ebook img

Cosmic Neutron Star Merger Rate and Gravitational Waves constrained by the R Process Nucleosynthesis PDF

1.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cosmic Neutron Star Merger Rate and Gravitational Waves constrained by the R Process Nucleosynthesis

Mon.Not.R.Astron.Soc.000,1–??(2015) Printed5October2015 (MNLATEXstylefilev2.2) Cosmic Neutron Star Merger Rate and Gravitational Waves constrained by the R Process Nucleosynthesis Elisabeth Vangioni1⋆, Ste´phane Goriely2, Fre´de´ric Daigne1, Patrick Franc¸ois3, 5 1 and Krzysztof Belczynski4 0 1SorbonneUniversite´s,UPMCUnivParis6etCNRS,UMR7095,Institutd’AstrophysiquedeParis,98bisbdArago,75014Paris,France 2 2Institutd’Astronomieetd’Astrophysique,CP226,Universite´LibredeBruxelles,1050Brussels,Belgium t 3GEPI,Paris-MeudonObservatory,61Avenuedel’Observatoire,F-75014Paris,France c 4AstronomicalObservatory,UniversityofWarsaw,Al.Ujazdowskie4,00-478Warsaw,Poland O 2 5October2015 ] E H ABSTRACT . Thecosmicevolutionoftheneutronstarmerger(NSM)ratecanbededucedfromtheobserved h cosmic star formation rate. This allows to estimate the rate expected in the horizon of the p gravitationalwave detectors advancedVirgo and ad LIGO and to compare those rates with - o independentpredictions.Inthiscontext,therapidneutron-captureprocess,orr-process,can r beusedasaconstraintassumingNSMisthemainastrophysicalsiteforthisnucleosynthetic t s process. We compute the early cosmic evolution of a typical r-process element, Europium. a EuyieldsfromNSMaretakenfromrecentnucleosynthesiscalculations.Thesameapproach [ allowstocomputethecosmicrateofCoreCollapseSuperNovae(CCSN)andtheassociated 2 evolutionofEu. v We find that the bulk of Eu observationsat [Fe/H] > −2.5 can be rather well fitted by 5 eitherCCSNorNSMscenarios.However,atlowermetallicity,theearlyEucosmicevolution 1 favorsNSMasthemainastrophysicalsiteforther-process.Acomparisonbetweenourcal- 1 culationsandspectroscopicobservationsatverylow metallicitiesallows usto constrainthe 1 coalescencetimescaleintheNSMscenarioto∼0.1–0.2Gyr.Thesevaluesareinagreement 0 withthecoalescencetimescalesofsomeobservedbinarypulsars.Finally,thecosmicevolu- . 1 tionofEuisusedtoputconstraintsoni)theNSMrate,ii)themergerrateinthehorizonof 0 thegravitationalwavedetectorsadvancedVirgo/adLIGO,aswellasiii)theexpectedrateof 5 electromagneticcounterpartstomergers(”kilonovae”)inlargenear-infraredsurveys. 1 : Key words: Cosmology: dark ages, first stars, Physical Data and Processes: gravitational v waves,nucleosynthesis,Stars:supernovae,neutronstars. i X r a 1 INTRODUCTION propertiesofthepromptemissioninshortandlongGRBs(see.g. Guiriecetal. 2010)suggestthatthesamedissipationprocessisat Recently, a special attention has been paid to neutron star (NS)– workinthesetwoclassesofbursts(Bosˇnjak&Daigne 2014)and NS or NS–black hole (BH) mergers (hereafter NSM), con- thatthemaindifferencesarethelifetimeofthecentralengine,lead- sidered today as the most promising sources of gravitational inginthecaseofbinarycompactobjectstoshorterevents,andthe waves for ground-based detectors such as advanced Virgo/ad densityof thecircumburst medium, leading toweaker afterglows Ligo (Phinney 1991; Narayanetal. 1991; Virgocollaboration (Nakar 2007). In addition, hydrodynamic simulations have con- 2009; Abadieetal. 2010; LIGOScientificcollaboration 2011; firmedthatanon-negligibleamountofmatter,typicallyabout10−3 Aasietal. 2014a,b,c; Belczynskietal. 2014) but also because to 10−2 M , can be ejected quasi-isotropically (Jankaetal. 1999; several evidences (seeBerger 2014, for a recent review) suggest ⊙ Rosswogetal. 1999, 2004; Oechslinetal. 2007; Gorielyetal. inadditionthattheseeventsaretheprogenitorsofshortgamma-ray 2011; Bausweinetal. 2013; Gorielyetal. 2013; Justetal. 2015; bursts(GRB)(Paczynski 1986;Eichleretal. 1989;Narayanetal. Wanajoetal.2014)andthatthematterejectedinsuchNSMevents 1992;Mochkovitchetal. 1993).Recentsimulationsshowthat,af- isessentiallymadeofr-processnuclei,sheddinganewlightona ter the merger, the relic BH-torus system can produce an ultra- oldmystery. relativistic ejection along its rotation axis (Rezzollaetal. 2011), The r-process, or the rapid neutron-capture process, of stel- potentially leading to a short GRB. The similarities between the larnucleosynthesisisinvokedtoexplaintheproductionofthesta- ble(andsomelong-lived radioactive) neutron-richnuclides heav- ⋆ e-mail:[email protected] ierthaniron thatareobserved instarsof variousmetallicities,as (cid:13)c 2015RAS 2 E. Vangioni,S. Goriely,F. Daigne,P.Franc¸ois,K. Belczynski wellasinthesolarsystem(forareview,seeArnouldetal.2007). Kistleretal. 2013; Trentietal. 2013). Computing the NSM rate The r-process remains the most complex nucleosynthetic process requirestodetermine poorly known parameters, namely thefrac- tomodelfromtheastrophysicsaswellasnuclear-physicspointsof tion of NS ina binary system with another NS or a BH, and the view.Thesite(s)ofther-processis(are)notidentifiedyet,allthe characteristiccoalescencetimescaleofsuchasystem.Toconstrain proposedscenariosfacingseriousproblems.Complex—andoften these parameters, we model the associated evolution of a typical exotic—siteshave been considered inthe hope of identifying as- r-processelement,Europium,byassumingNSMasthemainastro- trophysicalconditionsinwhichtheproductionofneutronsislarge physicalsiteofther-processandadopting themostrecent nucle- enoughtogiverisetoasuccessfulr-process. osyntheticcalculations(Gorielyetal.2011;Bausweinetal.2013; Progress in the modelling of type-II supernovae and long Justetal.2015),andwecompare totheavailableobservations in GRBshasraisedalotofexcitementabouttheso-calledneutrino- old stars of the Galactic halo and in external galaxies. Once the driven wind environment. However, until now a successful r- mergerratehasbeendetermined,itispossibletoestimatetheex- process cannot be obtained ab initio without tuning the relevant pectedeventrateforthenewgenerationofgravitationalwavede- parameters(neutronexcess,entropy,expansiontimescale)inaway tectors (advanced Virgo and LIGO), as well