ebook img

Cosmic PeV Neutrinos and the Sources of Ultrahigh Energy Protons PDF

0.53 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cosmic PeV Neutrinos and the Sources of Ultrahigh Energy Protons

CosmicPeVNeutrinosandtheSourcesofUltrahighEnergyProtons Matthew D. Kistler,1,2 Todor Stanev,3 and Hasan Yu¨ksel4 1LawrenceBerkeleyNationalLaboratoryandDepartmentofPhysics,UniversityofCalifornia,Berkeley,CA94720 2Einstein Fellow 3BartolResearchInstitute,DepartmentofPhysicsandAstronomy,UniversityofDelaware,Newark,DE19716 4Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (Dated:January8,2013) TheIceCubeexperimentrecentlyannouncedthefirstdetectionofmulti-PeVneutrinos,whichcannoteasily beexplainedbyatmosphericorcosmogenicfluxes.Weexaminewhethertheseneutrinosoriginatefromthesame sourcesasultrahigh-energycosmicrays. Wefindthatproducingtherequisiteneutrinofluxthroughphotopion production in the source leads to a proton flux at the level of cosmic-ray data at ∼1018eV in a constrained scenario where neutrinos only arise from π+ decays. In more general cases the proton yield is much lower, 3 requiringadominantclassofacceleratorthatallowscosmicraystoescapewithoutsignificantlosses. 1 0 PACSnumbers:98.70.-f,98.70.Rz,98.70.Sa,95.85.Ry 2 n Introduction.—High-energyastrophysicalneutrinoshave baticlossesiftheycannotbepromptlyescaped. a J much to tell us about the most extreme environments in the Ifthisistobeachievedthroughphotohadronicinteractions Universe; however, finding them is a difficult endeavor [1– producing neutrons that later decay to protons outside the 8 3]. Colossaldetectorsarerequired,suchasIceCube[4],that source, then there must be an accompanying flux of pionic ] canobservethetracksofmuonsproducedincharged-current neutrinos(forthisreason,IceCubelimitsdisfavorgamma-ray E ν /ν¯ scattering or showers (cascades) induced by various bursts[27–30]). WeusetheneutrinofluximpliedbytheIce- H µ µ channels(aswediscusslater). Therecentobservationoftwo Cubeevents(foranassumedsourcespectrum,evolutionwith . h PeV-energyshowereventsbyIceCubemayrepresentthedis- redshift, flavorratios, andneutrinooscillations)tonormalize p covery of such neutrinos [5], as atmospheric PeV neutrino theoutgoingprotonspectrumtodeterminewhetherthisisthe - fluxes are low [6, 7]. The most likely astrophysical mecha- mechanismoperatinginultrahigh-energysources. o r nism is photopion production by protons on a photon back- Neutrinos and IceCube.— We begin by constructing a st ground,pγ→Nπ,leadingtoneutrinosviapiondecays. source neutrino spectrum that results in fluxes at Earth that a Anexampleofthisprocessisthesuppressionofultrahigh- yield shower rates that peak at the IceCube energy range us- [ energycosmic-ray(UHECR)protonfluxesat>∼1019.5eVdue ingasmoothly-brokenpowerlaw(withE inGeV)as 1 to the cosmic microwave background (CMB), the GZK ef- dN (cid:104) (cid:105)1/η v fect[8,9]. ThemeasuredUHECRspectrumdisplaysadown- =f (E/E )αη+(E/E )βη , (1) 03 turnnearthisenergy[10–13]. However,the>∼1018eVneutri- dE 0 b b 7 nos resulting fromthe decays of pions produced[14–17] are 10(cid:45)7 1 tooenergetictoexplaintheIceCubeevents,whilethefluxof IC(cid:45)40E(cid:45)2limit 01. lowTehre-ecnoesrmgyicneinuftrrainreods/ofrpotmicadlebcaacyksgorfonuenudtraolnloswisstfooorspmhoaltlo.