Astronomy&Astrophysicsmanuscriptno.aanda (cid:13)cESO2016 January25,2016 Correlation between lithium abundances and ages of ⋆ solar twin stars MaríliaCarlos1,PoulE.Nissen2 andJorgeMeléndez1 1 UniversidadedeSãoPaulo,IAG,DepartamentodeAstronomia,RuadoMatão1226,CidadeUniversitária,05508-900SãoPaulo, SP,Brazil e-mail:[email protected] 2 AarhusUniversity,StellarAstrophysicsCentre,DepartmentofPhysicsandAstronomy,NyMunkegade120,DK–8000AarhusC, 6 Denmark 1 0 2 ReceivedSeptember30,2015;acceptedDecember18,2015 n a ABSTRACT J 1 Aims.Wewanttodeterminethelithiumabundancesofsolartwinstarsasafunctionofstellaragetoprovideconstraintsforstellar 2 evolutionsmodelsandtoinvestigatewhetherthereisaconnectionbetweenlowLiabundanceandtheoccurrenceofplanets. Methods.Forasampleof21solartwinsobservedwiththeHARPSspectrographathighspectralresolution(R≃115.000)andvery ] highsignal-to-noiseratio(600≤S/N≤2400),preciselithiumabundanceswereobtainedbyspectralsynthesisoftheLii6707.8Åline R andcomparedtostellarages,masses,andmetallicitiesdeterminedfromaspectroscopicanalysisofthesamesetofHARPSspectra. S Results.Weshowthatforthelargemajorityofthesolartwinsthereisastrongcorrelationbetweenlithiumabundanceandstellarage. . Astheageincreasesfrom1to9Gyr,theLiabundancedecreasesbyafactorof∼50.Therelationagreesfairlywellwithpredictions h fromnon-standardstellarevolutionmodelsofLidestructionatthebottomoftheupperconvectionzone.Twostarsdeviatefromthe p relationbyhavingLiabundancesenhancedbyafactorof∼10,whichmaybeduetoplanetengulfment.Ontheotherhand,wefind - noindicationofalinkbetweenplanethostingstarsandenhancedlithiumdepletion. o r Keywords. stars:abundances–stars:evolution–stars:planetarysystems t s a [ 1. Introduction lar age, in the sense that older stars have lower Li abun- 2 dancesthanyoungeronesashasbeenshownbyBaumannetal. vLithiumisdestroyedintheinnerlayersofstarsviaprotoncap- (2010), Monroeetal. (2013), Meléndezetal. (2014), and 4ture (7Li(p,α)α) at temperatures near to 2.5x106 K. Because TucciMaiaetal. (2015). This is supported by several mod- 5Li burning happens when the element is transported to the in- els such as Andrássy&Spruit (2015), Charbonnel&Talon 0nermost and hotter regions through convective motions in the (2005), Denissenkov (2010), DoNascimentoetal. (2009), and 5star, Li abundancestudies offer an excellentopportunityto un- Xiong&Deng (2009). The second interpretation is that en- 0 derstand the extent of the mixing processes within and below . hanced Li depletion is due to the presence of planets 1thestellarconvectivezoneand,therefore,areimportantforcon- (Israelianetal. 2009; Sousaetal. 2010; DelgadoMenaetal. 0strainingtransportmechanismsinstars. 2014; Figueiraetal. 2014; Gonzalez 2015) and that the degree 6 Since the amount of lithium burning depends on the con- oflithiumdepletiondoesnotdependonageforstarsolderthan 1vectivezonethickness,whichdependsonmassandmetallicity, ∼2Gyr(Sousaetal.2010;DelgadoMenaetal.2014). : vwe can improve our understanding of the structure and evolu- Inthispaperwerevisitthediscussiononlithiumabundance ition of a star by analyzing the lithium abundance dependence depletioninsolartwinstarsanditscorrelationswithstellarage, X of these variables. It is important to note that the lithium con- metallicity,mass,andplanetoccurrencebasedonnew,verypre- rtentcouldalso haveotherdependenciessuchasplanetsaround a cise Li abundances derived from HARPS spectra of 21 solar astar;forinstance,planetaryformationcouldchangetheinitial twinswithagesbetween0.7and8.8Gyr. angularmomentumofthestar,which,accordingtoTakedaetal. (2010)andGonzalezetal.