as the expected de- that is not supported by the most sophisticated existing models tectionrateofkilonovaeinpresentandfutureoptical/near-infrared (Wanajoetal.2011;Janka2012). large surveys. The same approach can be followed to determine, Early in the development of the theory of nucleosynthesis, without any new parameter, the CCSN rate, hence the predicted an alternative to the r-process in high-temperature supernova en- evolutionofEuropiuminthealternativescenariowherer-process vironmentswasproposed (Tsuruta&Cameron1965).Itrelieson elementsareproducedmainlyinsuchstellarexplosions. the fact that at high densities (typically ρ > 1010 g/cm3) mat- Thepaperisorganizedasfollows:inSect.2,weselectthree tertends tobecomposed of nuclei lyingontheneutron-rich side possiblescenariosfortheSFR,whicharerepresentativeofthecur- of the valley of nuclear stability as a result of free-electron cap- rentuncertaintiesathighredshift,andwedescribehowtheCCSN tures. The astrophysical plausibility of this scenario in account- andNSMratescanbededucedfromtheSFR,bothscenariosstill ing for the production of the r-nuclides has long been ques- depending on given unknown parameters. In Sect.3, we describe tioned. It remained largely unexplored until the study of the de- thechemicalevolutionmodelthatweusetodeducefromthecos- compression of cold neutronised matter resulting from tidal ef- micSFRtheexpectedevolutionoftheabundancesofvariouschem- fects of a BH on a NS companion (Lattimer&Schramm 1974; icalelementsinstar-formingstructures.Weshowthatthethreesce- Lattimeretal.1977;Meyer1989).Manyinvestigationswithgrow- nariosconsideredinthepaperforthecosmicSFRarecompatible ing sophistication have now confirmed NSM ejecta as viable withalargesetofobservations,hencevalidatingthepresentmodel. sites for strong r-processing (Arnouldetal. 2007; Gorielyetal. In§4.2,weshowhowthemodelcanbeextendedtoheavyelements 2011; Bausweinetal. 2013; Gorielyetal. 2013; Justetal. 2015; producedbyther-process.InSect.4,wepresentthepredictedcos- Freiburghausetal.1999;Gorielyetal.2005;Metzgeretal.2010; micevolutionofEu,assumingeithertheCCSNortheNSMasthe Robertsetal. 2011; Korobkinetal. 2012; Wanajoetal. 2014). In mainastrophysicalsiteofther-process.Wemakeadetailedcom- particular, recent nucleosynthesis calculations (Justetal. 2015) parisonwithobservationsatlowmetallicitieswhichcorrespondto show that the combined contributions of both the dynamical theearlyevolutionintheUniverseandappeartobethemostdis- (prompt) ejecta expelled during the binary NS-NS or NS-BH criminativebetweenbothsites.IntheNSMcase,thisallowsusin merger and the neutrino and viscously driven outflows generated additiontoconstrainthepropertiesofthebinarysystem,inpartic- duringthepost-mergerremnantevolutionoftherelicBH-torussys- ularcoalescencetimescale.Theresultinglowerandupperlimitson temsleadtotheproductionofr-processelementsfromA&90upto themergerrateareusedinSect.5tomakepredictionsfortheex- thoriumanduraniumwithanabundancedistributionthatreproduce pectedeventrateinthehorizonofadvancedVirgo/LIGO,aswell extremelywellthesolardistribution,aswellastheelementaldistri- asforthekilonovarateinfuturesurveys.Finally,wedrawourcon- butionspectroscopically determined invery-low-metallicitystars. clusionsinSect.6. The ejected mass of r-process material, combined with the pre- dictedastrophysicaleventrate(around10−5yr−1intheMilkyWay (Dominiketal. 2012) can account for the majority of r-material inourGalaxy(Gorielyetal.2011;Bausweinetal.2013;Justetal. 2 PREDICTINGTHENSMRATE 2015). 2.1 Thecosmicstarformationrate(SFR) In NSM, nearly all of the ejecta are converted to r-process nuclei, whose radioactive decay heating leads to potentially ob- ThecosmicSFRisakeyingredienttomodeltherateofstellarex- servable electromagnetic radiation in the optical and infrared plosiveevents,suchasCCSNandNSM.Theredshiftevolutionof bands(Li&Paczyn´ski 1998;Metzgeretal.2010)with100–1000 theSFRdensityisnowratherwellconstrainedbymanyobserva- times fainter peak brightnesses than those of typical supernovae tions.Recent datafromtheHubbleUltraDeepFieldhavesignif- anddurationsofonlydays(Gorielyetal.2011;Robertsetal.2011; icantly extended the range of redshift for its determination, from Bausweinetal.2013).These“macronovae”or“kilonovae”arein- redshiftz=4upto10(Bouwensetal.2007;Bouwensetal 2008, tensely searched for (with a recent, possible first success in as- 2011,2014;Oeschetal.2012,2013,2014).Evenmorerecentob- sociation with the short GRB 130603B, see Bergeretal. 2013; servationsofhighzgalaxiesandGRBstendtofavoralargeamount Tanviretal.2013).Theirunambiguousdiscoverywouldconstitute ofstillunseenSFRatz>9(Kistleretal.2013;Wang2013).This thefirstdetectionofr-materialinsitu. laststudysuggeststhatSFRdensitymayonlydeclineoutatz=11 In the present paper, our primary goal is to predict the cos- andthatGRBsmaybeusefulinexploringtheunseenfaintdwarf mic evolution of the NSM that can be deduced from the ob- galaxiesathighredshift.Behroozietal.(2013)re-analyzedtheav- served history of the star formation rate (SFR), including the re- erage star formation historiesfrom z = 0 to8 and obtained con- cent constraints obtained at high redshift (Behroozietal. 2013; sistentresultswithobservedgalaxystellarmassfunctions,specific Behroozi&Silk 2015; Oeschetal. 