ebook img

CoRoT's first seven planets: An overview PDF

0.57 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview CoRoT's first seven planets: An overview

CoRoT’s first seven planets: An Overview⋆ R.Dvorak1,J.Schneider2,H.Lammer3,P.Barge4,G.Wuchterl5andtheCoRoTteam 1 InstituteforAstronomy,Tu¨rkenschanzstrasse17,A-1180Vienna,Austria 2 LUTH,ObservatoiredeParis-Meudon,5placeJ.Jansen,F-92195Meudon,Paris,France 3 SpaceResearchInstitute,AustrianAcademyofSciences,Schmiedlstrasse6,A-8042Graz,Austria 0 4 Laboratoired’AstrophysiquedeMarseille,TechnopoledeMarseille-Etoile,F-13388MarseilleCedex13,France 1 5 Thu¨ringerLandessternwarteTautenburg,Sternwarte5,D-07778,Tautenburg,Germany 0 2 n Abstract. Theupto150dayuninterruptedhigh-precisionphotometryofabout100000stars–providedsofar a J by theexoplanet channel of the CoRoTspace telescope –gaveanew perspective ontheplanet population of ourgalacticneighbourhood. Thesevenplanetswithveryaccurateparameterswidentherangeofknownplanet 3 1 propertiesinalmostanyrespect.Giantplanetshavebeendetectedatlowmetallicity,rapidlyrotatingandactive, spotted stars. CoRoT-3 populated the brown dwarf desert and closed the gap of measured physical properties ] between standard giant planets and very low mass stars. CoRoT extended the known range of planet masses P down-to 5 Earth masses and up to 21 Jupiter masses, the radii to less than 2 Earth radii and up to the most E inflatedhotJupiterfoundsofar,andtheperiodsofplanetsdiscoveredbytransitsto9days.TwoCoRoTplanets . havehost starswiththelowest content ofheavy elementsknown toshow atransit hintingtowardsadifferent h planet-host-star-metallicityrelationthentheonefoundbyradial-velocitysearchprograms.Finallytheproperties p oftheCoRoT-7bprovethatterrestrialplanetswithadensityclosetoEarthexistoutsidetheSolarSystem.The - o detectionofthesecondarytransitofCoRoT-1atthe10−5-levelandtheverycleardetectionofthe1.7Earthradii r ofCoRoT-7bat3.510−4relativefluxarepromisingevidenceofCoRoTbeingabletodetectevensmaller,Earth t s sizedplanets. a [ 2 1 Introduction Becausethereexistalreadyseveralintroductionarypa- v pers describing the mission and the instrument in detail 5 (liketheonecitedabovebyBargeetal.)wejustmention 5 The space mission CoRoT is a joint adventure of differ- themaincharacteristicsofthesatellite:The4mlongand 6 ent European countries, namely CNES, the French space 630kgmassivesatellitehasameandiameterof2m.The 4 agencyas leadingorganisationand other onesin Austria, accuracyofthepointingis0.5arcsecwithacapacityofthe 2. Brazil, Belgium, Germany and Spain and also the Euro- telemetryof1.5Gbit/day.Threesystemsareoperatingon 1 peanSpaceAgencyESA.Theoriginalgoalwastoobserve thesatellite: 9 variable stars but – with the discovery of the first exo- 0 planetintheearly90’s–thesearchforexoplanetswasin- 1. CoRoTel is an afocal telescope with 2 parabolicmir- v: cludedintheresearchprogram(seeSchneiderandChevre- rorsandapertureof27cmacylindricbaffle2mlong, i ton ([17]) and turned out to be also very important. Al- 2. CoRoTcamisawidefieldcameraconsistingofadiop- X ready in the name of the mission CoRoT both research tricobjectiveof6lenseswherethefocalunitisequip- r tasks are mentioned Convection, Rotation and planetary pedwith4frame-transfer-CCD2048x4096.Twoofthe a Transits. The satellite was successfully launched on De- fourCCDs arefortheexoplanetprogramandtwoare cember, 27th 2006 from Baikonour, observations started fortheseismologyprogram. in February 2007 and first results concerning extrasolar 3. CoRoTcaseishostingtheelectronicsandthesoftware planettransitsrespectivelyanoverviewoftheCoRoTmis- managingtheaperturephotometryprocessing. sionwerepublishedbyBargeetal.