ebook img

Correlation between mean transverse momentum and multiplicity of charged particles in $pp$ and $p\bar{p}$ collisions: from ISR to LHC PDF

0.28 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Correlation between mean transverse momentum and multiplicity of charged particles in $pp$ and $p\bar{p}$ collisions: from ISR to LHC

Correlation between mean transverse momentum and multiplicity of charged particles in pp and pp collisions: from ISR to LHC E.O.Bodnya , V.N.Kovalenko†, A.M.Puchkov† and G.A.Feofilov† ∗ 4 1 UniversityofCalifornia,Berkeley,USA ∗ 0 †SaintPetersburgStateUniversity,Russia 2 n Abstract. We present our analysis of the available experimental data on correlation between mean transverse momentum a and charged particles multiplicity ( pT -Nch) at central rapidity in pp and pp collisions at √s from 17 GeV to 7 TeV. A J multi-pomeronexchangemodelbashedoinRegge-Gribovapproachprovidesquantitativedescriptionof p -N correlation h Ti ch 9 dataandtheirenergydependence.Resultsarefoundtobeinagreementwithstringfusionmodelhypothesis. 2 Keywords: ppandppcollisions,chargedmultiplicity,transversemomentum,correlations,quark-gluonstrings,pomerons,stringinteraction PACS: 13.85.-t ] h p - INTRODUCTION p e h It came first from the observations in the cosmic rays experiments [1, 2] and it was confirmed later in numerous [ colliderstudiesthatthemajorityofparticles(pions)producedinhighenergyppandppcollisionshavetheirtransverse 1 momentumpT assmallasafewhundredsofMeV/c.Theexistenceofcorrelationofchargedparticlesmeantransverse momentum( p )withtheeventmultiplicity(N )wasestablishedinawideenergyrange,changingfromthenegative v T ch h i 4 (atlowcollisionenergiesof√s=17GeV)topositiveone(above40GeV),seeacompilationofresultsin[3].Besides 3 this, a peculiardependenceof pT spectra on the eventcomplexity– a tendencyof flatteningof the mean transverse 5 momentum of charged particles with the multiplicity – was established with the growth of collision energy. It was 7 arguedbyVanHove[4]thatthisanomalousbehavior(aplateau-likestructure)ofthemeantransversemomentumas . 1 afunctionofhadronmultiplicitycouldbeasignalforthedeconfinementtransitionofhadronicmatterin ppand pp 0 highenergycollisions. 4 Recently, the new set of detailed experimentaldata on the mean transverse momentum p versus the charged- T 1 h i particlemultiplicityN appeared,showingdramaticdifferenceofcorrelationfunctionsfordifferentcollidingsystems ch : v [5].Inppandp–PbcollisionsatLHCenergies,astrongincreaseof pT withNchisobserved,whichismuchstronger h i i thanthatmeasuredinPb–Pbcollisions.Inthelastcaseastrikingflatbehaviourof p -N correlationwasfoundfor X h Ti ch thefirsttimeinawideregionofcollisioncentralities.Itisdiscussedin[5]thatforthe ppcollisions,thebehaviorof r a pT -NchcorrelationwithNchcouldbeattributed,withinamodelofhadronizingstrings,tomultiple-partoninteractions h i andtoafinal-statecolorreconnectionmechanism.Atthesametimeitisnotedin[5]thatthedatain p–PbandPb–Pb collisionscannotbedescribedbyanincoherentsuperpositionofnucleon-nucleoncollisionschallengingmostofthe eventgenerators. However,quantitativeandconsistentdescriptionofbehaviorof p -N correlationinnucleon-nucleoncollisions T ch h i and, in particular,its energy dependence,still