2014; Bouwensetal 2014; starformationratesandSFR.Moreover,high-redshiftgalaxyevo- (cid:13)c 2015RAS,MNRAS000,1–?? CosmicNSM RateandGW constrainedbytheR Process 3 Foreachmode,theIMFslopeissettotheSalpetervalue,i.e. x = Time (Gyr) 13.67 5 1 0.5 0.1024 1.35. Star formation is assumed to start at the initial time of t = 0 100 Myr corresponding to a redshift of z = 30. We adopt the following cosmological parameters, Ω = 0.27,Ω = 0.73 and m Λ H = 71 km/s/Mpc (h = 0.71) and a primordial power spectrum 0 withapower-law index n = 1. The aget of theUniverse isthen relatedtotheredshiftby dt 9.78h−1Gyr = . (2) dz (1+z) Ω +Ω (1+z)3 0.5 Λ m As seen(cid:2)in Fig. 1, the SF(cid:3)R2 mode is an intermediate case, whereas SFR1 and SFR3 are respectively close to the lower and higher values of the current measurements at high redshift. We checkedthateachofthesethreescenariosiscompatiblewithalarge setofindependentobservationalconstraintsdiscussedinSect.3.2, especially the Thomson optical depth tothe cosmological micro- wavebackground(CMB)andthecosmicevolutionof[Fe/H].This ledtotheinclusionoftheadditionalPopIIIcomponentathighred- shiftintheSFR1case,thestandardmodealonebeingtooweakin thiscasetofulfillthereionizationconstraint(seeSect.3.2.1). Figure1.CosmicSFRasafunctionofredshift.ThreeSFRmodesconsid- 2.2 TheNSMrate eredinthepaper,SFR1(solidline),SFR2(dottedline)andSFR3(dashed 2.2.1 TheCCSNrateandtheNSbirthrate line). Observations are taken from Behroozietal. (2013) (red points), Bouwensetal (2014); Oeschetal. (2014) (and references therein) (blue Once the evolution of cosmic star formation rate is known, the points)andKistleretal.(2013)(blackpoints). CCSNrate can bedirectly deduced if the mass-range of the pro- genitorsisknown.WeusethepredictionsfromWoosley&Weaver (1995)andassumethattheremnantofstarswithmass8<M/M < lutionhasalsobeenpredictedbyBehroozi&Silk(2015)who,in- ⊙ 30isaNS,andthatmoremassivestarsproduceaBH.Thisleadsto cludingrecentconstraints(Behroozietal.2013;Oeschetal.2013; thefollowingNSbirthrateattimet(relatedtoredshiftzbyEq.2): Kistleretal.2013;Trentietal.2013),probedtheunobservedz>8 galaxypopulations.TheresultingobservationallyconstrainedSFR R˙ (t)= dmΦ(m)Ψ(t )Ξ (m,Z(t )) , (3) is illustrated in Fig. 1 as a function of the redshift. The corre- NS Z ∗ NS ∗ sponding evolution of the cosmic SFR density as a function of whereΦ(m)istheinitialmassfunction(IMF)integratedoverthe redshift can be parametrized by the following form proposed by wholestellarmassrange,Ψ(t)theSFR,t theformationtimeofthe ∗ Springel&Hernquist(2003), progenitor,suchthatt +τ(m,Z(t ))=t,Z(t )themetallicityatthe ∗ ∗ ∗ ψ(z)=ν aexp[b(z−zm)] , (1) epochofformationoftheprogenitor,τ(m,Z(t∗))thelifetimeofa a−b+bexp[a(z−zm)] starformedwithmassmandmetallicityZ(t∗),andΞNS(m,Z(t∗))is 1ifthestellarremnantisaNS,0otherwise.Thelifetimesofstars whereν(inM /yr/Mpc3)andz correspondtotheastrationrateand ⊙ m come from (Maeder&Meynet 1989) and the stellar metallicity- theredshiftattheSFRmaximum,respectively,whilebandb−a dependent remnants are taken from (Woosley&Weaver 1995). fixtheSFRslopeatlowandhighredshifts,respectively. The BH birth rate is given by a similar equation, using now Duetothefundamental importanceoftheSFRinpredicting Ξ (m,Z(t )) = 1 if the remnant is a BH, 0 otherwise, and the BH ∗ the stellar explosive event rates, and more generally the cosmic CCSNrateisthesumofthesetworates.Thecorresponding evo- chemical evolution, we consider in the present paper three SFR lutionofthesethreeratesdeducedonthebasisofSFR1andSFR2 modes(seeFig.1),whichcoincideatlowredshift,wheretheyre- isplotted in Fig. 2. On the observational point of view, the local produce theavailabledata, anddiffer athighredshift, takinginto CCSN rate is well determined, thanks to large surveys dedicated accountthecurrentuncertainties: tothesearchofsupernovae(Mattilaetal.2012).Ascanbeseenin • SFR1includesastandardmodeofpopulation(Pop)II/Istars Fig.2,theagreementwiththepredictiondeducedfromthecosmic SFRisgood. formationbetween0.1and100M ,andadditionallyaPopIIIstel- ⊙ larmodeathighredshiftbetween36and100M .Thecorrespond- ⊙ ingparametersforeachmodeinEq.(1)are,respectively,ν=0.18 2.2.2 TheNSmergerrate and0.0025,z =2.0and12.0,a=2.37and4.0,andb=1.80and m 3.36. In contrast to the to the CCSN rate, the astrophysical esti- • SFR2includesauniquemodeofstarformationbetween0.1 mate of compact-binary coalescence rates depends on a num- M and100M ,withthefollowingparameters:ν=0.15,z =1.7, ber of assumptions and unknown model parameters and are still ⊙ ⊙ m a=2.8,b=2.45; rather uncertain (Abadieetal. 2010). Among the various esti- • SFR3alsoincludesauniquemodeofstarformationbetween mates,theratepredictions for NS-NSbinary systemsisthemost 0.1M and100M ,withthefollowingparameters:ν=0.36,z = reliable one since they are based on extrapolations from ob- ⊙ ⊙ m 2.6,a=1.92,b=1.5. served binary pulsars in our Galaxy. These estimates lead to (cid:13)c 2015RAS,MNRAS000,1–?? 4 E. Vangioni,S. Goriely,F. Daigne,P.Franc¸ois,K. Belczynski Dominiketal.(2013)calculatedthecosmologicalmergerratesof NS-NS,NS-BH,BH-BHsystemsasafunctionofredshiftassum- ing different SFR histories. While in most cases NS-NS systems dominatethemerger ratesinthelocal Universe, BH-BHmergers arefoundtodominateathighredshift. SFR 0.1 Inthepresent study,themergerrateisdeterminedassuming thattheformationrateofNS-NS/BHbinarysystemsisafractionα oftheNSbirthrateR˙ andthatthesebinarysystemsmergeafter Core Collapse SNII NS 0.01 adelay∆t ,thevalueofwhichisdiscussedbelow.Thisleadsto NS formation NSM thefollowingmergerrateattimet: R˙ (t)=αR˙ (t−∆t ) . (4) NSM NS NSM Inourmodel,bothαand∆t andtakenasfreeparameters.The NSM predictedevolutionofthemergerrateisplottedinFig.2forSFR1 BH formation andSFR2,assuming α = 0.002and ∆t = 0.2Gyr.Theinde- mergers NSM pendent estimate of the local rate taken from the compilation by Abadieetal.(2010)isindicatedforcomparison. 2.2.3 Thecoalescencetimescale Thecoalescence timescale∆t isdefined asthedelaybetween NSM theformation of thebinary system of twoNS or aNSand aBH SFR 0.1 (notethatitdoesnotincludethelifetimeofthetwostarprogeni- torsofthecompactobjects).Itisakeyingredient asitleadstoa differentcosmicevolutionofNSMcomparedtoCCSN,forwhich Core Collapse SNII 0.01 thereisnoadditionaldelayaftertheformationofaNS/BH. NS formation The angular momentum lossdue tothe emission of gravita- tionalwavesgovernsthecoalescencetimescale.Itsvaluestrongly dependsonthepropertiesofthebinarysystem,andinparticularon theinitialseparationa(ororbitalperiodT)since∆t ∝a4(resp. NSM ∆t ∝ T8/3) (Peters&Mathews 1963, see also Kalogeraetal. BH formation NSM 2001;Hughes 2009).Thisdependenceleadstoanexpectedbroad mergers rangeofvaluesfor∆t ,withhoweverlargeuncertaintiesrelated NSM tothedistribution of possible initial orbital parameters inNS/NS andNS/BHbinaries(seeHughes 2009,forarecent review). For a binary system of two 1.4 M NS, the coalescence timescale is ⊙ ∆t = 64 Myr for a = 10−2 AU (resp. T = 5.2 h). Only NSM seven NS/NS binary systems are known with measured masses Figure2.NSandBHbirthratesaswellastheCCSNandmergerratesas (Lorimer 2005,2008).Thecurrentorbitalparametersandthemea- afunctionoftheredshiftforSFR1(upperpanel)andSFR2(lowerpanel). sured masses allow us to estimate the remaining time before the Green andred points represent thelocal CCSN rate (Mattilaetal. 