[4].Thelife-timewas scheduledfor3yearsofobservationsandrecentlytheex- For the exoplanet CCD the total number of stars is tensionforanotherthreeyearswasapproved.Someofthe 12000andthemagnitudesarebetween11and16;theflux resultsobtainedwithmeasurementsoftheCoRoTmission ismeasuredevery512sconsistingof16individualexpo- were published in a whole volume of the journalAstron- sures of 32 s. A bi-prism in the focal block dedicated to omyandAstrophysicsthisyear(Baglinetal.[6]). exoplanetsallowstogetchromaticinformation(red,green andblue)forbrighterstars,butforfaintstarsonlythestan- ⋆ TheCoRoTspacemissionhasbeendeveloped andisoper- dardoneband(white)photometryisperformed.Thepolar atedbyCNESwiththecontributionofAustria,Belgium,Brazil, orbitofthesatelliteallowstoobserve150daysinthelong ESA,GermanyandSpain. run, and between 20 and 30 days in the short run, both EPJWebofConferences inthedirectionofthecenterrespectivelyanticenterofthe milkyway, whichmakestwo reversalmanoeuvresneces- saryperyear. Radial velocity measurements to confirm planet can- didateswereusuallyperformedwiththefollowinginstru- ments: 1. HARPSspectrographinLaSilla(3.6mtelescope) 2. SOPHIEspectrographintheObservatoiredeHaute Provence(1.93mtelescope) 3. CORALIE spectrographon the 1.2swiss telescope in LaSilla 4. Coude´ echelle spectrograph from the 2 m telescope Tautenburg(TLS) 5. UVESandFLAMESspectrographsinChile 6. SpectrographsatMcDonaldobservatory Fig. 1. Normalised and phase-folded lightcurve of the best 34 transitsofCoRoT-1b([5]Fig.1). 2 CoRoT-1b: The first planet discoveredby CoRoT AlreadythefirstexoplanetdiscoveredbyCoRoTmeasure- ments was a surprise concerning its nature (Barge et al. [5]):itturnedouttohaveaverysmalldensity(0.38gcm−3)1 comparedto all otherplanets foundup to now.The short period of 1.5 days – the light curve is shown in Fig. 1 – gaveaverywelldeterminedperiodbecause34successive transits couldbe used forits computation.AdditionalRV observation(Fig. 2) were undertakenfrom OHP with the SOPHIE spectrograph for 9 different positions of the ex- oplanet and confirmed the planetary nature of the transit of a planetwith a radiusof 1.49R and a mass of 1.03 Jup M infrontofaG0Vstar.Laterphotometricobservation Jup revealedthesecondaryeclipse,whentheplanetdisappears behindthediscofthestarwhichwasdiscovereddespitea veryshallownatureofthesignal(Fig.3). 3 CoRoT-2b: a transitingplanet around an active G star Fig.2.RVmeasurementsofCoRoT-1bwithSOPHIE([5]Fig.2). Out of 78 transits duringthe 150 days of observationsof CoRoT-2b(Alonso etal. [2]) (Fig. 4) the compositelight curve for the transit (Fig. 5) was derived after removing the signal of the star’s rotation and activity, which is due to large spots on its surface. The respective periods were between 4.5 and 5 days and showed flux variations of a fewpercents.ThissecondconfirmedplanetofCoRoTor- bits a K0V star with a metallicity of [Fe/H]=0 in 1.74 days and has a mass of 3.3 M and a radius of 1.465 Jup RJup.WiththeuseofverypreciseRVmeasurementswith Fig.3.ThesecondaryeclipseofCoRoT-1b([3],Fig.5). SOPHIE, HARPS