observe simultaneously eight ob- D G jects over a field of view of 3.4′ × 3.4′ with a pixel scale of 0.1′′. However, because few suitable PSF stars are visible in thevicinityofSDSSJ1226−0006andHE0230−2130,theob- C A servationsforthesetwoobjectsusethestandard-resolutioncol- B limator,whichhasafieldofviewof6.8′×6.8′andapixelsize of0.2′′. WeusetheGG435ordersortingfilterincombinationwith the G300V grism for all objects, except HE 0230−2130 for Fig.3.HE0435−1223.Slitwidth:1.0′′.MaskPA:−164◦ whichweusetheG600Rgrism.TheG300Vgrismgivesause- fulwavelengthrange4450 <λ< 8650Åandascaleof2.69Å perpixelinthespectraldirection.Thissetuphasaspectralres- olutionR=λ/∆λ≃200atthecentralwavelengthλ= 5900Å 2. VLTSpectroscopy for a 1.0′′ slit width in the case of the high resolution colli- mator.Thechoiceofthisgrismfavorsspectralcoveragerather 2.1.Observations thanspectralresolutionas theobservationsare aimedatmea- We present observations for eight gravitationally lensed suringunknownlensredshifts.ThecombinationoftheG600R quasars, in order to determine the redshift of the lensing grism with the GG435 filter used for HE 0230−2130 has a galaxy. The targets are HE 0047−1756, HE 0230−2130, wavelengthrangeof5250 <λ< 7450Åwithapixelscaleof HE 0435−1223, SDSS J1138+0314, SDSS J1335+0118, 1.08Åinthespectraldirection.Thisgivesahigherspectralres- Q 1355−2257(also known as CTQ 327), SDSS J1226−0006 olutionofR ≃ 1200atthecentralwavelengthλ = 6270Åfor andWFIJ2033−4723. aslitwidthof1.0′′andwiththestandardresolutioncollimator. OurspectroscopicobservationsareacquiredwiththeFOcal We choose slitlets of various widths, depending on the Reducer and low dispersion Spectrograph(FORS1), mounted brightnessofthetargetandontheconfigurationofthequasar on the ESO Very Large Telescope. Very importantly, all the images. The slit width is chosen so that it matches the see- observations are carried out in the MOS mode (Multi Object ingrequestedfortheservice-modeobservationsandminimizes Spectroscopy).Thisstrategyallowsthesimultaneousobserva- lateral contamination by the quasar images. Our observing tionofthemaintargetandofseveralstarsusedbothasfluxcal- sequences consist of a short acquisition image, an “image- ibratorsandasreferencePSFtospatiallydeconvolvethedata. through-slit”check,followedby oneor two consecutivedeep 4 A.Eigenbrodetal.:COSMOGRAILIII:Redshiftofthelensinggalaxyineightgravitationallylensedquasars on18October1999forprogram064.O-0259(A).Theyusedthe longslitmodewiththestandardresolutioncollimator(0.2′′per Epoch 1 Epoch 3 Epoch 5 pixel), the G600R grism, and the order sorting filter GG435. A TheusefulwavelengthrangeisthesameasfortheMOSobser- vations,i.e.,5250 < λ< 7450Åwithapixelscaleof1.08Å G inthespectraldirection. B 2.2.ReductionandDeconvolution We carry out the standard bias subtraction and flat field cor- rectionofthespectrausingIRAF1.Theflatfieldiscreatedfor Fig.6.SDSSJ1335+0118.Slitwidth:1.0′′.MaskPA:43◦ each slitlet fromfive dome exposuresusing cosmic ray rejec- tion.Itisthennormalizedbyaveraging45linesalongthespa- tialdirection,rejectingthe20highestand20lowestpixels.The resultisthenblockreplicatedtomatchthephysicalsizeofthe Epoch 1 Epoch 3 Epoch 5 individualflatfields. A Wavelength calibration is obtained from numerous emis- sionlinesinthespectrumofHelium-Argonlamps.Thewave- length solution is fitted in two dimensions to each slitlet of G the MOS mask. The fit uses a fifth order Chebyshev polyno- B mialalongthespectraldirectionandafourthorderChebyshev polynomialfitalongthespatialdirection.Eachspectrumisin- terpolated following this fit using