2012) merger. As at least one of the two NS is observed as a pulsar, andthetotallocalmergerrate(Abadieetal.2010),respectively.TheSFR the measurement of the pulsar period and its time derivative can evolutionisalsoplottedforcomparison. provide an estimate of the current age of the binary system. The sum of these two timescales gives an estimate of ∆t . Using NSM the values listed in Lorimer (2008), coalescence timescales be- a coalescence rate of about 100 Myr−1 per Galaxy, although tween100and400Myrarefoundinfourcases,andvalueslarger this rate could plausibly range from 0.1 Myr−1 to 1000 Myr−1 than1Gyrinthethreeothercases.ThedoublepulsarPSRJ037- (Kimetal. 2003; Kalogeraetal. 2004; Mennekens&Vanbeveren 3039corresponds tothelowestvalue, ∆t ≃ 180Myr. Thefa- NSM 2014). Due to the lack of observational data, predictions of the mousbinarypulsarPSRB1913+16,whichhasbeenstudiedinde- frequency of NS-BH mergers remains even more uncertain and tailsforyearsasatestofgeneralrelativity(Hulse&Taylor 1975; relyexclusivelyontheoreticalstudies(Tutukov&Yungelson1993; Weiberg,NiceandTaylor 2010)ischaracterisedbyacoalescence Voss&Tauris 2003; O’Shaughnessyetal. 2008; Dominiketal. timescale∆t ≃420Myr. NSM 2012; Dominiketal. 2013; Mennekens&Vanbeveren 2014; The distribution of the coalescence timescale can be esti- Postnov&Yungelson 2014). These population synthesis models matedusingapopulationsynthesiscodeforbinarysystems,which estimategalacticmergerratesbetween2×10−9and10−5peryear. canbecalibratedwithobserved systems.Theresultisplottedfor The range reflects the challenge in comprehensively modelling two different metallicities in Fig. 3. It has been obtained using theformationandevolutionofstellarbinariesandtheirremnants. theStarTrackcodedescribedinBelczynskietal.(2002,2008a), Bausweinetal. (2014) determined anindependent upper limit on wherestandardstellarevolutionmodelsareimplementedwiththe themergerrateofNS-BHbinariesbycomparing thepredictedr- mostupdatedphysicsregardingtherelevantprocessesfortheevo- processnucleosynthesisyieldsofsuchsystemswiththeobserved lution of binary systems. Fig. 3 has been produced using the re- galactic amount of r-process material. A strict upper limit of the sultsofarecentlyupdatedversionofthecode(Mink&Belczyn- averageNS-BHmergerrateofabout 6×10−5 peryearwasfound. ski in preparation), including new prescriptions for stellar wind (cid:13)c 2015RAS,MNRAS000,1–?? CosmicNSM RateandGW constrainedbytheR Process 5 3 COSMICCHEMICALEVOLUTION 3.1 Modeldescription Inadditionoftheratesofexplosiveevents(CCSN,NSM)discussed intheprevioussections,thepredictedchemicalevolutioncanalso be deduced from the cosmic evolution of the SFR. We use the model developed by Daigneetal. (2006); Rollindeetal. (2009); Vangionietal. (2014), which is based on a hierarchical model forstructureformation(Press&Schechter1974;Sheth&Tormen 1999;Jenkinsetal. 2001;Wyithe&Loeb 2003).Weassumethat theminimummassofdarkmatterhaloesforstar-formingstructures is107 M . ⊙ Finally, for a given evolution of the cosmic SFR density, as discussed in§2.1,themodel followstheevolution of baryons in the Universe in terms of two main reservoirs. The first is associ- atedwithcollapsedstructuresandisdividedintwosub-reservoirs: theISMgas(massM (t))andthestarsandtheirremnants(mass ISM M (t)).Thesecondreservoir,theintergalacticmedium(IGM,mass ∗ M (t)), corresponds to the medium in between the collapsed IGM structures.Theevolutionofthebaryonicmassofthesereservoirs isgovernedbyasetofdifferentialequations: dM dM IGM =− struct =−a (t)+o(t), (5) dt dt b Figure 3. Distribution of the coalescence timescale ∆tNSM for NS/NS binarysystems.Thecoalescencetimescale∆tNSMisdefinedasthedelay dM∗ =Ψ(t)−e(t)and dMISM = dMstruct − dM∗ . (6) betweentheformationofthetwoNSandthefinalmerger.Theplotshows dt dt dt dt thefractionofmergerswithacoalescence timescale aboveagivenvalue Inaddition,wehaveM (t)+M (t)= M (t),correspondingto inMyr,fortwodifferentmetallicities. Thisdistributionhasbeenobtained ISM ∗ struct from an updated version of the population synthesis model described in thetotalbaryonicmassofthestructures,andMIGM(t)+Mstruct(t)= Belczynskietal.(2002).Itcoversabroadrangeofvalueswithadistribution constant(totalbaryonicmassoftheUniverse). fallingapproximatelylikep(∆tNSM)∝∆tN−1SM. As can be seen, these equations are controlled by four rates whichrepresentfourfundamentalprocesses:theformationofstars through the transfer of baryons from the ISM, Ψ(t), which is di- rectly fixed by the assumption SFR1, 2 or 3 discussed in § 2.1; theformationofstructuresthroughtheaccretionofbaryonsfrom theIGM,a (t);theejection of enriched gasbystars,e(t) and the b outflowofbaryonsfromthestructuresintotheIGM,o(t). masslossrates(Vinketal. 2011;Vink&Grafener 2012),forsu- Inthemodel,wetrackthechemicalcompositionoftheISM pernovamodels(Fryeretal. 2012),forthecommonenvelopphase andtheIGMasafunctionoftimeorredshift.Thedifferentialequa- (Dominiketal. 2012),addingelectroncapturesupernovaeforNS tionsgoverningtheevolutionofthemassfraction XISM (XIGM)of i i formation (Belczynskietal. 2008a), and taking into account re- elementiintheISM(IGM)aregivenbyequations(6)and(7)in cent observational constraints on massive stars in binary systems section2inDaigneetal. (2004). (Sanaetal. 2012).Additionally,theevolutionarymodelincludedin Thebaryonaccretionrate,a (t)iscomputedintheframework b thecodedoesnotallowfortheprogenitorstoundergoacommon- ofthehierarchical scenarioofstructureformationandthebaryon envelope phase whileone of the massive binary stars isevolving outflowrate,o(t),fromthestructuresincludesaredshift-dependent throughtheHertzsprunggap(seeBelczynskietal. 