remains an open basic problem.It is evidentthat the last one should be completely understood, on a single approach base, before any use of event-generator calculations for the more complicatedcases of p–Pb or Pb–Pb collisions analysis. Overviewof differentmodelstrying to explain the effects observedin p -N correlationsinhighenergyppand ppcollisionscouldbefoundin[3]. T ch h i In the present study we continue the analysis [6, 7] of p -N correlation for chargedparticles using available T ch h i data in a wide energy range of pp and pp collisions and basing on the Regge-Gribov approach. It is assumed [8], [9]thatlow-p multiparticleproductionisaresultafew(n)pomeronexchange.Afterthisexchangehadronsbecome T joinedbynpairsofstrings.Fissionofthestringsduringtheseparationofhadronsresultsinproductionofn-pomeron showers, so that the multiplicity exceeds by a factor n the one-pomeron shower multiplicity. In case of identical stringsthe p distributionsofchargedparticleshavenodependenceonmultiplicity.However,whenthereispossible T interactionbetween strings [10] one may expectthe p distributionsof chargedparticles to be differentfrom those T produced by non-interacting strings. It is in the case of interaction between quark-gluon strings in a form of color strings fusion [11] that new types of particle-emitting sources (strings) might be formed, characterized by a higher energydensity(describedbystringtensionparametert).Asaresult,thehighervaluesofmeantransversemomentaof chargedparticlescouldbeexpectedinhadronizationofsuchtypesofstrings. We are using a modified variant [6, 7] of multi-pomeronmodel [3] with collectivity effects. Similar to [3], both multiplicity of charged particles and their transverse momenta are treated within the same model where the multi- pomeronexchangeiscombinedwithSchwingermechanism[12]ofparticleproduction.Thusthecollectivityeffects like string fusion are included into the model [3] in an effective way by a single parameter b , and the p -N T ch h i correlationappearstobetheintrinsicpropertyofthemodel. Itisshownbelowthatthisconceptallowstoprovidegoodquantitativedescriptionof p -N correlationpattern T ch h i andvariousobservablesin ppand ppcollisionsandtheirenergydependenceinawideenergyrange.Itisalsoshown thatthemodelhasthepredictivepowerthatallowsextrapolationtothehighercollisionenergies.Besides,themodel couldbeextendedtothelong-range p and N correlationswhichmightbestudiedbyusingevent-by-eventdata T ch h i h i inseparatedpseudorapidityintervals. The paper is organizedas follows: in the next section we give a very brief descriptionof the modified variantof multi-pomeronexchangemodelwithcollectivityusedinouranalysis.InSection3wedescribehowthevaluesofthe parametersin the modelare extractedby fits to experimentaldata. In Section 4 we discuss the results obtainedand showsomepredictions.Finally,wepresentourconclusions. MODIFIEDMULTI-POMERON EXCHANGEMODEL Inthepresentstudyweusethemodificationsofthemulti-pomeronexchangemodelwithstringfusion[3]asdescribed in [6, 7]. We consider the multiplicity and the transverse momenta of charged particles produced in high energy nucleon-nucleoncollisionsintoagivenpseudo(rapidity)intervald . Basing on[9], [13] and following[3], the function f(N ,p ;z;k,b ,t) is introducedto describe bothmultiplicity ch T andtransversemomentumdistributionsinsoftmulti-particleproductioninhadroncollisions: f(N ,p ;z;k,b ,t)=C (cid:229)¥ 1 1 exp( z)n(cid:229)−1zl exp( 2nkd )(2nkd )Nch 1 exp p p2T . (1) ch T wn=1zn − − l=0 l!!