a cubic interpolation. This procedureensures that the sky lines are well aligned with the Fig.7.Q1355−2257.Slitwidth:1.0′′.MaskPA:−78◦ columnsoftheCCDafterwavelengthcalibration. The sky background is then removed by fitting and sub- tracting a second order Chebyshev polynomial in the spatial directionto the areas of the spectrumthat are not illuminated Epoch 1 Epoch 3 Epoch 5 bytheobject. B Finally, we remove the cosmic rays as follows. First we shift the spectra in order to align them spatially (this shift is A2 G only a few tenths of a pixel). Second, we create a combined spectrum for each object from all exposures, removing the lower and higher pixels, after applying appropriate flux scal- C A1 ing. The combined spectrum obtained in that way is cosmic raycleanedandisusedasareferencetemplatetocleanthein- dividualspectra.ForeachMOSmasktheobjectslitletandthe PSFslitletsarereducedexactlyinthesameway. Fig.8.WFIJ2033−4723.Slitwidth:1.4′′.MaskPA:−82◦ Afluxcross-calibrationofthespectratakenatdifferentair- massesordatesisneededbeforecombiningthemintoonefinal spectrum.ThisisdoneefficientlyusingthespectraofthePSF stars as references, as described in Eigenbrod et al. (2005b). spectroscopic exposures. All individual exposures for all ob- Thereferencestarsareassumedtobenon-variableandaratio jects are 1400 s long. The journals of the observations are spectrum is created for each star, i.e. we divide the spectrum given in Tables 1 to 8. The through-slitimages are displayed ofthestarbythespectrumofthesamestarintheotherexpo- inFigs.1to8,wheretheepochsrefertotheexposurenumbers sures. Thisis doneforat leasttwo stars in eachmask andwe inTables1to8. checkthattheresponsecurvesderivedusingdifferentstarsare For every object we center at least three slitlets on fore- compatible. The dispersion between the response curves ob- groundstarsandoneslitletonthelensinggalaxy.Themaskis tainedinthatwayisabout2%.Ameancorrectioncurveisthen rotatedto a Position Angle thatavoidsclippingof anyquasar computedandappliedtoeachtwo-dimensionalspectrum.The image.Thisismandatorytocarryoutspatialdeconvolutionof individualspectraforeachobjectarefinallycombined. thespectra.ThespectraofthePSFstarsarealsousedtocross- The archive data of HE 0230−2130 consist of one sin- calibrate the flux scale as the data are taken at different air- glelongslitspectrum.Thebiassubtraction,flatfielding,wave- masses and at different dates. Three spectrophotometricstan- dardstarsareusedtocarryouttherelativefluxcalibration,i.e. 1 IRAF is distributed by the National Optical Astronomy EG21,LTT3218,andLTT6248. Observatories,whichareoperatedbytheAssociationofUniversities In additionto ourowndata,we retrieveVLT/FORS1data for Research in Astronomy, Inc., under cooperative agreement with fromthearchiveforHE0230−2130.Thesedatawereacquired theNationalScienceFoundation. A.Eigenbrodetal.:COSMOGRAILIII:Redshiftofthelensinggalaxyineightgravitationallylensedquasars 5 Table9.Redshiftvaluesdeterminedforthelensinggalaxiesin theeightgravitationallenses.Onlyatentativeredshiftisgiven forQ1355−2257.SeeSection4formoredetailsaboutthesec- ondlensG2inHE0230−2130. Object z lens HE0047−1756 0.407±0.001 HE0230−2130,G1 0.523±0.001 HE0230−2130,G2 0.526±0.002 HE0435−1223 0.454±0.001 SDSSJ1138+0314 0.445±0.001 SDSSJ1226−0006 0.517±0.001 SDSSJ1335+0118 0.440±0.001 Q1355−2257 0.701(?) WFIJ2033−4723 0.661±0.001 lengthcalibrationandbackgroundremovalaredoneinexactly thesamewayasfortheMOSspectra.Thecosmicrayremoval is done using the IRAF packages for single-image data. The flux calibration is done using three standard stars: G93−48, Fig.9.SpectrumofthelensinHE0047−1756.Thetotalinte- LTT 7987, LTT 9239,taken on the same night as the science gration time is 2800s. The template spectrum of a redshifted frame. ellipticalgalaxyisshownforcomparison(Kinneyetal.1996). 