2007,formore efficiency,whichaccountsfortheincreasingescapevelocityofthe details). This corresponds to a conservative assumption and ad- structuresasthegalaxyassemblyisinprogress. ditional NS-NS mergers may form if this assumption is relaxed. Weusetheframeworkofthehierarchicalscenariowheresmall Compared to the results of Belczynskietal. (2002), this updated structuresareformedfirst.Atredshiftz,thecomoving densityof calculationpredictsafractionofundetectedgalacticmergingNS- darkmatterhalosinthemassrange[M,M+dM]is f (M,z)dM, PS NSsystemssignificantlysmaller,nowatthelevelof∼ 10%.As with illustratedinFig.3, ∞ thedistributionofcoalescencetimescalespredictedbysucha dM Mf (M,z)=ρ , (7) PS DM Z detailedcalculationshowsabroadrangeofvalues:atsolarmetal- 0 licity Z = Z (resp. at metallicity Z = 0.1Z ), it is found that where ρ is the comoving dark matter density. The distribution ⊙ ⊙ DM 29%(resp.28%)ofsystemshave∆t 6 100Myr,13%(resp. functionofhalos f (M,z)iscomputedusingthemethoddescribed NSM PS 16%) have 100 < ∆t 6 300 Myr, 15% (resp. 14%) have inJenkinsetal. (2001).We adopt arms amplitude σ = 0.9 for NSM 8 0.3 < ∆t 6 1Gyr,17%(resp.16%)have1 < ∆t 6 3Gyr, massdensityfluctuationsinasphereofradius8h−1 Mpc.Weas- NSM NSM and26%(resp.26%)have∆t >3Gyr.Theimpactofthemetal- sumethatthebaryondistributiontracesthedarkmatterdistribution NSM licityissmall.Itappearsclearlythatasignificantfractionofsys- withoutanybiassothatthedensityofbaryonsisjustproportional temshasacoalescencetimescaleofafew100Myrorless.These tothedensityofdarkmatterbyafactorΩ /(Ω −Ω ). b m b systemsmay dominatetheearlyevolution of theNSmerger, and Thefractionofbaryonsatredshiftzwhichareinsuchstruc- thereforetheevolutionofEuatredshiftdiscussedinSect.4. turesisgivenby (cid:13)c 2015RAS,MNRAS000,1–?? 6 E. Vangioni,S. Goriely,F. Daigne,P.Franc¸ois,K. Belczynski ∞ dM Mf (M,z) fb,struct(z)= RMm∞in PS . (8) dM Mf (M,z) 0 PS R Therefore,themassfluxa canbeestimatedby b 3H2 dt −1 df a (t) = Ω 0 b,struct . (9) b b 8πG! dz! (cid:12) dz (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) In addition to the NS an(cid:12)d BH bi(cid:12)rth rates, the CCSN rate, and the NS-NS and NS-BH merger rates discussed in § 2.2 (and of special interest in the present study), several other quantities arefollowedasafunctionoftheredshiftz,namelytheWDbirth 1 rate,thetypeIasupernova rate,theabundances ofvarious chem- 0.8 ical elements, including Fe and Eu, in the ISM and the IGM, 0.6 the ionizing flux from stars, the ionization state of the IGM and theThomsonopticaldepthoftheCMB.Adetaileddescriptionof 0.4 thiscosmicevolutionmodelcanbefoundinDaigneetal. (2006); 0.2 Rollindeetal.(2009);Vangionietal.(2014). 0 0 5 10 15 20 3.2 Observationalconstraintsonthechemicalevolution model Wetestedthateachcosmicevolutionscenariodiscussedinthispa- perfulfillstwoimportantobservationalconstraints,namelytheob- served cosmic evolution of [Fe/H] (corresponds to the logarithm of the abundance of iron normalized to the solar one) and the measured Thomson optical depth of the CMB.Following thede- tailedanalysispresentedinVangionietal.(2014)fordifferentpos- sibleSFRusingthesamecosmicevolutionmodel,thisleadstothe choiceofthethreeSFRspresentedin§2.1.TheSFR1andSFR2 casesaredirectlytakenfromtheirstudy. SFR1corresponds toastandardSFRwithanadditional Pop III star component at high redshift, mainly motivated by the fact that the ionizing flux at high redshift produced by the standard mode onlyisnot largeenough toreproduce theThomson optical depthoftheCMB(see§3.2.1). SFR2isaSFRenhancedathighz.Thethirdmodeconsidered here,SFR3,ischosenastheupperlimitoftheSFRathighredshift obtained fromtheconstraint oftheThomson optical depthof the CMB(seeFig.4).AsshowninFig.1,SFR1fitstheobservational Figure4.Reionisation.Evolutionasafunctionofredshiftoftheionizing constraintsfromBehroozietal.(2013);Bouwensetal (2014)and flux(toppanel),volumefillingfractionQion(middlepanel)andThomson Oeschetal.(2014),whereasSFR2andSFR3takeintoaccountthe opticaldepth(lowerpanel)forthethreeSFRmodes(conventions arethe studiesof(Trentietal.2013)andKistleretal.(2013),respectively. sameasinFig.1).WMAP9results fortheoptical depthathighredshift (Hinshawetal.2013)areindicatedbyaredstripinthelowerpanel. 3.2.1 Reionization Concerningtheionizationhistory,theevolutionofthevolumefill- ingfractionQ (z)ofionizedregionsatredshiftzisgivenby ion dQ (z) 1 dn (z) dt whediorzne nb=isntbhe cidoonzmov−inαgBdnebnCs(itzy)Qin2ionb(za)ry(1on+s,z)n3io(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)nd(zz(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)),the com(o1v0-) fltwhuhexeerfevoorσltuThteioistnhtrohefeetSThFheoRvmohsliuosmtnoersicefiasl,tltiaennrgidnfgtrhaeccrtroieosssnulsQteinciogtnioTannh.doFmtihgseo.n4ioonsphitzoiicwnagsl ing density of ionizing photons, α the recombination coeffi- B depth,thevalueofwhichisfoundtoagreewellwiththemeasure- cient,andC(z)theclumpingfactor.Thislastfactor istakenfrom ment from CMB observations by WMAP9 (Hinshawetal. 2013) Greif&Bromm(2006)andvariesfromavalueof2atz620toa at high redshift. Asmentioned above, theSFR1scenario without constantvalueof10forz<6.Theescapefraction, f ,issetto0.2 esc thePop III mode at high redshift would not fulfillthis constraint foreachofourSFRmodes.Thenumberofionizingphotonsemit- (Vangionietal. 