(2010),increasesthelithiumburning. AnotheralternativetoananomalousLiabundanceisplaneten- 2. Spectraandstellarparameters gulfment,whichmayleadtoanincreaseintheLiabundanceof The solar twin stars included in this paper have been applied astar(Montalbán&Rebolo2002;Sandquistetal.2002). byNissen(2015)tostudytrendsofabundanceratiosasafunc- Although several factors control the level of lithium burn- tionofstellarageandelementalcondensationtemperature.The ing, there is a debate regarding the lithium depletion in so- stars were selected from Sousaetal. (2008) to have effective lar twin stars. There are two main interpretations. One is that temperatures (T ), surface gravities (logg), and metallicities the degree of lithium depletion primarily depends on stel- eff ([Fe/H]) close to the solar values and to have HARPS spectra ⋆ Based on data products from observations made with ESO Tele- (Mayoretal. 2003) with a signal-to-noise ratio S/N ≥ 600 af- scopesattheLaSillaParanalObservatory,(observingprograms072.C- tercombinationofspectraavailableintheESOScienceArchive. 0488,183.C-0972,188.C-0265,and0.88.C-0323). Furthermore,asolarfluxHARPSspectrumobservedinreflected Articlenumber,page1of6 A&Aproofs:manuscriptno.aanda sunlightfromtheasteroidVestaisavailable.Thisspectrumhas S/N ∼ 1200andwasusedina differentialanalysisofthestars relativetotheSun. DetailsabouthowtheHARPSspectrawerenormalizedand usedtodeterminestellarparametersandabundancesbyamodel atmosphere analysis of equivalent widths are given in Nissen (2015). Here we just mention that T and logg were deter- eff mined by requesting that the iron abundances derived have no systematicdependenceonexcitationandionizationpotentialof the lines applied. The estimated errors of the parameters are σ(T ) = ±6K and σ(logg) = ±0.012dex, and abundances eff weredeterminedwithatypicalprecisionof±0.01dex.Suchex- tremelyhighprecisionisobtainablewhenhigh-resolutionspec- traofsolartwinstarswithS/N > 500areanalyzedstrictlydif- ferentially (line-by-line) relative to a spectrum of sunlight re- flectedfromanasteroidobservedwiththesamespectrographas thestars(Bedelletal.2014). AsseenfromTable 1,thesolartwinstarsrangefrom5690to 5870KinT ,4.25to4.50dexinlogg,and−0.11to+0.11dex eff in[Fe/H].Hence,theylieinaregionoftheT -loggdiagram, eff where isochrones are not well separated (see Fig. 5 in Nissen 2015). Still, the small errors of T and logg make it possible eff to derive precise ages by comparing with the Yonsei-Yale set of isochrones (Yietal. 2001; Kimetal. 2002). These ages are Fig.1. Observed spectra for four starswithdifferent ages. Noticethe giveninTable 1togetherwithstellarmassesestimatedfromthe weakeningoftheLifeatureforincreasingages. evolutionarytracksofYietal.(2003).A precisionof±0.01M ⊙ isestimatedforthemasses. AsseenfromTable 1,theerrorsoftheagesrangefrom0.4 to 0.8Gyr. A comparison with ages derived by Ramírezetal. (2014) from independent high S/N spectra of 14 of the stars shows good agreement within these estimated errors (see Fig. 6 in Nissen 2015). Furthermore, the abundance ratio [Y/Mg] shows a tight correlation with stellar age in a way that can be explained from the nucleosynthesis of these elements, i.e., de- layedproductionofyttriuminlow-massAGBstarsandprompt formationofmagnesiuminhighmass,corecollapsesupernovae (Nissen 2015). Thiscorrelationsupportsthat the estimated age errorsare realistic in a relative sense; the absolute ages for the youngestandtheoldeststarscouldbemoreuncertain. 