2.3.DeconvolutionandextractionoftheMOSspectra Even thoughthe seeing values are good for most spectra, the pointsource(quasarimages)channels.OnlyourVLTspectrum lensinggalaxyisoftencloseenoughtothebrighterquasarim- ofthelensinggalaxyofHE0230−2130issufferingfromresid- agestobeaffectedbysignificantcontaminationfromthewings ualsofthequasarbroademissionlines,probablyduetolateral of the PSF. For this reason, the spectral version of the MCS contamination by images A and B of the quasar. This addi- deconvolution algorithm (Magain et al. 1998, Courbin et al. tionalsourceofcontaminationiscircumventedbysubtracting 2000) is used in orderto separate the spectrumof the lensing ascaledversionofthespectrumofquasarimageCtothespec- galaxyfromthespectraofthequasarimages.TheMCSalgo- trum ofthe lensing galaxy.Theflux calibrationof thispartic- rithmusesthespatialinformationcontainedinthespectrumof ular lens might therefore be less accurate than for the other areferencePSF,whichisobtainedfromtheslitletspositioned objects.Note,however,thatthisprocedurewasonlyappliedto ontheisolatedstars.ThefinalnormalizedPSFisacombination HE0230−2130. ofatleastthreedifferentPSFspectra.Thedeconvolvedspectra arenotonlysharpenedinthespatialdirection,butalsodecom- 3. Notesonindividualobjects posed into a “point-sourcechannel” containing the spectra of the quasar images, and a “extended channel” containing the HE 0047−1756: A doubly imaged quasar discovered by spectraofeverythingintheimagewhichisnotapoint-source, Wisotzkietal.(2004).Ithasaredshiftofz = 1.67andamax- i.e.inthiscasethespectrumofthelensinggalaxy. imum image separation of 1.44′′. The redshift of the lensing The deconvolved spectra of the lensing galaxies are ex- galaxy has recently been measured by Ofek et al. (2005) at tracted and smoothed with a 10 Å box. Fig. 9 to 16 display z =0.408.Weconfirmthisresult,withz =0.407±0.001, lens lens the finalone-dimensionalspectra,where theCa IIH &K ab- and presenta muchhighersignal-to-noisespectrumin Fig. 9. sorptionlinesareobvious,aswellasthe4000Å Balmerbreak, Anellipticalgalaxytemplatematcheswellthespectrumofthe and the G-bandtypicalfor CH absorption.In some cases, we lens. identifya few more featuresthatare labeled in the individual HE0230−2130:Thisquadruplyimagedz = 2.162quasar figures.Theidentifiedlinesare usedto determinethe redshift was discovered by Wisotzki et al. (1999). It has a maximum of the lensing galaxiesgivenin Table 9. We computethe 1-σ imageseparationof2.15′′andtwolensinggalaxies.Themain errorasthestandarddeviationbetweenallthemeasurementsof lensinggalaxy,G1,islocatedbetweenthefourquasarimages. theindividuallines.Theabsenceofemissionlinesinallspectra Asecond,fainterlensislocatedoutsidetheareadefinedbythe indicatesthattheobservedlensinggalaxiesaregas-poorearly- quasarimages,closetothefaintquasarimageD(Fig.17).The typegalaxies. spectrumofG1isshowninFig.10.Ourredshift(z =0.523± lens In mostcases, notrace ofthe quasar broademission lines 0.001) is in very good agreementwith the result z = 0.522 lens is seen in the spectrum of the lensinggalaxy,indicativeof an of Ofek et al. (2005). The spectrum matches well that of an accuratedecompositionofthedataintotheextended(lens)and early-typegalaxy.The spectrum of the second lensing galaxy 6 A.Eigenbrodetal.:COSMOGRAILIII:Redshiftofthelensinggalaxyineightgravitationallylensedquasars