2014) and SFR3is adjusted to reproduce the up- tedbymassivestarsiscalculatedusingthetablesgivenin(Schaerer per limit on the optical depth. Note that the last results from the 2002).Finally,theThomsonopticaldepthbetweenredshiftsz′=0 PlanckCollaboration (2014,2015)givearevisedThomsonoptical andziscomputedfollowing(Greif&Bromm2006),i.e. depthτ=0.079±0.017.ThisvalueislowerthantheWMAP9one z dt (τ=0.089±0.014).Consequently,inthiscontext,thecontribution τ=cσ n dz′Q (z′)(1+z′)3 (z′) , (11) T bZ0 ion (cid:12)(cid:12)dz (cid:12)(cid:12) ofPopIIIstarsintheSFR1modelshouldbelowered. (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:13)c 2015RAS,MNRAS000,1–?? CosmicNSM RateandGW constrainedbytheR Process 7 3.2.2 Cosmicchemicalevolution:iron Our model includes the stellar lifetimes estimated by Maeder&Meynet (1989) for intermediate mass stars with 0.9 < M/M < 8andbySchaerer(2002)formoremassivestars. ⊙ Lifetimesof low mass stars (M/M < 0.9), such as the old halo ⊙ stars where abundances of Eu are measured at low metallicity, are long enough for the star to be still observed today, whatever the redshift of formation. Stars formed at redshift z inherit their initial chemical composition from the abundances in the ISM at thesame redshift. Thus, theobserved abundances instarsreflect, in a somewhat complex way, the yields of all massive stars that have exploded earlier. The stellar yields adopted in our model depend on the stellar mass and metallicity. By default, we use the tables of yields from (Woosley&Weaver 1995) for massive stars (8 < M/M < 40). An interpolation is made between the ⊙ different metallicities(Z = 0, 0.0001Z , 0.001Z , 0.1Z and Z ) ⊙ ⊙ ⊙ ⊙ andmasses,andtabulatedvaluesareextrapolatedforstarsbeyond 40M , whichcorrespond toasmall fractionof the population of ⊙ massive stars (i.e. (40−x−100−x)/(8−x−100−x) ≃ 8% for the SalpeterIMFofindexx=1.35). Fig. 5 shows the [Fe/H] evolution as a function of time and redshift for the three SFR modes. Data correspond to chemical abundance determinations in about 250 damped Lyα (DLA) sys- tems(Rafelskietal.2012, andreferencestherein)asafunctionof theredshift.Intheirpaper,theypresent47DLAsystemsatz > 4 observedwiththeEchelletteSpectrographandImagerandtheHigh ResolutionEchelleSpectrometerontheKecktelescopes(formore detailsseeVangionietal.2014).WeuseEq.(2)toassociateatime withtheobserved redshift for each observed DLA system. Asil- lustrated inFig. 5, the cosmic evolution of the ironabundance is reproducedbyeachofthethreescenarios,passingthroughtheup- per limitof the points. However, note that these ironabundances aremeasuredinthegasphasewhichshouldbeconsideredaslower limits due to depletion into grains in the ISM. As seen in Fig. 5 (middle panel), the early iron evolution depends strongly on the shapeoftheSFRathighz.Inparticular,itcanbeseenthatacos- mic [Fe/H] = −4 enrichment is achieved at the very beginning, ∆t=t−t ≃0.015GyrforSFR2,0.05GyrforSFR3,and0.4Gyr 0 for SFR1. Thistimedelay in theearly Feenrichment can havea drastic impact on the interpretation of the early cosmic chemical evolutionwithrespecttoobservations,asdiscussedinSect.4. 3.2.3 Cosmicchemicalevolution:otherelements AsdetailedinVangionietal.(2014),thepresentcosmicevolution- arymodelhasbeenusedtopredictthe“standard”chemicalevolu- tionoflightelements,suchasC,N,OorMgandtotestitspredic- tivepowerwithrespecttoavailableobservations(Sudaetal.2008, 2011).ThesensitivitytodifferentSFRhasalsobeenexplored. • Carbon, oxygen. It was found that the [C/H] evolution as a function of the iron abundance is essentially independent of the adoptedSFRmodelfor[Fe/H]> −2orz < 4.Athigherz(lower metallicity), the SFR including a Pop III mode (like SFR1) was shown to be in better agreement with the observation of ultra- metal-poorcarbon-enhancedstars,whichpresentsasignificantdis- persion.Similarconclusionsweredrawnfortheoxygenevolution, wherethePopIIIcontributiontotheSFR1modelallowsforahigh production of O at low metallicities with a local peak in [O/H] at [Fe/H] ≈ −4.8. Interestingly, this model can also explain the Figure5.Ironevolution.[Fe/H]evolutionasafunctionoftimet(upper panels)orredshiftz(lowerpanel)forthethreeSFRmodes(linesarethe oxygenabundancesinultra-low-metallicitystars(seeinparticular sameas defined in Fig. 1).Themiddle panel focusses onthe early time Fig.9inVangionietal.2014). evolution,withtheinsertemphasizingthethreedifferenttimedelaysaround the[Fe/H]=-4ironenrichment.DatacorrespondtoDLAsobservationsas (cid:13)c 2015RAS,MNRAS000,1–?? afunctionofredshift(Rafelskietal.2012).Eq.(2)isusedtoconvertzinto 8 E. Vangioni,S. Goriely,F. Daigne,P.Franc¸ois,K. Belczynski • Magnesium. As in the oxygen case, the inclusion of a high- massmodelinSFR1atlargeredshiftdirectlyimpactstheevolution ofMginstarformingstructures.ThepredictedMgpatterninthe SFR1 case is, however, not observed at low metallicity (see Fig. 10 in Vangionietal. 2014). However, new studies in high mass starsshow that Mg evolution at low metallicityremains sensitive tothepredictednucleosynthesis inmassivezero-metallicitystars. SuchcalculationshavebeenrecentlyrevisitedbyHeger&Woosley (2010) who showed that in their models no Mg is produced in zero-metallicity stars more massive than 30 M . In this case, the ⊙ early production of Mg in the three SFR cases discussed here is foundtoreproducewellthebulkofdata,asshowninFigure10bof Vangionietal.(2014). • Localstellarmetallicitydistributionfunction(MDF). We show in Fig. 6 the MDF derived by Anetal. (2013) us- ingtheSDSSphotometricCataloguetogether withour computed MDF based on the SFR1 mode (the other modes giving very similar results). As found by Anetal. (2013), the in-situ photo- metric metallicity distribution has a shape that matches that of the kinematically-selected local halo stars from NorrisandRyan (1991). For this reason, we adopt their SDSS calibration catalog MDFasareferencesinceitpresentstheadvantage of expressing theMDFdirectlyasafunctionof[Fe/H].Theglobalshapeofour computedMDFisshowninFig.6tobeingoodagreementwiththe Figure6.Localmetallicitydistributionfunction,i.e.normalizednumber observation.Wepointoutheretheimpactofthechoiceoftheiron of stars as a function of the iron abundance [Fe/H]. The MDF is calcu- yieldsandtherelateduncertainties.Wepresentfourcurvesreflect- latedwithSFR1modeandtheredcircles totheobservedMDFdeduced ing uncertainties mainly related to the CCSN mass cut. The blue by(Anetal. 