and CORALIE it was possible to de- termine an inclination of λ = 7.2◦ between the planetary orbit and the equator of the central star ([7]). The radial velocityanomalyduringthetransitoftheplanet(Fig.6)– 1 Inthetextalltheparametersaregivenwithouttheerrorbars. The complete values with the estimated errors are given in the appendix NewTechnologiesforProbingtheDiversityofBrownDwarfsandExoplanets Fig. 4. Normalized flux of CoRoT-2b using 78 transits ([2], Fig.1). Fig.6.Phase-foldedRVmeasurementsofCoRoT-2bderivedby SOPHIE and HARPS showing the Rossiter-McLaughlin effect duringthetransit([7],Fig.1). Fig.5.Normalizedandphasefoldedlightcurveof78transitsof CoRoT-2b([2],Fig.2). theRossiter-McLaughlineffect2 wasmeasuredupto now only for 5 transiting exoplanets. This new measurements showed that even fainter stars (m ≤ 12) transited by a v planetcanbeusedtodeterminethiseffectwithtelescopes ofthe2mclass. Fig.7.LightcurveofCoRoT-3b([8],Fig.2). 4 CoRoT-3b: the first secureinhabitant of the brown dwarf desert During the observations of 152 days from space a series of34transits(Fig.8)couldbemeasuredforayoungF3V star with a radiusof1.56M with a periodof 4.26days Sun (Fig.7).Theresultswereabigsurprisebecausewithara- diuscomparabletothatofJupiterthemasscouldbedeter- minedas21.66M whichclearlydistinguishesthisplanet Jup from the normal close-in planets (Deleuil et al. [8]): ei- ther this is a brown dwarf or member of a new class of planets(Fig.9). Thedeterminationofthemasswasonly 2 Therotationofastarleadstoalinebroadeninginthespec- Fig.8.LightcurveofCoRoT-3bfor152days([8],Fig.1). trabecausebythecomingtowardstheobserverandthemoving away of different parts of the disc, consequently ablueshift re- spectively a redshift in the star’s spectrum is observable. Now whentheplanethostingstarisintransit,ithidespartofthedisc whichcausestheobservedmeanredshifttovaryandthisredshift possible with RV observations from the ground; in addi- anomalyswitchesfromnegativetopositive(orviceversa)andof tiontothefourmentionedinstruments(HARPS,SOPHIE, theformofthisanomalytheinclinationoftheplanets’orbitwith CORALIEandTLS,Fig.10)andmeasurementsfromMc- respecttotheequatorofthestarcanbedetermined. Donaldobservatory. EPJWebofConferences Fig.11.FoldedlightcurveforCoRoT-4b([1],Fig.3). Fig.9.MassradiusdiagramfortransitingplanetswithCoRoT-3b inthebrowndwarfdesert([8],Fig.10). Fig.12. RVmeasurementsof CoRoT-4bwithHARPSandSO- Fig.10.RVmeasurementsofCoRoT-3b([8],Fig.4.) PHIE([13],Fig.2). 5 CoRoT-4b: a transitingplanet in a anoutersynchronizedenvelopeofthestarwithdifferential synchronousorbit surfacerotation. The planet itself with a radius of 1.2 R and a mass of Jup 6 CoRoT-5b:a hot-Jupiter-typeplanet 0.71 M is orbiting the host star with a period of 9.2 Jup daysona circularorbit.The planetwith its mean density of0.525gcm−3isintheexpectedlocationofaJupiter-like After an observation time of 112 days with 27 transits – planetinthemass-radiusdiagrambutbecauseofitsperiod Fig. 13 shows the light curve with a decrease in flux of of almost ten days lies outside of the other hot Jupiters 1.5% – the analysis led to an orbital period of 4 days, with significantlysmallerperiodsof P ≤ 5 days(Aigrain a radius of 1.4 R and a mass of 0.47 M (Rauer et Jup Jup et al. [1], Moutou et al. [13]). The reduction in luminos- al. [16]). The mean density of 0.217 g cm−3 is very low ity caused by the planets’ transit (Fig. 11) is in the order compared to other gas giants observed up to now3. This of1.5%.ThesubsequentlyundertakenRVmeasurements means that the planet shows the largest radius anomaly (Fig.12) with HARPS and SOPHIE confirmed its plane- foundsofar.Thisrelativelyoldstar(5.5-8.3Gyrs)isaF9V tarynature.Fromthelightcurve(notshownhere)showing star with the mass of the sun and a slightly larger radius. 