· − Nch! ·nb t (cid:18)− nb t (cid:19) HereC isanormalizationfactorwhichisintroducedinordertoenforcethenormalizationcondition: w ¥ ¥ 2p (cid:229) f(N ,p ;z;k,b ,t)p dp =1. (2) ch T T T Nch=0 Z0 Thefunction f (seeeq.(1))representscombinedprobabilitydistributionofthenumberofchargedparticlesN and ch theirtransversemomentumspectra(p ).Thefirstfactorineq.(1)givesa probabilityofnpomeronsproductionina T singleevent[9,13].Parameterzisresponsibleforthedependenceofthisdistributiononcollisionenergy√s.Weuse thefollowingvaluesoftheparameters[14]: 2Cg sD z= R2+a log(s), D =0.139, a ′=0.21GeV−2, g =1.77GeV−2, R20=3.18GeV−2, C=1.5. (3) ′ The second multiplier in eq.(1) represents the probability of N particles production in n-pomeron showers. ch The Poisson distribution is used with mean being proportional to the number of pomerons n and the width of pseudo(rapidity)intervald .Parameterkis,accordingly,themeannumberofchargedparticlesperrapidityunitfrom onestring. Thelastfactorwasintroducedineq.(1)in[3].ItreflectsSchwingermechanismofparticleproduction[12],which prescriptsthetransversespectrumofchargedparticlesfromonestringtobeofaGaussianform: d2N p (p2+m2) ch exp − t , (4) dp2 ∼ t T (cid:18) (cid:19) wheret correspondstothestringtension. Asimplifiedassumptionisusedinourwork:wedonotdiscriminatetheparticlespecies,consideringonlyproduction ofpions.Thustheparticlemassdependenceintheexpressioneq.(1)iseliminated. Inthecurrentmodel,similarto[3],thestringinteractionisintroducedinaneffectivewaythroughasingleparameter b responsibleforthecollectivityeffects,thatgivesusaneffectivestringtensionnb t. p -N correlationfunctioninthepresentmodeliscalculatedas T ch h i ¥ f(N ,p ;z;k,b ,t)p2dp ch T T T hpTiNch = R0¥ f(N ,p ;z;k,b ,t)p dp , (5) ch T T T 0 R or ¥ ¥ hpTiNch = ¥ f(Nch,pT;z1;k,b ,t)pTdpT n(cid:229)=1Z0 fn(Nch,pT;z;k,b ,t)p2TdpT, (6) 0 R where f (N ,p ;z;k,b ,t)p2dp hereisdefinedsimilartoeq.(1),butwithoutthesumsymbol. n ch T T T Note,thatitispossibletointegrateoutp dependencefromeq.(1)andobtainthechargedparticlesdistributionand T meanmultiplicity: ¥ P(N )=2p f(N ,p ;z;k,b ,t)p dp , (7) ch ch T T T Z 0 ¥ N (s)= (cid:229) N P(N )=2 n(s) k(s)d . (8) ch ch ch h i h i Nch=0 Thedependenceofthemeantransversemomentumofchargedparticlesonenergycanbecalculatedusing: ¥ ¥ (cid:229) Nch f(Nch,pT;z;k,b ,t)p2TdpT ¥ ¥ hpTi(√s)= Nc(cid:229)h¥ =0NchR0¥ f(Nch,pT;z;k,b ,t)pTdpT =2p Nc(cid:229)h=0hNNcchhiZ0 f(Nch,pT;z;k,b ,t)p2TdpT. (9) Nch=0 0 R Oneshouldmention,thatthepicturewheretransversemomentumofchargedparticlesincreaseswithmultiplicity and collision energyis naturalfor a string fusion model[15, 16]. Accordingto this model, with the increase of the collisionenergyonemayexpectageneralgrowthinthenumberofmulti-pomeronsinexchangeinnucleon-nucleon collision. Thusthe total numberof stringswill increase andthey couldstart to overlap,formingclusters. In case of stringfusiononemayexpecttheformationofnewsourceswith higherstringtensionand,therefore,the increaseof bothmeanmultiplicityandmeanp