3. Analysis An inspectionofthe observedspectra (Fig. 1) showsthatthere isaclearweakeningoftheLifeaturewithincreasingages. In order to obtain the lithium abundances, first we had to estimate the macroturbulence and rotational velocity broaden- ing.Themacroturbulencevelocitywasdeterminedbytheequa- tion v = v + (T − 5777)/486kms−1 as given macro,⋆ macro,⊙ eff in TucciMaiaetal. (2015). From our analysis of the HARPS solar spectrum we estimated v = 3.2 kms−1, adopting macro,⊙ vsini = 1.9kms−1 .Theprojectedrotationalvelocitywascal- Fig.2.Syntheticsolarspectrumconsideringdifferentspeciesinthere- ⊙ culated by analyzing the line profiles of the Fe I 6027.050 Å, gionofthe6707.75ÅLiiline. 6093.644 Å, 6151.618 Å, 6165.360 Å, 6705.102 Å, and Ni I 6767.772Å lines. Notice that the instrumentalbroadeningwas HD45184isshowninFig.3,whereitcanbeseenthattheLiline alsoincluded. profilechangesverysignificantlyforanabundancedifferenceof The lithium abundances were estimated by spectral syn- 0.1dex. thesis in the region of the 6707.75 Å Lii line using the July TheabundanceswerederivedassumingLTEandthenNLTE 2014 version of the 1D LTE code MOOG (Sneden 1973) results were obtained with the aid of the INSPECT database1, and the Kurucz new grid of ATLAS9 model atmospheres based on NLTE calculations by Lindetal. (2009). The errors (Castelli&Kurucz2004).ThelinelistadoptedfortheLiregion wereobtainedtakingintoaccountuncertaintiesinthecontinuum isfromMeléndezetal.(2012),andincludesblendsfromatomic setting,thermsdeviationoftheobservedlineprofilerelativeto andmolecular(CNandC )lines;thedependenceofthedifferent 2 speciesisshowninFig.2.Anexampleofspectralsynthesisfor 1 www.inspect-stars.com(version1.0). Articlenumber,page2of6 MaríliaCarlos,PoulE.Nissen andJorgeMeléndez: Correlationbetweenlithiumabundancesandagesofsolartwinstars Fig. 3. Open circles represent the observed spectra for HD 45184 in Fig.4.LTELiabundancesforoursamplecomparedwithLTEdatafrom comparisonwiththreedifferentsyntheticspectra. theworkofDelgadoMenaetal.(2014). the synthetic profile, and the stellar parameters. Both LTE and stars (HD45289 and HD210918) have thick-disk kinematics, NLTEvaluesofA(Li)=log(N /N )+12withtheirrespective Li H while the third one (HD220507) has thin-disk kinematics like errorsareshowninTable 1. therestofthestars(Nissen2015),butthislatterstarhasachem- It is important to note that our results in LTE com- ical abundance pattern consistent with the other two thick disk pare well with the large study by DelgadoMenaetal. (2014), stars. as shown in Fig. 4. Compared to previous works on so- Considering all stars in our sample for which a Li abun- lar twins (Monroeetal. (2013) for 18 Sco and HIP 102152, dancehasbeenderived(i.e.,excludingstarswithonlyanupper Meléndezetal. (2012) for HIP 56948, Meléndezetal. (2014) limit), the Li-age correlation has about a 10σ significance; we for HIP 1143282 and Ramírezetal. (2011) for 16 Cyg A and performed a Spearman test and found a Spearman rank coeffi- 16 Cyg B), our results, now in NLTE, follow the same lithium cientr = −0.89andaprobabilityof10−8 ofourresultsarising agetrend,asillustratedinFig. 