6cleartransitsduringthecontinuousobservationofalmost Follow-up observations with SOPHIE and HARPS have 60daysonecanseethatthehoststar(ayoungF0Vstarof been undertaken to derive the RV curve (Fig.14) which onlyabout1Gyrofage)hasanactivesurfacewithrapidly clearly shows the Rossiter-McLaughlineffect. With addi- evolvingstarspots.Itwaspossibletoderivearotationpe- riodofP=8.87days,whichiswithinitserrorbarsconsis- 3 only the planets WASP-1b and WASP-15b tentwiththeperiodoftheplanet.Inadditiontherecouldbe (http://exoplanet.eu)havesuchlowdensities NewTechnologiesforProbingtheDiversityofBrownDwarfsandExoplanets Fig.13.Phase-foldedlightcurveofCoRoT-5b([16],Fig.6). Fig.15.Phase-foldedlightcurveofCoRoT-6b([9],Fig.4). Fig. 16. RV measurements of CoRoT-6b with SOPHIE ([9], Fig.14.RVmeasurementsofHARPSandSOPHIEshowingthe Fig.8). Rossiter-Laughlin effect of CoRoT-5b during the transit ([16], Fig.2). the light curve (Fig. 15) and the RV measurements (Fig. 16)aretakenfromof([9]). tional HARPS observations it was possible to determine theverylowmetallicity(ratio[M/H]=−0.25). 8 CoRoT-7b:the firstsuper-Earthwith 7 CoRoT-6b: a transitinghot Jupiter planet measured radius in a 8.9d orbit around a low-metallicitystar ThisplanetdiscoveredbyCoRoTturnedouttobeinaan The most exciting result of CoRoT up to now is the dis- orbit of P=8.89 with approximately 3 Jupitermasses and covery of a Super-Earth planet with a terrestrial density a radius15percentlargerthanJupiters’ leadingto a high orbiting extremely close to its host star. The G9V star is densityof1.94gcm−3 (Fridlundetal.[9]).Itishostedby notolderthan2Gyrsandhasametallicityof0.03(Le´ger a F9V star with approximatelythe massof the Sunand a et al. [11]). CoRoT-7b turnedoutto be in a circular orbit surprisinglylowmetallicityof[Fe/H =−0.2].Thecombi- in a distance of only approximately4 times the radius of nationoftheRVmeasurementswiththephotometricones itshoststarwhichcouldbedeterminedbytheanalysisof from space – respectively ground-based photometric and its153transits.Theplanets’radiusisdeterminedviapho- spectroscopic observations – led to the full characterisa- tometric and spectroscopic measurements and turned out tion of the planet and the star. The respective results for to beslightlysmaller than2timestheEarth’sradius(r = EPJWebofConferences Fig.17.Superpositionof153transitsofCoRoT-7b([11],Fig.17). Fig.18.LocationofCoRoT7-binthemass-radiusdiagram([11], Fig.20). 1.78 R and a mass of M = 4.8 M ) 4. The mean Earth Earth densityof5.6gcm−3iscomparabletotheoneoftheEarth, consequentlywe can speak of an Earth-like planetwhich movesinonly0.854daysaroundtherelativelyyoungmain sequence star which has a rotation period of 23 days. A second planet (Queloz et al. [15]) turned out to be on a 3.89 days orbitand is probablyalso a Super-Earth( m = 8.4 M ).Itseemsthatbothplanetsaremadeofofrocks Earth or water and rockssimilar to our Earth which can be