ofchargedparticlesemittedfromsuchtypefusedstrings.Itcouldcausenon-zero T correlationbetweentransversemomentumandmultiplicitywithallowancetobothpositive[14,17,18]andnegative [19,20] p -N correlations. T ch h i Thisincreaseinmean p isrelevanttothedegreeofstringsoverlapintransversespacethatischaracterizedbythe T stringdensityparameter[15,16]whichisdenotedhereash .Accordingtostringfusionmodel,themeanmultiplicity t m andmeanvalueofp2 emittedfromaclusteroffusedstringsaremodifiedcomparedtomultiplicitym andtransverse T 0 momentumsquared p2ofasinglestring: 0 m =m √h , p2 =p2√h . 0 t T 0 t Herem and p2aretreatedassomeuniversal,independentonenergyparameters,astheycorrespondtotheproperties 0 0 of single (none-fused)string. Thusone can obtain the followingratio, which in case of the string fusion we should expectenergyindependent: m m 0 = (10) p2 p2 T 0 In this connection,we have to note that it is possible to obtain this ratio with two basic quantities of our model: k (mean number of particles produced per unit rapidity by one emitter) and the mean value of squared transverse FIGURE 1. Left: Experimental data on charged particle pseudorapidity density at midrapidity vs. collision energy (see com- pilation of pp and pp collision data in [21] and the modified multi-pomeron exchange model – solid line (see text). Right: Energydependence of parameter k obtained inthepresent model usingdataat different energies. Straightline–approximation byk=0.255+0.0653log√s. b momentum n t.Sothebothquantities,asineq.(10),couldbedefinedusingthe p -N correlationfunctionat T ch ∼h i h i thegiven√s.Therefore,theconditioneq.(10)couldbecheckedintheframeworkofthepresentmodelbyplottingthe values k R= (11) b n t h i asafunctionofcollisionenergyusing2parametersextractedfromtheexperimentaldataatthegiven√s. DETERMINATION OFMODELPARAMETERS Determination ofthe energy dependence ofthe parameter k In ourmodifiedvariant[6, 7],contraryto [3], k – themean numberofparticlesproducedperunitofrapidityper string–isnotconsideredasafreemodelparameterbutassumedto betheenergydependent:k=k(√s).Thisenergy dependencewasfixedinthemodelbyfittingasetofavailableexperimentaldataonchargedparticlesyieldsvs.√s. We used the experimentaldata on the energydependenceof the chargedparticle multiplicity density in pp and pp collisions(seecompilationin[21]).Theparameterk wasdeterminedbyfittingthedataintheenergyrangefrom20 GeVto7TeV,theresultoffittingisshownintheFig.1(left)bysolidline. ChargedparticlespseudorapiditydensityintheleftplotFig.1wascalculatedbasingontheeq.8,wherethemean numberofpomerons n(s) wasestimatedatagiven√susingRegge-Gribovapproach,andthepseudorapiditywidth d wasselectedtomathchthierelevantexperimentalone.Thustheparameterkwasdefinedbyfittingexperimentaldata (seetheleftplotFig.1).WehavetonoteherethattheISRdata(diamondsintheleftplotFig.1)werenotusedinour fittingprocedure,sothattheresultsofextrapolationofourmodelareshowninthisregion. As a result of this fitting parameter k was defined. The values of the parameter k are plotted as a function of √s in Fig.1 (right). A smooth logarithmic growth of multiplicity density from one string with energy was obtained as: k=0.255+0.0653log√s.Thisresultisinagreementwithstringfusionmodelpredictions[15,16],wherethegrowth ofstringtensionwiththecollisionenergyisexpectedforfusedstringsduetothegrowingstringdensity. FIGURE2. pT -Nchcorrelationfunctionat√s=17GeVinawindowof1.5rapidityunits.Datafrom[22].Curve–resultsoffit inmodifiedmuhlti-piomeronexchangemodel,usingeq.