Fig.10.SpectrumofthelensinggalaxyG1inHE0230−2130, Fig.12. Spectrum of the lens in SDSS J1138+0314. The to- asobtainedbycombiningthedataforthethreeepochs,i.e.ato- tal integration time is 7000 s. The absorption feature marked talintegrationtimeof4200s.Ascaledversionofthespectrum by the black triangle is probably residual light of the quasar ofquasarimageCissubtractedtothespectrumofthelensing images. The C III] emission of the quasar falls exactlyat this galaxy,inordertoremovelateralcontaminationbythequasar wavelength. imagesAandB(seetext). Fig.13.Spectrumofthe lensinSDSS J1226−0006.Thetotal Fig.11.Spectrumof the lensin HE 0435−1223.Thetotalin- integrationtimeis11200s. tegrationtimeis8400s.Thetemplatespectrumofaredshifted S0galaxyisshown(Kinneyetal.1996). HE0435−1223:Thisquadruplyimagedquasar,discovered byWisotzkietal.(2002),hasaredshiftofz=1.689andhasa G2 is extracted from the archive long-slit spectrum presented maximumimageseparationof2.56′′,hencewithlittlecontam- inSection4. inationofthelensspectrumbythequasarimages.Theredshift A.Eigenbrodetal.:COSMOGRAILIII:Redshiftofthelensinggalaxyineightgravitationallylensedquasars 7 Fig.14.Spectrumofthe lensinSDSS J1335+0118.Thetotal Fig.16. Spectrum of the lens in WFI J2033−4723. The total integrationtimeis8400s. integrationtimeis7000s. SDSS J1138+0314: This quadruply imaged quasar was discovered in the course of the Sloan Digital Sky Survey (SDSS)byBurlesetal.(2005).Thislensedquasarhasamaxi- mumimageseparationof1.46′′.Weobtainhighsignal-to-noise spectra of the quasar and determine its redshift z = 2.438. Thereisverylittledoubtthatthissystemislensed.Thelensing galaxyisseenonarchivalHST/NICMOSimages.Wemeasure z =0.445±0.001(Fig.12). lens SDSSJ1226−0006:Adoublyimagedquasaratz = 1.120 foundinthecourseoftheSloanDigitalSkySurvey(SDSS)by Inada et al. (2005). This system is doubtlessly lensed, as the lensinggalaxyisseenonarchivalHST/ACSimages,between bothquasarimages,atonly0.4′′awayfromimageA.Wemea- surez =0.516±0.001(Fig.13).Thespectrumofthelensing lens galaxyiswellmatchedbythespectrumofanellipticalgalaxy. SDSSJ1335+0118:Adoublyimagedquasarwitha1.56′′ separation,discoveredbyOgurietal.(2004).Thequasarisat z = 1.57and the spectra of the quasar imagesshow evidence of strong absorption systems at lower redshifts. Based on the color of the galaxy,Oguriet al. (2004) concludethat the lens Fig.15. Spectrum of the lens in Q 1355−2257. The total in- galaxyis consistentwith anearly-typegalaxyatz <∼ 0.5.Our tegrationtime is 8400s. Giventhe low signal-to-noiseof this spectrum (Fig. 14) is indeed that of an early-type galaxy. Its spectrumwecannotsecurelydeterminethelensredshift. redshiftzlens=0.440±0.001hasnotbeenmeasuredbefore. Q1355−2257(CTQ327):Thisdoublyimagedquasarhas a redshift of z = 1.373 and was discovered by Morgan et al. (2003).Thequasarimagesareseparatedby1.23′′andthered- shift of the lensing galaxieshasbeen estimated by Morganet ofthelensinggalaxyhasalreadybeenmeasured(Morganetal. al. (2003) to lie in the redshiftrange 0.4 < z < 0.6. The lens 2005,Ofeketal.2005)atz = 0.455.Weconfirmthisresult, extractionofthespectrumofthelensinggalaxyisparticularly lens withz =0.454±0.001,andpresentamuchhighersignal-to- difficultbecausethegalaxyliesatonly0.29′′awayfromquasar lens noisespectruminFig.11.AS0galaxytemplatematcheswell image B and because it is 7 magnitudesfainter. We show the thespectrumofthelens. deconvolvedspectrumofthelensinggalaxyin Fig.15.Given 8 A.Eigenbrodetal.:COSMOGRAILIII:Redshiftofthelensinggalaxyineightgravitationallylensedquasars G2 0.7" 0.5" C D G1 B N A 1" E Fig.17. Right: HST image of HE 0230−2130 taken with the WFPC2 instrument in the F814W filter. The pixel scale is 0.05′′.Middle:sameimagebutwithapositionangleof−160o. We show in overlay a 0.7′′ slit which corresponds to the ob- servationalsetupusedtotakethelong-slitspectrum(program 064.O-0259(A)archive data). Left: for comparison, we show the slit used for our MOS observations. The position angle is −60o and the slit has a width of 0.5′′. Negative angles are countedclockwisefromNorth. 