un- derstoodfromFig.18. BecauseofthesmallestperiodofCoRoT-7bfoundfor a planet around another star the temperatures will be ex- tremely high on its surface. Estimations for the tempera- turesonthedayside(Schneider[18])leadtoatemperature of about 2000K depending on the rotation of the planet; due to the vicinity to the star a bounded rotation is very probable.Thiswouldmeanthatthesilicatesurfaceconsists oflavaandtheplanets’atmosphereofevaporatedsilicates. On the contrary the far side could be in the temperature rangesuchthatwatercouldbeliquidorevenbepresenton itssurfaceinformofice.InFig.19thereisasketchofthis planetwhereboundedrotationbecauseoftheactingtides ofthestarisassumed.This–atleastsomewhatspeculative –physicalmodelhasbeendrawnbyJ.Schneider([18])but Fig.19.AphysicalmodelofCoRoT-7b([18]). it characterizeswhat kindof completelydifferentappear- ancewemayexpectfromthe’hells’planet. 9 The Mass loss of the CoRoT planets due With these measurements for CoRoT-7b it has been to proximity to the host stars proven that the satellite is able to discover such planets as Super-Earth and even smaller ones. From Fig. 17 one can see that the very small amplitude transits of δF/F ∼ In a recentstudy(Lammeret al. [10])the thermalescape 3.5·10−4isclearlynotthelimitofdetection. of hydrogenatomsfrom 57 transiting exoplanetswas de- termined and a modified energy-limited mass loss equa- tionapplied,whichreproducesthefullhydrodynamicap- proachofstudies(e.g.[14]).Byapplyingthesamemethod totheexoplanetsdiscoveredbyCoRoTintegratedoverthe 4 Thesevaluesaretakenfromthesecondpaperonthisplanet life time of the planetary system we obtain for the given ([15]); RV measurements in the first paper ([11]) were used to planetaryandstellarparametersthethermalmasslossrates excludenonplanetarycompanions. showninTable3. NewTechnologiesforProbingtheDiversityofBrownDwarfsandExoplanets Depending on the chosen stellar EUV-related heating observation a confirmation of a planet found around an- efficiencyηof10%or25%whichcorrespondstothera- otherstarcanbeattested. tioofthenetlocalgasheatingratetotherateofstellarra- TheplanetsfoundbyCoRoTareofextraordinaryvalue diativeenergyabsorption,onecanseethatCoRoT-1band fortheextrasolarplanetaryresearchinastronomybecause CoRoT-5blostduringtheirlife-timeabout1.3%and1.56 ofthecompletecharacterisationoftheplanets.Onecansee %(η=10%)or3.07%and3.75%(η=25%)oftheirini- thatmostoftheCoRoTplanetsaregiantgasplanets(radii tialmasses.ThethermalmasslossofCoRoT-2b,CoRoT- between 0.97 ≤ R ≤ 1.49. The largest ones (CoRoT- Jup 3b,CoRoT-4bandCoRoT-6barelowerandthereforeneg- 1b and 4b) are also very close to the host star having the ligible. The stronger mass loss effect for CoRoT-1b and shortest periods (1.51 and 1.74 days respectively) which CoRoT-5barerelatedtothelowerplanetarydensity,orbital is a clear sign of the important role of the star radiation distanceandstellarparameterssothattheRochelobebe- ontheradiusevolution.CoRoT-4andCoRoT-6hostplan- comesarelevantfactorinthemasslossevolutionofthese ets which have a synchronizedperiod with respect to the planets. host stars’ rotation. Concerningthe metallicity it is inter- RecentlyLeitzingeretal.