- (cid:45)1r(cid:68)10(cid:45)8 Total ΝeΝΤΝΜ s 3 production by lower-energy protons in propagation, leading 1 1 tolower-energyneutrinos[18–20]. However,Fermimeasure- (cid:45)s10(cid:45)9 : 2 v ments of gamma-ray absorption in blazar spectra now indi- (cid:45)m Xi pcahtoetoaplroowdulecveewloitfhth<∼e1<∼01170eeVVpdriofftuosnesptohoytoienlsd[∼211]0n1e5eedVedptio- eVc 105 106 E(cid:64)1G0e7V(cid:68) 108 109 r G a ofinciicenntesuytnricnhorso.trMonorleoosvseesr,iunntlheesssumbasgenqeuteicntficealdscsaldeeasdttoossuupf-- E(cid:64)10(cid:45)8 Total Νe ΝΜΝΤ pthreesrseqguaimremdalervaeyls,thaaPtreeVspneecutstrtihneoiflsuoxtrocpaincngoatmbempar-oradyucbeadcka-t dNd(cid:144)10(cid:45)9 Νe ΝΜΝΤ 2 ground[22]. Thissuggeststhat,iftheneutrinofluxiscosmic, E itlikelyarisesfromwithinsomeclassofsources. 10(cid:45)10 105 106 107 108 109 Our goal isto determine whether the IceCubePeV neutri- E (cid:64)GeV(cid:68) Ν nos share a common origin with UHECRs in the ∼1018eV range where the composition is inferred to be light [23–25]. FIG.1:Totalneutrinofluxes(normalizedtoyieldtwo>∼1PeVshow- The UHECR protons observed at Earth must have been able ersinIceCube)inourmodelsbasedonπ+-only(whichhasnoν¯;top toretainsufficientenergyuponleavingtheiraccelerationsites panel)andπ±µ±(bottompanel)decays,separatedafteroscillations [26].However,themagneticfieldsrequiredtocontainthepar- into: νe, ν¯e (solid), νµ, ν¯µ (dotted), andντ, ν¯τ(dashed). TheIce- Cube40-stringE−2fluxlimit[31]isalsoindicated. ticlesduringtheaccelerationprocesscanleadtosevereadia- 2 where the slopes are α and β, with η=−1 to give a smooth 10 breakatE . WeobtaintheneutrinofluxesatEarth,ϕ (E ), b ν ν byintegratingthesespectrauptoz =8as max c (cid:90) zmax dN dE(cid:48) W(z) 1 ϕ (E )= ν ν dz, (2) ν ν 4π dE(cid:48) dE dz/dt 0 ν ν Total ΝΤ wheredz/dt=H (1+z)[Ω (1+z)3+Ω ]1/2(withΩ = 0 m Λ m (cid:68) 0.3,ΩΛ=0.7,andH0=70km/s/Mpc)anddEν(cid:48)/dEν=(1+ (cid:45)1 0.1 Νe z) accounts for redshift. We set the evolution in the rate of yr neutrinoproduction,W(z)=1,whichconservativelybounds (cid:45)3m Νx therequiredneutrinoemissivity,anddiscussalternativeslater. k Motivatedbythemodelin[32]foranE−2acceleratedpro- (cid:64) ton spectrum, we first use a neutrino spectrum with α=−1, dE 105 106 107 108 (cid:144) β=−2, andphotopionopacity∼1forE =107. Weassign N E (cid:64)GeV(cid:68) b d em the initial flavor ratios resulting from equal numbers of π+ E and π−, as in sources with hard photon backgrounds. Neu- 1 trinos result from π/µ decays, π+→µ+νµ, µ+→e+ν¯µνe Total andπ−→µ−ν¯ ,µ−→e−ν ν¯ ,givingν :ν :ν =1:2:0and µ µ e e µ τ Ν e ν¯ :ν¯ :ν¯ =1:2:0. We account for neutrino oscillations using e µ τ 0.1 mixingparametersfrom[33].ThelowerpanelofFig.1shows Νx Νe theshapesofthearrivingfluxes,brokendownbyflavor. We also consider the extreme in which only π+ are pro- Νx ΝΤ ΝΤ duced, as with near-threshold photoproduction due to a soft Νe(cid:174)Τ background. Muons experience higher synchrotron losses 105 106 107 108 than pions in the strong magnetic fields within the accelera- E (cid:64)GeV(cid:68) em tionregionofsources[34,35]. Weusethistoobtainamodel