(DOI:willbeinsertedbyhandlater) Coronal properties of G-type stars in different evolutionary phases L.Scelsi1,A.Maggio2,G.Peres1,andR.Pallavicini2 1 DipartimentodiScienzeFisicheedAstronomiche,SezionediAstronomia,Universita` diPalermo,PiazzadelParlamento1, 90134Palermo,Italy 2 INAF-OsservatorioAstronomicodiPalermo,PiazzadelParlamento1,90134Palermo,Italy Received,accepted 5 0 AbstractWereportontheanalysisofXMM-NewtonobservationsofthreeG-typestarsinverydifferentevolutionaryphases: 0 the weak-lined T Tauri star HD 283572, the Zero Age Main Sequence star EK Dra and the Hertzsprung-gap giant star 31 2 Com. Theyallhave highX-rayluminosity (∼ 1031ergs−1 for HD283572 and 31Comand ∼ 1030ergs−1 forEK Dra).We n compare the Emission Measure Distributions(EMDs) of these active coronal sources, derived from high-resolution XMM- a Newtongratingspectra,aswellasthepatternofelementalabundances vs. FirstIonizationPotential(FIP).Wealsoperform J time-resolvedspectroscopy ofaflaredetectedbyXMMfromEKDra.Weinterprettheobserved EMDsastheresultofthe 8 emissionofensemblesofmagneticallyconfinedloop-likestructureswithdifferentapextemperatures.Ouranalysisindicates 2 that the coronae of HD 283572 and 31 Com are very similar in terms of dominant coronal magnetic structures, in spite of differences in the evolutionary phase, surface gravity and metallicity. In the case of EK Dra the distribution appears to be 1 slightlyflatterthanintheprevioustwocases,althoughthepeaktemperatureissimilar. v 1 Key words. X-rays: stars – stars: activity – stars: coronae – stars: individual: 31 Com – stars: individual: EK Dra – stars: 3 individual:HD283572 6 1 0 5 1. Introduction result is consistent with the one previously obtainedfrom the 0 analysesofEinsteinandROSATdata,i.e.thatthereisagood / During the last decade, the analysis of high-resolution X-ray correlation between the effective coronaltemperature and the h spectra of late-type stars, obtained with EUVE, XMM- p X-ray emission level (see, for example, Schmittetal. 1990; - Newton and Chandra (e.g. MonsignoriFossietal. 1995; Preibisch1997). o Schmittetal. 1996; Gu¨deletal. 1997; Griffiths&Jordan r Theobservationthatinactivestarsaconsiderableamount t 1998; Laming&Drake 1999; Sanz-Forcadaetal. 2002; s ofplasmasteadilyresidesatveryhightemperatures,whichare Argiroffietal. 2003), revealed that the thermal structure of a achievedon the Sun only duringflaring events,led to the hy- : coronal plasmas is better described by a continous Emission v pothesisthatasuperpositionofunresolvedflaresmayheatthe Measure Distribution, EMD, rather than by the combination i X of a few isothermal componentsusually employed to fit low- plasmacausinganenhancedquasi-quiescentcoronalemission level.Followingthisidea,Gu¨del(1997)showedthatthetime- r and medium-resolution spectra. Since the coronal plasma is a averagedEMDresultingfromhydrodynamicsimulationsofa optically thin, the EMD of the whole stellar corona can be statistical set of flares, distributed in total energy as a power viewed as the sum of the emission measure distributions of law, could be made quite similar to the EMD of stars of dif- all the loop-like structures where the plasma is magnetically ferent activity level (and age). In particular, he obtained dis- confined;therefore,itcanbeusedtoderiveinformationabout tributionswith two peaksand a minimum around10MK; the the properties of the coronal structures and the loop popula- amountofthehottestplasma(at∼12−30MK)decreaseswith tions (Peresetal. 2001). In particular, the studies mentioned decreasingL (or,equivalently,withincreasingage)and,atthe above have indicated that the coronae of intermediate and X sametime,thefirstpeakmovestowardslowertemperatures. high activity stars appear to be more isothermalthan coronae of solar-type stars, and that the bulk of the plasma emission A qualitatively different scenario for the evolution of the measure is around logT ∼ 6.6 for stars of intermediate EMD with activityhasbeenproposedbyJ. Drake(seeFig.2 activity and up to logT ∼ 7 for very active stars. The latter inthereviewby Bowyeretal.2000):thedistributionincreases monotonically from the minimum, which occurs at logT be- Send offprint requests to: L. Scelsi, e-mail: tween ∼ 5 and 6, up to the peak at coronaltemperatures;the [email protected] locationofthepeakshiftstowardshigherandhighertempera- tures (up to logT ∼ 7 in the most active stars) for increasing X-rayactivitylevel.Alongwiththeshiftofthepeak,thesteep- nessoftheascendingpartofthedistributionincreases. In the pictures sketched above, the shape of the EMD changes with the stellar activity level; however, it is not yet understoodwhich stellar parameters(luminosity,surface flux, surface gravity, evolutionary phase, or others) have a major role in determining the physical characteristics of the domi- nantcoronalstructuresand,hence,thepropertiesofthewhole EmissionMeasureDistribution. In order to investigate this issue, we have examined the cases of three G-type stars, in different evolutionary phases: the Pre-Main Sequence star HD 283572, the Zero-Age Main SequencestarEKDraconis(HD129333)andtheHertzsprung- gap giant star 31 Com (HD 111812). Here we report on the analysesof recentXMM-Newton observationsof these bright targets,characterizedbysimilarandrelativelyhighX-raylumi- nosities(L ∼ 1030ergs−1 forEKDra,and L ∼ 1031ergs−1 X X forHD283572and31Com)withrespecttotheSun.Previous analyses(e.g. Gu¨deletal.1997;Ayresetal.1998;Favataetal. 