5.Theeffectivetemperaturesand s bypurechance.Therefore,evenwhenthetwodeviantstarsare surfacegravitiesofthestarsinthesepapersweredeterminedin consideredthecorrelationbetweenLiandageisverystrong. thesamewayasinNissen(2015),i.e.,byadifferentialanalysis Excluding the anomalous stars HD 96423 and HD 38277, of Fe lines relative to the Sun, and ages were also obtained by the Li-age correlationfor 17 stars in our sample that have firm interpolatingbetweenYonsei-Yaleisochrones.Hence,weexpect detectionsoftheLilineisatthe23σsignificancelevelandhasa thattheLiabundancesandagesareonthesamesystemasinthe verysmallprobabilityofnotbeingreal(10−11)withaSpearman presentpaper. rank coefficient r = −0.96, meaning an almost perfect Spear- s mancorrelation.Thisisincontrasttothepoorcorrelationfound 4. Discussion by DelgadoMenaetal. (2014) (their Fig. 8). Notice, however, thattheyincludestarswithmassessignificantlylowerandhigher The results for the whole sample can be seen in Fig. 5, where thantheSun’sandtheyalsoincludestarsinabroadermetallicity we notice a strong connection between lithium abundance and range.Thewiderintervalinbothmetallicityandmassapparently stellar age. 16 Cyg A and two stars in oursample, namelyHD blursthestrongcorrelationthatwefind. 96423 and HD 38277, have higher abundances than expected In Fig. 5 we compare our Li-age results with Li de- in comparison to both models and the other stars. A possible pletion models for a one solar mass star with solar explanationforthisLienhancementcouldbeplanetengulfment metallicity (Xiong&Deng 2009; DoNascimentoetal. asdescribedinMontalbán&Rebolo(2002)andSandquistetal. 2009; Charbonnel&Talon 2005; Denissenkov 2010; (2002). Andrássy&Spruit 2015) that take into account physics Anotherinterestingresultisthattheα-enhancedstars(repre- not included in the standard solar model. Different transport sentedbytealbluefilledcirclesinFig. 5)fallonthesameLi-age mechanismsareexploredinthesemodels,includingmeridional sequenceasthethindisksolartwins.Two ofthese α-enhanced circulation,diffusion (gravitationalsettling and radiative accel- eration), turbulence, gravity waves, convective overshooting, 2 AnewbetterspectrumofHIP114328hasbeenrecentlyacquiredby and convective settling. Overall, all models have a reasonable oneoftheauthors(J.M.).ThestellarparametersareT =5763±12K, eff logg=4.33±0.04dexand[Fe/H]=-0.050±0.014dex,resultinginan qualitative agreement with the data, as expected because they ageof7.6+0.6Gyrandmassequalto1.00±0.01M .Consideringthese were calibrated using the Sun or earlier observations of solar −0.9 ⊙ newresultsthestarfitsbetternowtheLi-agetrend. twins. With the data presented here, the models above could Articlenumber,page3of6 A&Aproofs:manuscriptno.aanda Table1.Liabundances,ages,massesandstellarparameters. A(Li)LTE A(Li)NLTE Age Error Mass T logg [Fe/H] Star eff (dex) (dex) (Gyr) (Gyr) (M ) (K) (dex) (dex) ⊙ HD2071 1.39+0.02 1.43+0.02 3.5 0.8 0.97 5724 4.490 −0.084 −0.04 −0.04 HD8406 1.69+0.01 1.73+0.01 4.2 0.8 0.96 5730 4.479 −0.105 −0.01 −0.01 HD20782a 0.67+0.08 0.71+0.08 7.5 0.4 0.97 5776 4.345 −0.058 −0.12 −0.12 HD27063 1.67+0.02 1.71+0.02 2.6 0.6 1.04 5779 4.469 0.064 −0.01 −0.01 HD28471 0.86+0.10 0.90+0.10 7.0 0.4 0.97 5754 4.380 −0.054 −0.09 −0.09 HD38277 1.56+0.03 1.58+0.03 7.3 0.4 1.01 5860 4.270 −0.070 −0.03 −0.03 HD45184b 2.08+0.01 2.10+0.01 2.7 0.5 1.06 5871 4.445 0.047 −0.02 −0.02 HD45289∗ ≤0.57 ≤0.61 8.5 0.4 1.00 5718 4.284 −0.020 HD71334 0.58+0.14 0.62+0.14 8.1 0.4 0.94 5701 4.374 −0.075 −0.11 −0.11 HD78429 0.59+0.11 0.63+0.11 7.5 0.4 1.04 5756 4.272 0.078 −0.19 −0.19 HD88084 0.96+0.12 1.00+0.12 6.0 0.6 0.96 5768 4.424 −0.091 −0.06 −0.06 HD92719 1.88+0.01 1.90+0.01 2.7 0.6 0.99 5813 4.488 −0.112 −0.01 −0.01 HD96116 2.19+0.01 2.21+0.01 0.7 0.7 1.05 5846 4.503 0.006 −0.01 −0.01 HD96423 1.88+0.01 1.93+0.01 6.0 0.4 1.03 5714 4.359 0.113 −0.01 −0.01 HD134664 2.08+0.02 2.11+0.02 2.3 0.5 1.07 5853 4.452 0.093 −0.01 −0.01 HD146233 1.58+0.02 1.62+0.02 3.8 0.5 1.04 5809 4.434 0.046 −0.03 −0.03 HD183658 1.24+0.04 1.28+0.04 5.0 0.5 1.03 5809 4.402 0.035 −0.07 −0.07 HD208704 1.05+0.05 1.08+0.05 6.9 0.4 0.98 5828 4.346 −0.091 −0.03 −0.03 HD210918∗ 0.67+0.06 0.71+0.06 8.5 0.4 0.96 5748 4.319 −0.095 −0.17 −0.17 HD220507∗ <0.50 <0.55 8.8 0.4 1.01 5690 4.247 0.013 HD222582c 0.89+0.08 0.93+0.08 6.5 0.4 1.01 5784 4.361 −0.004 −0.05 −0.05 Sun 1.03+0.03 1.07+0.03 4.6 – 1.00 5777 4.438 0.000 −0.02 −0.02 Notes.(∗)α-enhancedstar.(a)Detectedplanetwith1.8M (Jonesetal.2006).(b)Detectedplanetwith0.04M (Mayoretal.2011).(c)Detected Jup Jup planetwith7.8M (Butleretal.2006). Jup be improved. However, such refinements should take into Baumannetal. (2010), Fig. 5 shows a lack of connection be- account that the initial Li abundance of stars probably have tweenlithiumdepletionandpresenceofplanets.Thereisnosig- increased in time due to Galactic evolution, i.e., Li production nificant segregation between stars without planets (black filled inAGBstarsandnovae(Chenetal.2001;Romanoetal.2001; symbols)andplanethostingstars(redfilledsymbols)inthisfig- Lambert&Reddy 2004; Ramírezetal. 2012). The models ure. assumean initialLiabundanceof A(Li)= 3.3asinmeteorites, AsshowninFig.6,wherethestarsinoursamplehavebeen but according to the chemical evolution model of Izzoetal. divided into three metallicity groups (upper panel) and three (2015),theinitialLiabundancehasincreasedfromaboutA(Li) massgroups(lowerpanel),thereisnoobviousindicationofade- = 2.8 for the oldest disk stars to about A(Li) = 3.6 for the pendenceoflithiumdepletiononmetallicityandmassatagiven youngest.Taking thisinto accountwould make the A(Li)- age age.AnunweightedlinearleastsquaresfittoA(Li)asafunction relationpredictedbythemodelssteeperthanshowninFig.5. of age (in Gyr) for stars with a detected Li line (including the Sun)leadsto For models including rotational induced mixing, variations of the initial rotational velocity cause a considerable scatter in A(Li)=2.437(±0.098)−0.224(±0.018)Age (1) A(Li)atagivenage;accordingtoCharbonnel&Talon(2005)a changeinV from15kms−1 to110kms−1 decreasesA(Li) Fittingtheresidualsof A(Li)relativetothisequationasafunc- rot,init. byabout1dexforthe oldeststars. Differencesin theinitialro- tionof[Fe/H]andmassresultsintherelation tationalvelocitymay,therefore,contributetothescatterseenin ∆A(Li)=−0.05 −2.17(±1.30)[Fe/H] Fig. 5, although very large differences in V are needed to rot,init. explaintheoutliers. +3.55(±2.25)(M/M⊙−1.0) (2) An alternative explanation for enhanced lithium depletion Although,the coefficients have the expected sign, i.e., increas- is the presence of planets. Israelianetal. (2009) suggest that ingLidepletionwithincreasingmetallicityanddecreasingmass planet hosting stars have less lithium than stars without plan- (e.g., Castroetal. 