withnoν¯componentbyassumingthatmuonsareproduced, FIG.2: NeutrinoeventspectrainIceCubeusingtheshowerenergy, but cool and decay only to low-energy neutrinos. The initial Eem,fromthefluxesinthetopandbottompanelsofFig.1. Shown flavor ratios are approximated as those from the π+ decay, are: νe,ν¯e,ντ,andν¯τ chargedcurrent;allflavor(νX,ν¯X)neutral current; and ν¯ e channels yielding e and hadrons (included in ν¯ ν :ν :ν =0:1:0 and ν¯ :ν¯ :ν¯ =0:0:0. Here, we take pion e e e µ τ e µ τ line)andτ.Normalizationsarebasedontwototal>PeVevents. coolingtoresultinabreakatE =107,sothatβ=−3,asin b the upper panel of Fig. 1. In both cases, we neglect the ν¯ e fluxfromneutrondecay,whichcarriesmuchlessenergyand showerofenergy(cid:104)y(cid:105)E . Weaddthesetogethertogetatotal ν peaksatenergieslowerbyabouttwoordersofmagnitude. effectivevisibleenergyperinteractionasE =(cid:104)1−y(cid:105)E + em,e ν Rates of shower-like events in IceCube are principally de- f (cid:104)y(cid:105)E =q E ,withq ≈0.95(andsimilarlyforν¯ ). had ν e ν e e termined by the normalized neutrino fluxes, effective vol- The Glashow resonance, ν¯ e→W−→X, is important e ume, andcrosssectionsforneutrino-nucleon, σνN andσν¯N, near Eν¯e≈6.3PeV. W channels yielding quarks are purely and antineutrino-electron, σν¯e, scattering. We use the total hadronic (qG,q≈0.9). The e/τ channels result in a neutrino deep-inelasticscatteringcrosssectionsfrom[36]forcharged- carryingawaymostoftheenergy((cid:104)y(cid:105)≈0.25[37]). current(CC)andneutral-current(NC)scattering,andtheav- TauneutrinoCCevents(ν N→τX)typicallyhaveprop- τ erage inelasticity, (cid:104)y(Eν)(cid:105), from [37], approximating (cid:104)y(cid:105)= erties intermediate between CC νe and NC events. One dif- 0.25at>∼PeVenergies. ferenceisthatatauatPeVenergieswilltravel∼50mbefore The visible energy of the shower depends upon the inter- decaying[39],with∼80%ofdecays[33]involvingchannels action channel. For NC events (νN→νX), σNC is identi- thatresultinashower,althoughwithanescapingντ carrying cal for all flavors, and (cid:104)y(cid:105) determines the fraction of energy awayenergy. Decaystoelectronsresultinanelectromagnetic imparted to a quark in the nucleon. The resulting hadronic cascade with an outgoing ν . Other decays involve multiple e showerresultsinlesslightthananequivalent-energyelectro- mesons,whichresultinahadronicshower.Assumingallsuch magneticshowerbyafactorthatisafunctionofenergy[38] decays to give hadronic-like cascades, including the initial that we assume to be fhad (cid:39) 0.9. Thus, working in terms cascade and assuming the two bangs to be indistinguishable of the electromagnetic-equivalent shower energy Eem (as in fornowgivesEem,τ=qτEν,withqτ≈0.9. Fig.2),withqNC≈0.23,wehave The spectrum of events for each channel can be given in termsoftheelectromagnetic-equivalentenergyas[40,41] E =f (cid:104)y(cid:105)E =q E . (3) em,NC had ν NC ν dN For CC ν events (ν N→eX), we assume that the elec- sh =2πN ρT V σ(E )ϕ (E )/q, (4) e e dE A eff ν ν ν trondepositsitsentireenergy,E =(cid:104)1−y(cid:105)E ,intoanelec- em e ν tromagneticshower. Thereisalsoanaccompanyinghadronic whereN ρisthemolardensityofice.Using2πsr,duetothe A 3 attenuationofupgoingPeVneutrinos,andV T ≈1km3 yr eff roughlymatchesthePeVIceCubeexposure[5]. 