5600 A 5750 A Fig.19. Spectrum of the second lensing galaxy G2 in HE0230−2130,obtainedfromtheFORS1long-slitspectrum. 2’’ The exposure time is 3000 s. Note the prominent[OII] emis- [OII] sionlines,absentfromthespectrumofG1(Fig.10). λ Fig.18. Spectra of quasar image B and D of HE 0230−2130 (slitasinthemiddlepanelofFig.17.Astrongemissionfeature isseen“below”thequasarimageD.Itextendswellbeyondthe spectrum from the brighter quasar image B directly. During area delimited by the quasar images, and corresponds to the this first step, the PSF is constructed from the upper half of [OII]emissionofgalaxyG2. the spectrum in Fig. 18 containing the spectrum of image B. We then deconvolve the original data, we take the extended- channel part of the deconvolution, reconvolve it with the ap- thelowsignal-to-noiseofthisspectrumwecannotsecurelyde- proximatePSF andsubtractitfromthedata.Thisprovidesus terminethelensredshift;wecanonlygiveatentativeestimate withaspectrumofthequasarimagethatismuchlessaffected ofz =0.701. bythelensinggalaxy.AsecondPSFisconstructedfromthese lens WFI J2033−4723: Morgan et al. (2004) discovered this new lens-cleaned spectra and a new deconvolution is carried quadruply lensed quasar with maximum image separation of out. We perform this cycle twice to obtain the final spectrum 2.53′′ and redshiftz = 1.66.Ofek et al. (2005) recently mea- presentedinFig.19.Thisspectrumhasalowersignal-to-noise sured the lens redshiftz = 0.658. The lensing galaxyspec- than ourMOSspectra andless accuratefluxcalibrationbutit lens trumshowninFig.16ismatchedbyanellipticalorS0galaxy allowstomeasurewelltheredshiftoflensG2,whichdisplays templatewitharedshiftofz =0.661±0.001.Ourmeasured prominent[OII] emission, contraryto lens G1. Fig. 18 shows lens redshiftis compatiblewith butslighlyhigherthanthe one re- thattheemissioncomesfromanobjectlyingoutsidetheregion portedbyOfeketal.(2005). delimitedbythequasarimage.Itthereforeclearlycorresponds tolensG2. Theredshiftof lensG2 is z = 0.526±0.002.Itis mea- 4. ThesecondlensinHE0230−2130 lens sured using the [OII] emission, the Ca II H & K absorption The long-slit archive FORS1 spectrum of HE 0230−2130 is lines, the G-band, and the hydrogen Hθ and Hη absorption taken with the slit centered on the quasar images B and D lines. The deconvolved spectrum of G2 is shown in Fig. 19. (middlepanelinFig.17).Thetwo-dimensionalsky-subtracted Although the flux calibration is not optimal without a good spectrumisshowninFig.18,whereahintofanemissionline knowledgeofthePSF,thespectrumresemblesthatofaSaspi- canalreadybeseenatthespatiallocationoflensG2alongthe ralgalaxy. slit. As can be seen in the middle panel of Fig. 17, G2 is not AsnoPSFstarisavailablethedatahavetobedeconvolved wellcenteredintheslitbutliesat0.4′′awayfromtheslitcen- inadifferentwaythantheMOSspectra.Weproceedinaniter- ter. This small spatial misalignment of the object within the ativeway.First,wecutthespectrumintwoalongthespectral slitmimicsaspectralshiftof∼ 2Åtothered.Thistranslates direction and determine a first estimate of the