2013)using SDSS photometry. Wepresent fourcurves ob- curvecorrespondstothestandardyieldsfromWoosley&Weaver tained with different Fe yields reflecting uncertainties mainly related to theCCSNmasscut.Bluecurve:standardyieldsfrom(Woosley&Weaver (1995) adopted in the rest of the paper, which are varying with 1995)withyieldsvaryingwithmetallicity,greencurve:sameafterdivid- metallicity,thegreencurvetothesameyieldsdividedbyafactor ingtheseyieldsbyafactor2,dot-dashblackcurve:sameusingonlyyields 2,thedot-dash blackcurvetoyieldscalculatedfromsolar metal- calculatedfromsolarmetallicitystarsonly,redcurve:samewhenusingthe licity stars only, and the red curve to Fe yields determined by ironyieldsdeterminedby(Kobayashietal.2006). Kobayashietal.(2006). • Stellarmass.AsshownbyVangionietal.(2014),thecosmic evolution of the stellar mass as a function of the redshift is also dynamicalexplosionandneutron-starcoolingmodels(Janka2012; found to be in good agreement with cosmological observational Hu¨depohletal.2010;Fischeretal.2010).Inaddition,nucleosyn- photometric data (see their Fig. 12b), in particular for the SFR1 thesispredictionsofthedetailedcompositionoftheejectedmatter mode. remaindifficultduetotheremarkablesensitivityofr-processcal- culationtothestillunknowninitialpropertiesoftheejecta. Inconclusion, basedonthepreviousstudyofVangionietal. In contrast, NS-NS or NS-BH mergers, which today are (2014) withinthe same cosmological context and on thebasis of clearly favored from a nucleosynthesis point of view, have been thesameSFRcases, itcan beconcluded that thestandard chem- claimedtoberuledoutasthedominantr-processsourcebyearly ical evolution is rather well reproduced by the cosmic evolution studies on the basis of inhomogeneous chemical evolution mod- of the star formation considered in the present study, and conse- els(Argastetal.2004),duetotheirlowratesofoccurrencewhich quently that the present model is well suited to describe the av- seem to be inconsistent with observations of low-metallicity r- eraged chemical history. The evolution of Milky Way-like galax- process-richstars.Inaddition,thesignificantamount ofr-process iesappears to be not far fromthe averaged history. Asdiscussed material ejected by a single NSM leads to a large scatter in r- recentlyinFrebelandNorris (2015),thisopensthepossibilityof process enrichment at later times that does not seem to be con- ”near-fieldcosmology”basedonstellararcheology,especiallyus- firmedbyobservations. ingthepopulationoftheoldeststarsinthehaloofourGalaxyand Recent studies (Matteuccietal. 2014; Komiyaetal. indwarfgalaxies.WewillusethisapproachinthenextSectionto 2014; Cescutti&Chiappini 2014; Mennekens&Vanbeveren studythecosmicevolutionofr-processelements. 2014; Tsujimoto&Shigeyama 2014a,b; Shenetal. 2014; vandeVoortetal. 2015; Ramirez-Ruizetal. 2015) have recon- sidered the chemical evolution of r-process elements in different 4 COSMICEVOLUTIONOFR-PROCESSELEMENTS evolutionary contexts, and reached rather different conclusions. Asfarasthegalacticchemical evolutionisconcerned, CCSNre- Morespecifically,Matteuccietal.(2014)exploredtheEuproduc- mainpromisingsites,especiallyinviewoftheirpotentialtosignif- tion in the Milky Way using a local chemical evolution model. icantly contribute to the galactic enrichment (Argastetal. 2004). Theirobservationalconstraintsatlowmetallicitycomeessentially However, they remain handicapped by large uncertainties associ- fromtheobservations ofEuinmetal-poor starsbyFranc¸oisetal. atedmainlywiththestillincompletelyunderstoodmechanismthat (2007), without including the related error bars and upper limits. is responsible for the supernova explosion and the persistent dif- The relevance of the NSM scenario on the production of Eu has ficulties to obtain suitable r-process conditions in self-consistent beenstudiedbytestingtheeffectof (i)thecoalescence timescale (cid:13)c 2015RAS,MNRAS000,1–?? CosmicNSM RateandGW constrainedbytheR Process 9 ofthebinarysystem(ii)theEuyieldexpectedtobeejectedfrom gether with the abundances found in dwarf spheroidal sys- NSMand(iii)therangeoftheinitialmassoftheNSprogenitors. tems (Shertone,Coˆte´&Stetson 2001; Shertone,etal. 2003; Similarly, the CCSN scenario has been explored by considering Geilseretal. 2005; CohenandHuang 2009; Letarteetal. 2010; different possible Eu yields assuming a strong r-process taking Starkenburgetal. 2013; McWilliametal. 2013).It isinteresting placeinCCSN.Inthisframework,NSMisfoundtobepotentially tonotethatthebulkofdatacomingfromexternaldwarfgalaxies a major r-process source if the coalescence timescale is of the isembeddedingalacticones.Thesolarabundancesaretakenfrom order of 1 Myr and the ejected Euyieldof theorder of 3×10−7 Lodders (2003). M foramassrangeofprogenitorsofNSrangingbetween9and ⊙ ThedeterminationofEuabundancesuffersfromthefactthat 50 M . The scenario where both CCSN and NSM contribute to ⊙ onlyfewtransitionsarevisibleinthespectrumofmetalpoorstars. the Eu synthesis is also compatible with observations provided NSMproduce2×10−7M ofEupersystemandeachCCSNwith Thestrongest transitionsare rather weak and it becomes particu- ⊙ progenitorsintherangeof20–50M producearound10−8−10−9 larlydifficulttodetectandestimatetheabundanceofthiselement ⊙ at low metallicities. Typically, the strongest Eu line becomes al- M ofEu. ⊙ mostundetectablebelow[Fe/H]≃−3.5.Thedetectionorthenon- Inparallel,Komiyaetal.(2014)investigatedthechemicalen- detectiondependsontheS/Nratioofthespectrum,onthepresence richmentofr-processelementsusingahierarchicalgalaxyforma- ornotofanoverabundanceofEuinagivenstarandfinallyonthe tionmodel.TheCCSNscenario isfoundtoreproduce thescatter temperatureandgravityofthestar.Thissituationclearlyshowsup ofobservedrabundancesinlowmetallicitystarsifabout10%of inthediagramswherethenumber oftruedetectionofEuatvery CCSN inthe low-mass end (i.e. for progenitor mass of the order lowmetallicityareonlyahandful.Moreover,duetothescarcityof of10M )isthedominantr-processsourceandthestarformation ⊙ efficiencyamountstoabout0.1perGyr.ForNSMtobethemainr- verymetal poor starsinthehalo, thenew verymetalpoor candi- datesarefaintandrequireasignificantfractionofobservingtime processsite,acoalescencetimescaleofabout10Myrwithanevent on10mclasstelescopes.Consequently, thenumber ofstarswith rateabout 100timeslargerthancurrentlyobservedintheGalaxy [Fe/H]≃ −3.5forwhichtheEuabundancehasbeenmeasuredis