1025 HiRes(cid:45)II We integrate the total νN, ν¯N, and ν¯ e (with the elec- TelescopeArray e trondensitylowerby10/18)showeryieldsabove1PeV,and 1(cid:68) Auger (cid:45) equate to two events (assuming that all showers above this sr limit would be counted). For the π±µ± flavor ratio model, (cid:45)1 wethusobtainthenormalizationfordN /dE usingEq.(1) s as f ≈4.9×10−49GeV−1cm−3s−1,νgivinνg the total flux (cid:45)2 1024 0,πµ m curve in Fig. 1. Our estimates using the dσ/dy distributions 2 in [37] agree at the ∼10% level. The lower panel of Fig. 2 V e showstheresultingshowerspectruminthedetector. (cid:64) alsEox[a4m2,in4i3n]g),twheeinmopteorthtaantcν¯eeeofscthaetteGrilnagshroewsulrtessionnathnecepe(askees (cid:144)NdE1023 (cid:244)(cid:244) at∼1.5PeVand∼6PeV,althoughtheexactdσ/dy signifi- d (cid:244)(cid:244) 3 cantlybroadenstheformer.SincetheW widthtohadronsisa E (cid:244)(cid:244) factorof∼3largerthantothesumofe/τ,6PeVshowersare themostlikelyandaccountfor<∼1ofthepredictedevents. In our ν¯-less scenario where only π+ are produced and 1022 1017 1018 1019 1020 muons cool to low energy prior to decaying, resonant ν¯ e e E (cid:64)eV(cid:68) events do not occur. Using the flavor ratios from the π+ de- cayaloneandstartingagainfromEq.(1)resultsintheshower FIG.3: Theultrahigh-energycosmic-rayspectrum. Shownarethe signals in the upper panel of Fig. 2. To obtain two >1 PeV proton fluxes associated with our π±µ± (dashed) and π+ (solid) eventsrequiresf =1.4×10−48GeV−1cm−3s−1. 0,π neutrinoflavormodels, withnormalizationsobtainedfromtheIce- MuonneutrinoCCscatterings(ν N →µX)alsoproduce µ Cube neutrino observations, with 68% confidence bands based on ahadronicshower;however,adefiningcharacteristicofsuch twoevents. ThesearecomparedtoHiRes-II[10], Auger[12], and events is the resulting muon. Using the normalized neutrino TelescopeArray[13]data. spectra, andaccountingforthe∼ 20%oftaudecaysthatre- sultinamuon,wefindtheexpectednumberof>PeVmuons withcontainedverticestobe∼1inbothcases,inaccordwith TofindtheexpectedprotonfluxesatEarthfromthesespec- alackofIceCubemuoneventsinthisrangethusfar. tra,threetypesofenergylossmustbeaccountedforinpropa- The cosmic-ray spectrum.— A long-standing hope is to gation. AtenergieswherephotopionproductionontheCMB determinetheUHECRsourcesandascertaintheacceleration occurs (>∼1019.5eV), pγ → Nπ is the dominant loss chan- mechanism. By making a few simplifying assumptions, we nel [45]. For Ep >∼ 1018 eV, and below the CMB photo- relateourneutrinospectratoaprotonfluxwithanormaliza- pionthreshold,resonantpairproductiononbackgroundpho- tionthatisfixedbytheIceCubedata. tons,pγ →pe+e−,dominates[46]. Thisprocesshasalarge We assume for the π±µ± flavor ratio model that one neu- crosssection,althougheachinteractionremovesonlyasmall tron with E ∼20E is produced corresponding toeach π± amountofenergy.Finally,thereisanenergy-independentadi- n ν pair. Sincesixtotalneutrinosresultfromtheπ±µ±decays, abaticlossterm. These can be combined via characteristic loss times [47] dN 1 dN EndE = 6EνdE (5) asτT−1(Ep,z)=τπ−1(Ep,z)+τp−a1ir(Ep,z)+τa−1(z),giving n ν anenergylossrateofdlnE /dt=τ−1(E ,z). Wecanthus p T p with neutron decay giving a source proton spectrum in the relate the injection energy at redshift z, E(cid:48) = E(cid:48)(E ,z), to p p p formofEq.