(5),todefineparametersb andt.Contributionsofseveralfirstterms(n=1, 2,3...)ofprocessesgoingviatheexchangeofnsoftpomeronsarealsoshown. FIGURE3. ...thesameasinFig.2for√s=31GeV.Data-from[23], y <2. | | Determination oftheenergy dependence ofthe parameterst and b Twofreeparametersofthemodifiedmodel,b -thattakesaccountofstringfusion,andtheaveragestringtension parameter t, are extracted in our work from the available experimental data on p -N correlation in proton- T ch h i (anti)protoncollisionsatwideenergyregionfrom17GeVto7TeV.Theexpressionforthecorrelationfunctioneq.5 wasusedinourfittingprocedure.Someresultsoffittingof p -N correlationin ppand ppcollisionsatdifferent T ch h i energies,startingfrom17GeVandto7TeV,areshowninFig.2–5(afulldatasetisavailablein[6]). Parametersb andtwereextractedbyfitting p -N correlationdata,therelevantvaluesareshownasfunctionon T ch h i energyattheFig.6.Bothparametersareshowingsmoothbehaviorwiththecollisionenergy. For the parametert two subsets are obtained:t = 0.566GeV2 andt = 0.428GeV2 which are veryclose to those obtainedin[3].Asitwasexplainedpreviously[3],thisfactpointstothesystematiceffectsofthedifferentexperimental estimatesofthemeanp valuesforlow-multiplicityevents(i.e.forasinglepomeronexchangeregion).Theuppervalue T ofstringtensionisusedheret =0.566GeV2astheoneensuringthevaluesofeventmean p valuescorrespondingto T FIGURE4. ...thesameasinFig.2for√s=540GeV.Datafrom[24], h <2.4 | | FIGURE5. ...thesameasinFig.2for√s=7TeV.DatafromCMS[25].Midrapidity,pseudorapidityintervalis h <2.4. | | theexperiment(seeFig.9below). In case of b A smooth behavior of parameter b with energy is obtained and approximated at fig. 6 by b = b ((1 log√s b 2)b 1).Herewehaveb =1.16s´0.39,b =0.19 0.08,b =2.52 0.03. 0 0 1 2 − − ± ± RESULTS AND DISCUSSION Multi-pomeronexchangecontributionsvs.√s Fig.7containsresultsofourcalculationsofmeannumberofpomerons(solidline)andtheirvariancevs.collision energy.Onemayseearathersmoothgrowthofthemeannumberofpomeronswithenergy,reachingthevalueabout3 attheLHCregion.Thisincreaseiscombinedwithamuchfastergrowthofvarianceofthemeannumberofpomerons. Contributionstothecorrelationfunctionofseveralfirstterms(n=1,2,3etc.–seeformula(6))areshownatvarious energiesintheFigures2-5.Onemayseethatthedominantcontributionofsinglepomeronexchangeisconcentrated FIGURE6. Energydependenceofparametersb andtextractedbyfittingexperimentaldataon pT -Nchcorrelation. h i FIGURE7. Resultsofcalculationsofthemeannumberofpomerons(solidline)andofvarianceofthemeannumberofpomerons vs. ppcollisionenergy. in the low multiplicity region, bringingthere the valuesof p from 0.32 GeV/c to 0.4GeV/c (forthe relevant T h i ∼ collisionenergiesof17-7000GeV,seeFigures2and5). With the growing energy the role of the multi-pomeron exchange increases. The number of pomerons and fluc- tuations in the number of pomerons are growing with energy leading to the observed flattening of the p - N T ch h i correlationfunctions. We have to note here that the growth of fluctuations in the number of