reference PSF intoaredshiftchangeoflessthan∆z = 0.0004at6000Åand A.Eigenbrodetal.:COSMOGRAILIII:Redshiftofthelensinggalaxyineightgravitationallylensedquasars 9 has no effect on the redshift determination of galaxy G2. We Morgan,N.D.,Gregg,M.D.,Wisotzki,L.,etal.2004,AJ,126,696 conclude that the observed difference in redshift ∆z = 0.003 Morgan, N.D.,Cardwell, J.A.R.,Schechter, P.L.,etal. 2004, AJ, betweengalaxyG1andG2isreal.Ittranslatesintoavelocity 127,2617 differenceof∆v=900±450kms−1typicalforagalaxygroup. Morgan, N. D., Kochanek, C. S., Pevunova, O., & Schechter, P. L. HE0230−2130mightthereforebelensedbyagroupofphysi- 2005,AJ,129,2531 Ofek,E.O.,Maoz, D.,Rix,H.-W.,Kochanek, C.S.,&Falco,E.E. callyrelatedgalaxiesofwhichG1andG2aretwoofthemain 2005,astro-ph/0510465 members. Oguri,M.,Inada,N.,Castander,F.J.,etal.2004,PASJ,56,399 Refsdal,S.1964,MNRAS,128,307 5. SummaryandConclusions Saha,P.,etal.2005,submittedtoA&A Walsh,D.,Carswell,R.F.,&Weymann,R.J.1979,Nature,279,381 Wepresentherethepreviouslyunknownredshiftsofthelens- Wisotzki,L.,Christlieb,N.,Liu,M.C.,etal.1999,A&A,348,L41 ing galaxies in three gravitationally lensed quasars and con- Wisotzki,L.,Schechter,P.L.,Bradt,H.V.,Heinmu¨ller,J.,&Reimers, firm four others, already presented in Ofek et al. (2005). D.etal.2002,A&A,395,17 We also measure the redshift of a second lensing galaxy in Wisotzki, L., Schechter, P. L.,Chen, H.-W.,et al. 2004, A&A, 419, HE 0230−2130and give a tentative estimate of the lens red- L31 shiftinQ1355−2257. TheMOSmodeinwhichallobservationsaretakenandthe subsequentobservationofseveralPSFstarsiscrucialtocarry outareliabledecontaminationofthelensspectrumbythoseof the quasar images. The PSF stars are also used to carry out a veryaccuratefluxcalibrationofthespectra. Contrary to long-slit observations where no PSF stars are available (Ofek et al. 2005), we do not need to iteratively re- move a scaled version of the quasar spectra from the data. Because microlensing can produce significant differences be- tweenthespectraofthequasarimages,suchaproceduremay resultinbiasedcontinuumslopesandwrongconclusionsabout the presenceof dustin the lens. For thisreasonwe fullybase our extraction on a spatial decomposition using independent PSFspectra. Wefindthatallthelensinggalaxiesinoursampleareearly- type ellipticals or S0, exceptfor the second lensing galaxyin HE0230−2130,whichdisplaysprominent[OII]emission.And we do notfind anyevidenceforsignificantextinctionbydust intheirinterstellarmedium. Acknowledgements. TheauthorsareverygratefultotheESOstaffat Paranalfortheparticularcarepaidtotheslitalignmentnecessaryto perform the spectra deconvolutions. PMacknowledge financial sup- port from PRODEX (Belgium). COSMOGRAIL is financially sup- portedbytheSwissNationalScienceFoundation(SNSF).Theimage shown in Fig. 17 was obtained with the NASA/ESA Hubble Space Telescope(Program#9744,PI:C.S.Kochanek) andextractedfrom thedataarchivesattheSpaceTelescopeScienceInstitute,whichisop- eratedbytheAssociationofUniversitiesforResearchinAstronomy, Inc.,underNASAcontractNAS5-26555. References Abajas,C.,Mediavilla,E.,Mun˜oz,J.A.,Popovic´,L.Cˇ.,&Oscoz,A. 2002,ApJ,576,640 Agol,E.,&Krolik,J.1999,ApJ,524,49 Burles,S.,etal.2005,inpreparation Courbin,F.,Magain,P.,Kirkove,M.,&Sohy,S.2000,ApJ,529,1136 Eigenbrod,A.,Courbin,F.,Vuissoz,C.,etal.2005a,A&A,436,25 Eigenbrod,A.,Courbin,F.,Dye,S.,etal.2005b,astro-ph/0510641 Inada,N.,etal.2005,inpreparation Kinney,A.L.,Calzetti,D.,Bohlin,R.C.,etal.1996,ApJ,467,38 Magain,P.,Courbin,F.,&Sohy,S.1998,ApJ,494,452 Mineshige,S.,&Yonehara,A.1999,PASJ,51,497