(1)withα=−1, β=−3, andEb≈108.3 dueto thedetectedenergy,Ep,with neutroninteractionsinthesource[32]asassumedabove. In- tegratingover1015<Ep<1021eV,wefindanemissivity 1 dEp = 1 1 . (8) E dz τ (E ,z)dz/dt E ∼3.8+5.0×1044ergMpc−3yr−1, (6) p T p p,πµ −2.5 with uncertainties corresponding to the 68% Poisson confi- TheconstraintsimposedbythisrelationcanbeseeninFig.3 denceranges[44]fortwodetectedIceCubeevents. Introduc- ofRef.[48]. UsingthesameW(z)asabove,wecalculatethe ingacutoffbelow1021eVscarcelyaffectstheseenergetics. spectrumofthearrivingprotonfluxas Theprotonfluxassociatedwiththeπ+ scenarioistakento c (cid:90) zmax dN ∂E(cid:48) W(z) havethesamespectralshape. However, (i)wemustaccount ϕ (E )= p p dz, (9) p p 4π dE(cid:48) ∂E dz/dt for f ≈3f ; (ii) f normalizes a flux from a single 0 p p 0,π 0,πµ 0,π neutrinospecies,ratherthanthesumofsix,sothattheproton with∂E(cid:48)(E,z)/∂E calculatednumericallyfromEq.(8). fluxmustbelargerbyanadditionalfactorofsix,thusgiving p p InFig.3,wepresenttheexpectedcosmic-rayprotonspectra E ∼6.7+8.8×1045ergMpc−3yr−1. (7) that result from normalizing our neutrino spectra to IceCube p,π −4.3 4 viaEqs.(6)&(7). Wenotethatresidingneartheupperedges Alteringthecutoffsorslopesusedwouldnotgreatlychange ofthebandswouldcausetensionwithalackofobservedPeV thesebasicpoints.Moreover,iftheeventsturnouttobeanun- muonevents.Wehavealsochecked,usingCRPropa[49],that likely fluctuation of background, the lower inferred neutrino thecosmogenicgamma-rayfluxesaresafelybelowtheFermi flux would strengthen the conclusion that photopion interac- isotropicbackground[50]andassociatedconstraints[51–55]. tionsarenotinvolvedinfreeingcosmic-rayprotonsfromtheir Discussion and conclusions.— If cosmic rays in the sources. Ifnot,improveddatamaybetterinformusofanas- 1018eVrangearetrulyextragalacticprotons,thesteepnessof pect of the extreme universe that is not evident from studies theUHECRspectrumimpliesthattheircosmicenergydensity ofcosmicraysalone. ismuchlargerthanatthehighestmeasuredenergies. Iftheir We thank Carsten Rott for many detector discussions and escapes from acceleration regions were facilitated by photo- theauthorsofCRPropaformakingtheircodeavailable.MDK production of neutrons, then there must also be a substantial acknowledges support provided by NASA through the Ein- fluxofneutrinosfrompiondecays. Thesimplifiedmodelthat stein Fellowship Program, grant PF0-110074, TS by DOE wehave usedcaptures thegeneralflavor ofthe neutrinoflux Grant DE-FG02-91ER40626, and HY by the LANL LDRD neededtoexplaintheIceCubePeVeventsasabasisforcom- program and during a visit to Berkeley by US DOE contract parisonwithcosmic-rayprotons. de-sc00046548. In Fig. 3, we see that the cosmic-ray spectrum resulting from our neutrino flux with π+ flavor ratios is quite close to measurementsinthe1018eVrange. At>∼1019eV,theorigin [1] T. K. Gaisser, F. Halzen and T. Stanev, Phys. Rept. 258, 173 (1995). of the received flux is unclear, with a heavy-nuclear