pomerons exchanged in the collision of protonsattheLHCenergiesbringsrelevantlargefluctuationsinthenumberofparticle-emittingstringsand,therefore, hasanaturalpredictionoftheexistenceofalong-range p -N correlations.Thelastonesmightbeobservedinthe T ch h i event-by-eventstudiesofobservablesmeasuredinseparatedpseudorapidityintervals. Charged-particlemultiplicitydistribution The multiplicity distributions of charged particles formed as the result of processes going via the exchange of n soft pomeronsin pp collisions at the given energy,calculated in the modified multi-pomeronexchange model, are comparedtotherelevantexperimentaldataintheFigure8.Calculationsweredoneusingequation(7).Examplesare FIGURE8. Chargedparticlesmultiplicitydistributionsin ppcollisionsatvariousenergies√s(200GeV,900GeV)[25]and in ppcollisions(2360 GeV,7TeV)[26]inpseudorapidity interval h <0.5(dots).Theresultsofthemodifiedmulti-pomeron exchangemodel(lines)arecalculatedwiththemodelparametersb an|d|tasdefinedinFig.1,6. shownforthecollisionenergiesof√s=200,900,2360and7000GeV. Wemayconcludeherethattheoveralltendenciesofmultiplicitydistributionsarewellreproducedinwideenergy range. The model predictions slightly deviate from experimental data, that is observed in the region of the high- multiplicitytails,howeverthiscouldberelatedbothtosomeassumptionsusedinthepresentcalculationsandtothe stillpossiblecontributionsofhardprocesses. Energydependenceof p values T h i Results of calculations in the modified multi-pomeronmodel with collectivity of the mean p values vs. √s are T comparedtotheexperimentaldataintheFigure9.Calculationsweredoneusingequation(9).Theparametersofthe modelarethesameasweredefinedabove(seeFig.1,6). Energydependenceofstringfusionmodelratiok/p2 T We also made checks of the string fusion model condition (10). Results are shown in the Fig. 10 approximated by a straightline. Thus we can concludehere that the collectivity effects, relevantto quark-gluonstring interaction phenomenon(string fusion),could be consideredas importantin pp and pp¯ collisions and in a wide energyrange, muchwiderthanitwaspreviouslyexpected. FIGURE 9. Energy dependence of mean p values calculated in the modified multi-pomeron model with collectivity and T comparisontotheexperiment.Data–(blackpoints) wereborrowedfrom[27].Redpoints,approximated byacurve–modified multi-pomeronexchangemodelwithparametersk,b andtasinFig.1,6. Ænkæbt, GeV-2 1.4 1.2 1 0.8 0.6 0.4 0.2 0 102 103 s, GeV FIGURE 10. Relation to string fusion hypothesis: ratio of k- mean multiplicity of charged particles from one string to char- acteristicstring tension at different ppand pp collision energies. Dots– experimental values from our analysis. Straight line – approximation. k =0.87 0.08. (12) n b t ± h i CONCLUSIONS Allfeaturesof p -N correlationsexperimentallyobservedinthecentralrapidityregionin ppand ppcollisions,in T ch h i awideenergyrangefromtheISRtoTevatronandLHC,aresuccessfullydescribedintheframeworkofanewvariant ofthemulti-pomeronexchangemodelinwhichstringcollectivityhasbeenincludedinaneffectiveway.Thecrucial featureofnewmodelisthesmoothlogarithmicgrowthofmeanmultiplicityperstring(theparameterk)withenergy, whereasinpreviousworksitwassupposedtobeconstant.Thusthenumberofthemodelparametersisreducedfrom