2009), the dependence is hardly significant, ets, but Baumannetal. (2010) contest this result claiming that i.e., a 1.7σ correlation with metallicity and a 1.6σ correla- the sample of the former work is biased in metallicity and in- tion with mass. Furthermore, the mass dependence is smaller cludesstars of differentevolutionarystages. In agreementwith than predicted from models (Xiong&Deng 2009; Castroetal. Articlenumber,page4of6 MaríliaCarlos,PoulE.Nissen andJorgeMeléndez: Correlationbetweenlithiumabundancesandagesofsolartwinstars -0.05 < [Fe/H] < +0.05 dex Fig.5.ConnectionbetweenstellaragesandNLTElithiumabundances Fig. 6. Connection between stellar ages and lithium abundances with for our current sample (circles) and some previous results (triangles) different symbols for three metallicity groups (top) and three mass referenced in the text. Teal blue circles indicate alpha-enhanced stars groups(bottom). and red symbols refer to stars hosting planets. The models of Li de- pletionwerenormalizedtothesolarLiabundance. Insomecases,the lithiumabundanceerrorsaresmallerthanthepoints. dex, which we interpret as being due to gradual destruction of lithiumnearthebottomoftheouterconvectionzone.Thus,the new data can be used to constrain non-standard models of Li 2009), and also smaller than inferred from Li abundance mea- depletion,andthereforetounderstandbetterthetransportmech- surements for stars in the open cluster M67, which suggests a anismsinsidestars. mass coefficienton the orderof 10 for ∼1M stars (Paceetal. ⊙ TwostarsdeviatefromthemaintrendbetweenA(Li)andage 2012). Apparently, the short mass range for our sample (from byhavingLiabundancesenhancedbyafactorof∼10.Asimilar 0.94M to 1.07M ) in combination with errors in age, mass, ⊙ ⊙ enhancementofLiispresentfor16CygArelativeto16CygB and Li abundance make it difficult to estimate the dependence eventhoughthetwostarshavethesameageandnearlythesame of Li abundanceon mass based on our sample. We note, how- massandmetallicity.WesuggestthattheseenhancementsofLi ever, that according to our results, it is unlikely that the large areconnectedtotheaccretionofJupitersizedplanets. difference in A(Li) between 16 Cyg A and 16 Cyg B is due to We findnoevidencefora linkbetweenplanethostingstars thedifferenceinmass(0.05 M )assuggestedbyRamírezetal. ⊙ andenhancedLidestructionassuggestedinsomerecentworks. (2011).Instead,thehighLiabundancein16CygAmaybedue Three stars with planets of different masses in our sample, 16 to a recent accretion of a Jupiter sized planet, which is consis- CygBwithaJupitersizedplanet(Ramírezetal.2011),andthe tent with the fact that no such planet has been detected for 16 Sun show no systematic deviation from the A(Li)-age relation Cyg A, whereas 16 Cyg B has a giant planet with a minimum forstarswithoutplanets. massof1.5M (Cochranetal.1997).Arelatedevidencesup- Jup porting the planet engulfment scenario could be the enhanced Acknowledgements. Therefereeisthankedforimportantcomments,thathelped abundancesfor all elements in 16 Cyg A relative to 16 Cyg B toimprovethispaper.M.C.wouldliketoacknowledge supportfromCAPES. P.E.N.acknowledges support from the Stellar Astrophysics Centre funded by (Ramírezetal. 2011; TucciMaiaetal. 