compo- [2] J.G.LearnedandK.Mannheim,Ann.Rev.Nucl.Part.Sci.50, sition inferred by Auger [25], in contrast to HiRes [24], and 679(2000). thepossibleinfluenceofCenAasalocalsource(see[56]). If [3] F.HalzenandD.Hooper,Rept.Prog.Phys.65,1025(2002). wetaketheAugerresultsatfacevalueandassumethatnuclei [4] J. Ahrens et al. [IceCube Collaboration], Nucl. Phys. Proc. makeupthedifference,similartothemodelof[57],atransi- Suppl.118,388(2003). tion in composition at ∼1018.5eV results, although we have [5] A. Ishihara, “IceCube: ultra-high energy neutrinos,” talk at Neutrino2012,http://neu2012.kek.jp/. notaddressedthisortheassociatedneutrinofluxesindetail. [6] T.K.GaisserandM.Honda,Ann.Rev.Nucl.Part.Sci.52,153 The restrictions on this scenario include a need for accel- (2002). eration in the presence of a fairly soft photon background to [7] R.Enberg,M.H.RenoandI.Sarcevic,Phys.Rev.D78,043005 result in near-threshold photoproduction. Also, a magnetic (2008). field of ∼1–10 kG (depending on the Γ factor of the emis- [8] K.Greisen,Phys.Rev.Lett.16,748(1966). sion) is used to cool muons, although such fields may occur [9] G.T.ZatsepinandV.A.Kuzmin,JETPLett.4,78(1966). nearjetlaunchingregions[58]orintheaccretiondisk, asin [10] R.U.Abbasietal.,Phys.Rev.Lett.100,101101(2008). [11] J.Abrahametal.,Phys.Rev.Lett.101,061101(2008). AGN core models [59, 60]. Removing the no-ν¯ requirement [12] P.Abreuetal.,arXiv:1107.4809. wouldreducetheprotonfluxby∼3;evenso,itisnotobvious [13] T.Abu-Zayyadetal.,arXiv:1205.5067. thatthecompletesetofconditionscanbefulfilled. [14] V. S. Berezinsky and G. T. Zatsepin, Phys. Lett. B 28, 423 We also see in Fig. 3 that the cosmic-ray proton flux as- (1969). sociatedwithaneutrinofluxarisingfromπ± andµ± decays [15] F.W.Stecker,Astrophys.J.228,919(1979). is significantly lower than the data (and the ν/p ratio could [16] E.WaxmanandJ.N.Bahcall,Phys.Rev.D59,023002(1999). [17] R. Engel, D. Seckel and T. Stanev, Phys. Rev. D 64, 093010 even be larger [61]). This implies that, if the requisite neu- (2001). trinosaremadethroughthisphotopionprocess, theresulting [18] T.Stanev,Phys.Lett.B595,50(2004). protonsarenotsufficienttoexplainthecosmic-raymeasure- [19] E.V.Bugaev,A.MisakiandK.Mitsui,Astropart.Phys.24,345 ments. This necessitates adominant class ofaccelerator that (2005). allowsforprotonescapewithoutsignificantlosses. [20] T.Stanev,D.DeMarco,M.A.MalkanandF.W.Stecker,Phys. IceCubemaywellbetheninformingusoftheworkingsof Rev.D73,043003(2006). a class of accelerators distinct from those providing cosmic [21] M.Ackermannetal.,Science338,1190(2012). [22] E. Roulet, G. Sigl, A. van Vliet and S. Mollerach, rays. Dividing our inferred neutrino emissivity into sources arXiv:1209.4033. yields an average of ∼4−10×1043ergs−1(100Gpc−3/n) [23] R.U.Abbasietal.,Astrophys.J.622,910(2005). for a space density n. These are values similar to those of [24] R.U.Abbasietal.,Phys.Rev.Lett.104,161101(2010). AGN. The neutrino flux is accompanied by roughly two to [25] J.Abrahametal.,Phys.Rev.Lett.104,091101(2010). sixtimesthisenergyingammarays,whichwillquicklycas- [26] A.M.Hillas,Ann.Rev.Astron.Astrophys.22,425(1984). cade in or near the source, and should be discussed in terms [27] R. Abbasi et al. [IceCube Collaboration], Nature 484, 351 ofconcretemodels(e.g.,[62–64]. Ouruseofflatevolutionis (2012). [28] S.Hummer,P.BaerwaldandW.Winter,Phys.Rev.Lett.108, similartothatofintermediate-luminosityquasars(e.g.,[65]). 