([12])presentedthermalmass estingtonotethatthreeofthefivehotJupitersdetectedare loss calculations over evolutionarytime scales to investi- orbiting metalpoor stars, which is in contradictionto the gatewhetherCoRoT-7bcouldbearemnantofaninitially normalmetallicityrelationsfoundbyRVsearches.Aslast more massive hydrogen-richgas giant. The thermalmass point it should be emphasized that the domain of planet loss results of these authors indicate that CoRoT-7b can- masses covered by the CoRoT planets is within a wide notbearemnantofathermallyevaporatedJupiterlikegas range,namelyfromtheverymassiveCoRoT-3bplanet(with giant.AscenariothatCoRoT-7bis aremnantofanevap- 21.6 M ) to the telluric planetCoRoT-7b(0.015 M ). Jup Jup oratedlowdensity’hotsub-Uranus’or’hotsub-Neptune’ Another new aspect is the discovery of close-in planets is also veryunlikely butcan notbe completelyexcluded. (CoRoT-7band7c).Thiscanberegardedashintthat–like Suchanevaporationscenariowouldneed,besideslowini- in our Solar System – planetary systems are ’full’. This tialdensityoftheplanet,alsoaheatingefficiencyofabout meansthatinbetweentwoplanetsnootherbiggerobjects 25% instead of more realistic 10% and an unlikely short (exceptionsareasteroids)mayexistonstableorbits. exosphereformationtimeoflessthan50Myr.Fromthese The presentationof the major resultsin thisoverview simulationsonecanconcludethatCoRoT-7bwasmostlike- is byfar notcomplete– e.g.we did notspeakabouttime lyneveragasoricegiantwhichhaslostitsentirehydrogen transit variations (TTV) – which have also been detected envelope,butstarteditsevolutionasa’super-Earth’which insomeofthedataandmaybecausedbyadditionalplan- couldhavelostathinhydrogenenvelope. etsinthesystem.Onlytheresultsoftheconfirmedplanets The efficiency of the CoRoT exoplanet mass loss is havebeenpresented5,butthesignalsofmanymoreplanets connectedtotheRochelobeeffecttogetherwithlowplane- seemtobestillinourdataliketheonesofplanetsaround tarydensities.Dependingonthestellarluminosityspectral double stars. But they can be confirmed only after diffi- type,initialplanetarydensity,stellar EUV-relatedheating cult and long analysis combined with observations from efficiency,orbitaldistance,andtheconnectedRochelobe theground. effect,onecanexpectthatatorbitaldistances≤0.015AU, lowdensityhotgasgiantsinorbitsaroundsolartypestars mayevenevaporatedowntotheircoresize.Therefore,var- 11 Appendix ioussizeandmasstypeobjectsshouldbediscoveredinthe nearfuture. In table 1 the astrophysical parameters of the host stars arelisted,intable2welistedtheorbitalparametersofthe detectedplanetsandintable3thephysicalparametersare 10 Conclusions and synopsisof the giventogetherwithanestimationofthemasslossduetothe results proximitytothestar.Alldataaretakenfromtherespective publicationsgiveninthetext. TheobservationsfromspacewiththesatelliteCoRoTtur- nedouttohaveveryinterestingresultsfortheknowledge ofthediversityofplanetsandplanetarysystems.Thecon- 12 Acknowledgements tinuous surveillance of 100000 stars for a period of 150 days is very efficient to detect close by planets (with pe- The LAM team and the Austrian team thanks CNES re- riods between Venus and Mercury and smaller) and even spectively ASA for fundingthe CoRoT project. The IAC allowsto’see’smallplanetstransitinginfrontofthestar’s teamacknowledgesthesupportofgrantsoftheEducation diskwithaverysmalldecreaseinthefluxlikeforCoRoT- and Science Ministry. The German team (TLS and Univ. 7b. But to get absolute planetaryparametersfor the mass Cologne) acknowledges the support of DLR grants. For and the radius it is necessary to make