needtobeconsidered. small.Thesampleusedinthepresentpaperdoesnotrepresentan We note that the coalescence timescale in the studies by unbiasedsampleofstars,sothedistributionfunctionof[Eu/Fe]vs Matteuccietal. (2014) and Komiyaetal. (2014) is constrained to be surprisingly short compared to known systems in our [Fe/H]hasnosignificance.Inseveral stars,theupper limitofthe Eu abundance has been computed. These upper limits are useful Galaxy and theoretical predictions by stellar population models as they complement the real measurement and show that, so far, (seeSect.2.2.3). Cescutti&Chiappini (2014) computed inhomogeneous nostarbelow[Fe/H]≃ −3.5hasaveryhigh[Eu/Fe]ratio,i.e.of theorderofwhatisfoundinstarsat[Fe/H]≃ −3.5.Althoughwe chemical evolution models for the galactic halo, taking into ac- cannotfullyruleouttheexistenceofsuchstarswith[Eu/Fe]>1.2 countthecontributionofelectron-captureandmagnetorotationally driven supernovae (including fast-rotating progenitors), but not dex,thepresentsampleseemstoindicatethattheupper envelope of the[Eu/Fe] stops to riseat [Fe/H] ≃ −3.0 Thishypothesis re- NSM,toexplaintheEuscatterinmetal-poorstars. ceives support fromtherecent study of Hansenetal.(2014) who Mennekens&Vanbeveren (2014) also studied the temporal analyzed4starswith[Fe/H]6 −4.00anddidnotreportanymea- evolutionofthegalacticpopulationofdoubleNSbinaries,mixed surement of the Eu abundance although the wavelength range of systems with a NS and BH component, and double BH binaries. thespectrausedinthisstudycoverstheEutransitionswavelength. Theyconcludethat,exceptforthefirst100Myroftheevolutionary phaseoftheGalaxy,doublecompactstarmergersmaybethema- Theinspectionofobservedabundances(seeFig.7)showsthe jorproductionsitesofr-processelements,anditisprobablethatthe apparentexistenceoftwobranchesstartingbelow[Fe/H]≃ −2.5, mixedNS-BHsystemsdominateoverdoubleNSbinarymergers. thefirstonewithhighvaluesof[Eu/Fe]ashighas+2.0,thesec- Finally,Shenetal.(2014)andvandeVoortetal.(2015)esti- ondonewithdecreasingvaluesdownto[Eu/Fe]≃ −1.0at[Fe/H] matedtheenrichmenthistoryofr-processelementsintheGalaxy, ≃−3.2.Asthesampleisbiased,itisdifficulttobefullyconfident astracedbythe[Eu/Fe]ratio,usingahighresolutioncosmologi- abouttherealityofthistwobranches.Theplotcouldalsowellbe calzoom-insimulation.Unlikepreviousstudies,itwasfoundthat interpreted as an increase of the dispersion as the metallicity de- thenucleosyntheticproductsfromcompactbinarymergerscanbe creases. Indeed, semi analytic models of merger tree which trace incorporated intostarsofvery low metallicityandat earlytimes, the chemical evolution of matter in different regions of the Uni- even with a minimum time delay of 100 Myr and that compact verse(fromover-tounder-denseregions)showclearlyadispersion binary mergers could be the dominant source of r-process nucle- growingasafunctionoftheredshift(Dvorkinetal.2015). osynthesis. InthepresentSection,webringourowncontributiontothis The origin of the stars with a high level of r-process ele- difficultdebate. WefirstsummarizetheavailableEuobservations ments like Eu is still a matter of debate. A recent analysis by andthenproposeadetailedcomparisonwithourpredictionsofthe Roedereretal.(2014b,c)hasshownandconfirmedthatthisover- Euevolutionalongthecosmichistory,usingthethreepossiblecos- abundance isalsofound inmain-sequence turn-off starsrejecting micSFRdensitydiscussedin§2.1. thehypothesisthatthestarwouldhaveproduceditselfsuchover- abundances. They also did not find any compelling evidence to suggestthatanoticeablehighfractionofhighlyr-processenriched 4.1 Eu:observations starsaremembersofbinarysystems,assigningtheoriginofther- We have gathered most of the recent observations on Eu abun- processenhancementtoacompanionstar.Theyalsoconfirmedthat dance (Eu/H and [Eu/Fe] as a function of [Fe/H]) in metal thesepeculiar starsdonotpresent adifferentα-element chemical poor stars(Franc¸oisetal.2007; Hondaetal.2004;Barklemetal. signaturefromthebulkoftheothermetalpoorstars.Therefore,the 2005; Simmereretal. 2004; Roederer 2011; Roedereretal. siteresponsiblefortheproductionofthisr-processenhancementis 2010, 2012, 2014a,b,c; Renetal. 2012; Worleyetal. 2013) to- notexpectedtoproduceanychemicalanomaliesforlightelements. (cid:13)c 2015RAS,MNRAS000,1–?? 10 E. Vangioni,S.Goriely,F.Daigne,P. Franc¸ois,K. Belczynski Figure7.CosmicevolutionofEu:comparisonbetweenthetwopossibleastrophysicalsitesEu/Hand[Eu/Fe]vs[Fe/H].EvolutionofEu/Hand[Eu/Fe] asafunctionof[Fe/H]eitherintheCCSN(bluelines)orintheNSM(blacklines)scenario.TheevolutioniscomputedforthethreeSFRmodesconsidered inthepresentstudy,SFR1(solidlines),SFR2(dottedlines),SFR3(dashedlines).IntheCCSNscenario,theEuyieldis10−7M⊙persupernova.IntheNSM scenario,theEuyieldis7×10−5M⊙permerger,thefractionofbinarycompactobjectsisα=0.002andthecoalescencetimescaleis∆tNSM=0.2Gyr.Data pointscomefromdifferentreferences:blackpointsandupperlimitsatlowmetallicityfrom(Franc¸oisetal.2007),brownpointsathighermetallicityfrom (Simmereretal. 2004),yellowfrom(Barklemetal.2005),magentafrom(Renetal.2012),redfrom(Roedereretal.2010,2014a,b),heavybluepointsfrom (Roedereretal.2014c).Thebulkofblackpointsathighmetallicitycomefromdwarfspheroidalsystems(Shertone,Coˆte´&Stetson 2001;Shertone,etal. 2003;Geilseretal. 2005;CohenandHuang 2009;Letarteetal. 2010;Starkenburgetal. 2013;McWilliametal. 2013). Figure8. SameasFig.7butwithouterrorbars. 4.2 Eu:yieldsfromCCSNandNSM ofr-processelementsintheCCSNscenarioessentiallydependson the amount of r-process material ejected by the explosion, in the Eachofthetwopossibler-processsites,CCSNandNSM,maypo- NSMscenario,itisalsofunctionofthebinaryfractionofcompact tentiallycontributetothegalacticr-processenrichment,butwewill objectsαandthecoalescencetimescaleofthebinarysystem∆t . NSM assumeinthepresentworkthattheyaremutuallyexclusive,sothat WedescribeheretheadoptedyieldsofEuexpected tobeejected thether-processintheUniverseiseitheroriginatingfromCCSNor fromCCSNorNSM. NSMbutnotfromamixofbothsites.Whilethecosmicevolution (cid:13)c 2015RAS,MNRAS000,1–??

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.