231101(2012). Stronger source evolution, such as from bright quasars or [29] I.CholisandD.Hooper,arXiv:1211.1974. thecosmicstarformationrate[66],wouldresultinrelatively [30] R.-Y.LiuandX.-Y.Wang,arXiv:1212.1260. moreneutrinofluxatlowerenergies.Thisreducesthenormal- [31] IceCubeCollaboration,Phys.Rev.D83,092003(2011). izationandsteepensthespectrumofthecosmic-rayfluxes. [32] K.Mannheim,R.J.ProtheroeandJ.P.Rachen,Phys.Rev.D 5 63,023003(2001). Phys.Lett.B695,13(2011). [33] J. Beringer et al. [Particle Data Group Collaboration], Phys. [52] M. Ahlers, L. A. Anchordoqui, M. C. Gonzalez-Garcia, Rev.D86,010001(2012). F.HalzenandS.Sarkar,Astropart.Phys.34,106(2010). [34] J.P.RachenandP.Meszaros,Phys.Rev.D58,123005(1998). [53] G. Decerprit and D. Allard, Astron. Astrophys. 535, A66 [35] W.Winter,Adv.HighEnergyPhys.2012,586413(2012). (2011). [36] R.Gandhi,C.Quigg,M.H.RenoandI.Sarcevic,Phys.Rev.D [54] G. B. Gelmini, O. Kalashev and D. V. Semikoz, JCAP 1201, 58,093009(1998). 044(2012). [37] R. Gandhi, C. Quigg, M. H. Reno and I. Sarcevic, Astropart. [55] K. Murase, J. F. Beacom and H. Takami, JCAP 1208, 030 Phys.5,81(1996). (2012). [38] M.P.Kowalski,Ph.D.thesis(Humboldt,2004). [56] H.Yuksel,T.Stanev,M.D.KistlerandP.P.Kronberg,Astro- [39] J.G.LearnedandS.Pakvasa,Astropart.Phys.3,267(1995). phys.J.758,16(2012). [40] T.K.Gaisser, CosmicRaysandParticlePhysics, (Cambridge [57] R.Aloisio,V.BerezinskyandA.Gazizov,Astropart.Phys.34, Univ.Press,Cambridge,1990). 620(2011). [41] M. D. Kistler and J. F. Beacom, Phys. Rev. D 74, 063007 [58] S. P. O’Sullivan and D. C. Gabuzda, Mon. Not. Roy. Astron. (2006). Soc.400,26(2009). [42] V.Barger,J.LearnedandS.Pakvasa,arXiv:1207.4571. [59] F.W.Stecker,C.Done,M.H.SalamonandP.Sommers,Phys. [43] A.Bhattacharya,R.Gandhi,W.RodejohannandA.Watanabe, Rev.Lett.66,2697(1991). arXiv:1209.2422. [60] F.W.Stecker,Phys.Rev.D72,107301(2005). [44] N.Gehrels,Astrophys.J.303,336(1986). [61] M.Ahlers,L.A.AnchordoquiandS.Sarkar,Phys.Rev.D79, [45] A.Mucke,J.P.Rachen,R.Engel,R.J.ProtheroeandT.Stanev, 083009(2009). Publ.Astron.Soc.Austral.16,160(1999). [62] A. Muecke, R. J. Protheroe, R. Engel, J. P. Rachen and [46] G.R.Blumenthal,Phys.Rev.D1,1596(1970). T.Stanev,Astropart.Phys.18,593(2003). [47] V.Berezinsky,A.Z.GazizovandS.I.Grigorieva,Phys.Rev.D [63] A.M.AtoyanandC.D.Dermer,Astrophys.J.586,79(2003). 74,043005(2006). [64] S. Dimitrakoudis, A. Mastichiadis, R. J. Protheroe and [48] H.YukselandM.D.Kistler,Phys.Rev.D75,083004(2007). A.Reimer,arXiv:1209.0413. [49] K.-H. Kampert, J. Kulbartz, L. Maccione, N. Nierstenhoefer, [65] R.J.Assefetal.,Astrophys.J.728,56(2011). P.Schiffer,G.SiglandA.R.vanVliet,arXiv:1206.3132. [66] M. D. Kistler, H. Yuksel, J. F. Beacom, A. M. Hopkins and [50] A.A.Abdoetal.,Phys.Rev.Lett.104,101101(2010). J.S.B.Wyithe,Astrophys.J.705,L104(2009). [51] V.Berezinsky,A.Gazizov,M.KachelriessandS.Ostapchenko,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.