extensive spectro- readingthemanuscriptandpreparinganappropriateoutlay scopic measurementsand also to have a goodknowledge ofthepicturesR.D.needstothankA.Bazso´ andV.Eybl. of the astrophysical parameters of the host star. Only af- tercarefulanalysisofthelightcurves(contaminationmay 5 Intheappendixweshowthestarparametersandthederived causea’false’alarm)incombinationwiththoroughground parametersfortheplanetsaspublishedintheoriginalpapers EPJWebofConferences Table1.Theastrophysicalparametersofthehoststars Table3.Thephysicalpropertiesoftheplanets star type M/M age[Gyrs] [Fe/H] planet M/M R/R ̺[gcm−3] Massloss[%] sun jup jup CoRoT-1 G0V 0.95 ? -0.3 CoRoT-1b 1.03 1.49 0.38 1.3–10.81 ±0.15 ±0.25 ±0.12 ±0.08 CoRoT-2 K0V 0.97 ? 0.0 CoRoT-2b 3.31 1.465 1.31 0.06–0.59 ±0.06 ±0.1 ±0.16 ±0.029 CoRoT-3 F3V 1.37 2.0+0.8 -0.02 −0.4 CoRoT-3b 21.66 1.01 26.4 0.0002–0.0017 ±0.09 ±0.06 ±1.00 ±0.07 CoRoT-4 F0V 1.1+0.03 1.0+1.0 0.0 −0.02 −0.3 ±0.15 CoRoT-4b 0.72 1.19 0.525 0.12–1.212 CoRoT-5 F9V 1.0 6.9 -0.25 ±0.08 −+00..0056 ±0.02 ±1.4 ±0.06 CoRoT-5b 0.467 1.388 0.217 1.56–12.78 CoRoT-6 F5V 1.055 ? -0.2 +0.067 +0.046 ±0.055 ±0.1 CoRoT-6b −20.9.0624 −10.1.06476 1.94 ≤1% CoRoT-7 G9V 0.93 1.5−+00..38 0.03 ±0.34 ±0.035 ±0.03 ±0.06 CoRoT-7b 0.015 0.172 4.23 ? ±0.003 +0.022 −0 Table2.Theorbitalelementsoftheplanets CoRoT-7c 0.026 ? ? ? ±0.003 planet Period[d] a[AU] inc[deg] ecc CoRoT-1b 1.508956 0.0254 85.1 0 8. Deleuil, M., Deeg, H.J., Alonso, R. et al.: As- ±6e−6 ±0.0004 ±0.5 tron.Astrophys.491(2008)889–897 CoRoT-2b 1.742996 0.0281 87.84 0 9. Fridlund, M., He´brard, G., Alonso, R. et al.: As- ±2e−6 ±0.0009 ±0.1 tron.Astrophys.(inprint)(2009) CoRoT-3b 4.2568 0.057 85.9 0 10. Lammer, H., P. Odert, M. Leitzinger et al.: As- ±5e−6 ±0.003 ±0.8 tron.Astrophys.506(2009)399–410 CoRoT-4b 9.20205 0.090 90.0 0+0.1 11. Le´ger, A., Rouan, D., Schneider, J. et al.: As- −0 ±37e−5 ±0.001 +0 tron.Astrophys.506(2009)287–302 −0.085 CoRoT-5b 4.037896 0.04947 85.83 0.09 12. Leitzinger,M.,P. Odert,H.Lammeretal.:submitted ±2e−6 +0.00026 +0.99 +0.09 toPlanet.SpaceSci. −0.00029 −1.38 −0.04 13. Moutou, C., Bruntt, H., Guillot, T. et al.: As- CoRoT-6b 8.886593 0.0855 89.07 <0.1 ±4e−6 ±0.0015 ±0.3 tron.Astrophys.488(2008)L47–L50 14. Penz,T.,Erkaev,N.V.;Kulikov,Yu.N. etal.:Plane- CoRoT-7b 0.85358 0.0172 80.1 0 taryandSpaceScience56(2008)1260-1272 ±2e−5 ±0.0003 ±0.3 15. Queloz, D., Bouchy, F., Moutou, C. et al.: As- CoRoT-7c 3.698 0.046 ? 0 tron.Astrophys.506(2009)303–319 ±0.003 16. Rauer, H., Queloz, D., Csizmadia, Sz. et al.: As- tron.Astrophys.506,(2009)281–286 17. Schneider, J., Chevreton, M.: Astron.Astrophys. 232 References (1990)251–257 18. SchneiderJ.(CESTmeeting,February2009,Paris) 1. Aigrain,S.,CollierCameron,A.,Ollivier,M.etal.:As- tron.Astrophys.488(2008)L43–L46 2. Alonso, R., Auvergne, M., Baglin, A.: As- tron.Astrophys.482(2008)L21–L24 3. Alonso,R.,Alapini,A.,Aigrain,S.:Astron.Astrophys. 506(2009)353–358 4. Barge, P., Baglin, A., Auvergne, M. and the CoRoT team,inSun,Y.-S.etal,Ferraz-MelloS.andZhou,J.-L. eds.:Exoplanets,FormationandDynamics,IAUSympo- sium249(2008)3–16 5. Barge, P., Baglin, A., Auvergne, M. et al.: As- tron.Astrophys.482(2008)L17–L20 6. Baglin,A.,Aerts,C.,Guillot,T.:Astron.Astrophys.506 (2009)2–572 7. Bouchy, F., Queloz, D., Deleuil, M. et al.: As- tron.Astrophys.482(2008)L25–L28

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.