threetotwo:b parameter,responsibleforthecollectivepropertiesandt stringtension.Bothb andt areshowing − − smoothenergydependencewhenextractedfromtheavailableexperimentaldataon p -N correlationsin ppand T ch h i ppcollisions. The transition fromnegativeto positive p -N correlationpattern and tendencyfor flattening of the p with T ch T h i h i multiplicity and with increase of energy √s from 17 GeV to 7000 GeV in pp and pp collisions are quantitatively described within this single approach. The experimental data on multiplicity distributions in the whole interval of collisionenergiesandthe p vs.energydependencearealsowellreproducednumerically.Finally,thepredictionsof T thestringfusionmodelarehalsiocheckedfortheenergydependenceoftwomodelquantities-kandb .Alltheseresults on p -N correlationanalysisin ppand ppcollisionsat√sfrom17GeVto7TeVarefoundtobeinagreement T ch h i withstringfusionmodelhypothesis. ACKNOWLEDGMENTS Authors are grateful to D.A.Derkach and V.V.Vechernin for useful discussions and permanent interest. This work was partially supportedby the SPbSU grant11.38.66.2012.V.N.Kovalenkohas also benefited from Special SPbSU Rector’sScholarship. REFERENCES 1. C.M.G.Latters,Y.Fujimoto,andS.Hasegawa,Phys.Rep.65,151(1980). 2. T.H.Burnett,et.al.,Phys.Rev.Lett.57,3249(1986). 3. N.Armesto,D.Derkach,andG.Feofilov,Phys.Atom.Nucl.71,2087(2008). 4. L.VanHove,Phys.Lett.B118,138(1982). 5. B.Abelev,etal.(ALICECollaboration),Phys.Lett.B727,371(2013). 6. E.Bodnya,D.Derkach,G.Feofilov,V.Kovalenko,andA.Puchkov,PoS(QFTHEP2013)060,arXiv:1310.1627[hep-ph]. 7. E.O.Bodnia,D.A.Derkah,V.N.Kovalenko,A.M.Puchkov,andG.A.Feofilov,Vestn.SPb.Univ.,Ser.4:Fiz.Khim.,No. 4,60(2013). 8. A.Capella,U.P.Sukhatme,C.-I.Tan,andJ.TranThanhVan,Phys.Lett.B81,68(1979);Phys.Rep.236,225(1994). 9. A.B.KaidalovandK.A.Ter-Martirosyan,Phys.Lett.B117,247(1982). 10. V.A.Abramovskii,E.V.Gedalin,E.G.Gurvich,andO.V.Kancheli,JETPLett.47,337(1988). 11. M.A.BraunandC.Pajares,Phys.Lett.B287,154(1992). 12. J.Schwinger,Phys.Rev.82,664(1951);T.S.Biro,H.B.Nielsen,andJ.Knoll,Nucl.Phys.B245,449(1984). 13. A.B.Kaidalov,Sov.J.Nucl.Phys.45,902(1987). 14. I.A.LakomovandV.V.Vechernin,PoS(BaldinISHEPPXXI)072(2012),arXiv:1212.2667[nucl-th]. 15. M.A.BraunandC.Pajares,Nucl.Phys.B390,542(1993). 16. M.A.Braun,R.S.Kolevatov,C.Pajares,andV.V.Vechernin,Eur.Phys.J.C32,535(2004). 17. V.V.Vechernin,I.A.Lakomov,andA.M.Puchkov,Vestn.SPb.Univ.,Ser.4:Fiz.Khim.,No.3,3(2010). 18. V.N.Kovalenko,Phys.Atom.Nucl.76,1189(2013). 19. C.Altetal.(NA49Collaboration),andG.Feofilov,R.Kolevatov,V.Kondratiev,etal.,ProceedingsoftheXVIIInternational BaldinSeminaronHighEnergyPhysicsProblems(JINR,Dubna,2005),Vol.1,p.222. 20. E.AndronovandV.Vechernin,PoS(QFTHEP2013)054. 21. B.Abelev,etal.(ALICECollaboration),Phys.Rev.Lett.110,032301(2013). 22. T.Anticic,etal.(NA49Collaboration),Phys.Rev.C70,034902(2004). 23. A.Breakstone,etal.(ABCDHWCollaboration),Phys.Lett.B132,463(1983). 24. G.Arnison,etal.(UA1Collaboration),Phys.Lett.B118,167(1982). 25. V.Khachatryan,etal.(CMSCollaboration),JHEP1101,079(2011). 26. R.E.Ansorge,et.al.(UA5Collaboration),Zeit.Phys.C43,357(1989). 27. V.Khachatryan,etal.(CMSCollaboration),Phys.Rev.Lett.105,022002(2010).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.