2014), and in particular The Danish National Research Foundation (Grant agreement no.: DNRF106) fortherefratoryelements(TucciMaiaetal.2014). andfromtheASTERISKproject(ASTERoseismicInvestigations withSONG andKepler) fundedbytheEuropeanResearch Council (Grantagreement no.: 267864).J.M.wouldliketoacknowledgesupportfromFAPESP(2012/24392- 5. Conclusions 2)andCNPq(BolsadeProdutividade). BasedonHARPSspectrawithveryhighsignal-to-noise(S/N ≥ 600) we were able to determine high-precision lithium abun- dances for 21 solar twin stars for which isochrone ages have References beenestimatedfromtheT -loggdiagram.Excludingtwoout- eff Andrássy,R.&Spruit,H.C.2015,A&A,579,A122 liers,weseeastrongcorrelationbetweenstellaragesandlithium Baumann,P.,Ramírez,I.,Meléndez,J.,Asplund,M.,&Lind,K.2010,A&A, abundances,witha23σsignificanceandaSpearmantestcoeffi- 519,A87 cientofr =−0.96.Inaddition,fivesolartwinsforwhichhigh- Bedell,M.,Meléndez,J.,Bean,J.L.,etal.2014,ApJ,795,23 s precisionlithiumabundancesandageswerepreviouslyderived Butler,R.P.,Wright,J.T.,Marcy,G.W.,etal.2006,ApJ,646,505 Castelli, F. & Kurucz, R. L. 2004, ArXiv Astrophysics e-prints (Monroeetal.2013;Meléndezetal.2012,2014;Ramírezetal. [astro-ph/0405087] 2011) and the Sun itself fit the relation very well. Over an age Castro,M.,Vauclair,S.,Richard,O.,&Santos,N.C.2009,A&A,494,663 rangefrom1 to 9Gyr,the Liabundancedecreasesby almost2 Charbonnel,C.&Talon,S.2005,Science,309,2189 Articlenumber,page5of6 A&Aproofs:manuscriptno.aanda Chen,Y.Q.,Nissen,P.E.,Benoni,T.,&Zhao,G.2001,A&A,371,943 Cochran,W.D.,Hatzes,A.P.,Butler,R.P.,&Marcy,G.W.1997,ApJ,483,457 DelgadoMena,E.,Israelian,G.,GonzálezHernández,J.I.,etal.2014,A&A, 562,A92 Denissenkov,P.A.2010,ApJ,719,28 DoNascimento,Jr.,J.D.,Castro,M.,Meléndez,J.,etal.2009,A&A,501,687 Figueira,P.,Faria,J.P.,Delgado-Mena,E.,etal.2014,A&A,570,A21 Gonzalez,G.2015,MNRAS,446,1020 Gonzalez,G.,Carlson,M.K.,&Tobin,R.W.2010,MNRAS,403,1368 Israelian,G.,DelgadoMena,E.,Santos,N.C.,etal.2009,Nature,462,189 Izzo,L.,DellaValle,M.,Mason,E.,etal.2015,ApJ,808,L14 Jones,H.R.A.,Butler,R.P.,Tinney,C.G.,etal.2006,MNRAS,369,249 Kim,Y.-C.,Demarque,P.,Yi,S.K.,&Alexander,D.R.2002,ApJS,143,499 Lambert,D.L.&Reddy,B.E.2004,MNRAS,349,757 Lind,K.,Asplund,M.,&Barklem,P.S.2009,A&A,503,541 Mayor, M., Marmier, M., Lovis, C., et al. 2011, ArXiv e-prints [arXiv:1109.2497] Mayor,M.,Pepe,F.,Queloz,D.,etal.2003,TheMessenger,114,20 Meléndez,J.,Bergemann,M.,Cohen,J.G.,etal.2012,A&A,543,A29 Meléndez,J.,Schirbel,L.,Monroe,T.R.,etal.2014,A&A,567,L3 Monroe,T.R.,Meléndez,J.,Ramírez,I.,etal.2013,ApJ,774,L32 Montalbán,J.&Rebolo,R.2002,A&A,386,1039 Nissen,P.E.2015,A&A,579,A52 Pace,G.,Castro,M.,Meléndez,J.,Théado,S.,&doNascimento,Jr.,J.-D.2012, A&A,541,A150 Ramírez,I.,Fish,J.R.,Lambert,D.L.,&AllendePrieto,C.2012,ApJ,756,46 Ramírez,I.,Meléndez,J.,Bean,J.,etal.2014,A&A,572,A48 Ramírez,I.,Meléndez,J.,Cornejo,D.,Roederer,I.U.,&Fish,J.R.2011,ApJ, 740,76 Romano,D.,Matteucci,F.,Ventura,P.,&D’Antona,F.2001,A&A,374,646 Sandquist,E.L.,Dokter,J.J.,Lin,D.N.C.,&Mardling,R.A.2002,ApJ,572, 1012 Sneden,C.A.1973,PhDthesis,THEUNIVERSITYOFTEXASATAUSTIN. Sousa,S.G.,Fernandes,J.,Israelian,G.,&Santos,N.C.2010,A&A,512,L5 Sousa,S.G.,Santos,N.C.,Mayor,M.,etal.2008,A&A,487,373 Takeda,Y.,Honda,S.,Kawanomoto,S.,Ando,H.,&Sakurai,T.2010,A&A, 515,A93 TucciMaia,M.,Meléndez,J.,Castro,M.,etal.2015,A&A,576,L10 TucciMaia,M.,Meléndez,J.,&Ramírez,I.2014,ApJ,790,L25 Xiong,D.R.&Deng,L.2009,MNRAS,395,2013 Yi,S.,Demarque,P.,Kim,Y.-C.,etal.2001,ApJS,136,417 Yi,S.K.,Kim,Y.-C.,&Demarque,P.2003,ApJS,144,259 Articlenumber,page6of6