1998) showed that the characteristic coronal temperatures of the stars of our sample lie around 107K; the EPIC and RGS detectorsonboardXMMareverysensitivetothistemperature Figure1. Positions of HD 283572, EK Dra and 31 Com in regime,allowingustogetratheraccurateandreliableinforma- the H-R diagram. We have superimposed pre-main-sequence tionabouttheplasmaEmissionMeasureDistributionsofthese (dashed lines) and post-main-sequence(solid lines) tracksfor stars. themassvaluesreportedinthe plot.Theevolutionarymodels are those of Venturaetal. (1998a,b), exceptfor the 2M pre- The analysisof the XMM observationof 31 Com was re- ⊙ M.S. track, for which we have used the model of Siessetal. ported in Scelsietal. (2004), while the reconstruction of the (2000). All tracks are calculated for solar photospheric abun- EMD ofHD 283572usinga high-resolutionspectrumis pre- dances. sentedhereforthefirsttime.Foreaseofcomparisonwiththese twosources,wehavealsore-analyzedtheXMMobservationof EKDrausingthesamemethodemployedfor31ComandHD 283572, thus ensuring homogeneity of the results; note how- The latter star is a member of the Taurus-Auriga star everthatindependentanalysesofthesameXMMobservation forming region and its age is estimated to be ∼ 2 × 106yr of EK Dra have been published since 2002 (e.g. Gu¨deletal. (Walteretal. 1988). HD 283572 shows no sign of accretion 2002;Telleschietal.2003)andmorerecentlyandcomprehen- fromacircumstellardisk,whichcharacterizestheearlierstage sivelybyTelleschietal.(2004)inthecontextofastudyofso- of classical T Tauri stars; the decoupling from the disk al- laranalogsatdifferentages.Thelatterworkiscomplementary lowed this star to spin up cosiderably, due to its contraction, to our present study because it considers stars having similar upto severaltens ofkms−1 (vsini = 78kms−1, see Table 1), mass,sizeandgravity,butlargelydifferentL andcoronaltem- X probably with a consequently enhanced dynamo action and a perature. very high X-ray luminosity (L ∼ 1031ergs−1). From Fig. 1 This paper is organized as follows: we describe the three X we deduce that HD 283572 will be an A-type star during its targetsinSect.2andwepresenttheobservationsinSect.3.In main sequence phase, and we estimate a mass between ∼ 1.5 Sect.4wedescribethedatareductionandthemethodsusedfor and ∼ 2M , in agreement with the estimate of 1.8±0.2M theanalysesofEPICandRGSspectra.Theresultsareshown ⊙ ⊙ byStrassmeier&Rice(1998a).TheradiusofHD283572has inSect.5anddiscussedinSect.6. beenderivedbyWalteretal.(1987)throughtheBarnes-Evans relation, R ∼ 3.3R at an assumed distance of 160pc, which ⊙ becomes 2.7R at the new distance of 128pc measured by 2. Thesample ⊙ Hipparcos; more recently, Strassmeier&Rice (1998a) com- In Fig. 1 we plot the positionsof the sample stars in the H-R bined photometric measurements, rotational broadening and diagram,toshowtheirrespectiveevolutionaryphases.Weused Doppler imaging technique to determine the radius of HD visualmagnitudes,B−Vcolorindexesanddistancesmeasured 283572intherange3.1−4.7R ,witha bestvalueof4.1R . ⊙ ⊙ byHipparcos;weassumednegligibleopticalextinctioninthe Duetotheuncertaintiesoftheseestimates,wedecidedtocon- casesofEKDraand31Com,coherentwiththelowinterstellar siderbothofthem.Weanticipatethatourmainresultsareonly absorptionusedintheanalysisoftheirX-rayspectra(Sect.5), weaklyaffectedbythechoiceofoneofthesevalues. whileweusedavisualextinctionAV =0.57(Strometal.1989) EK Dra is a G1.5-type star with mass and radius about andEB−V ∼AV/3forHD283572. equal to the solar values. It has just arrived on the main se- Table1.Stellarparameters.DistancesaremeasuredbyHipparcos;L (0.3−8keV)arederivedinthisworkfrom3−T models; x gravitiesaredeterminedfromthecorrespondingMandR,andsurfacefluxesfromthecorrespondingL andR.Inthelastcolumn, X thereferencesforL areindicatedintheentries. bol M/M R/R Spectral P vsini d L g/g F L /L ⊙ ⊙ rot x ⊙ x x bol type [d] [Kms−1] [pc] [1030ergs−1] [106ergs−1cm−2] HD283572 1.8a 2.7b;4.1a G2 1.55a 78a 128 ∼9 0.25;0.12 20;9 5× 10−4c EKDra 1.1d 0.95d G1.5V 2.75d 17.3e 34 ∼1 1.2f 18 3× 10−4g 31Com 3h 9.3h G0III <7.2i 66.5j 94 ∼7 0.035 1.3 3× 10−5h aStrassmeier&Rice(1998a). bWalteretal.(1987)andtheHipparcosmeasurementofd. cWalteretal.(1988)andtheHipparcosmeasurementofd. dGuinanetal.(2003). eStrassmeier&Rice(1998b). f AlsoconsistentwiththeestimatebyStrassmeier&Rice(1998b). gRedfieldetal.(2003). hPizzolatoetal.(2000). iFromP andvsini. rot jdeMedeiros&Mayor(1999). quence,thusrepresentingananalogoftheyoungSun.Because panion(Duquennoyetal.1991),whosemassislikelybetween of its age (∼ 7 × 107yr, Soderblom&Clements 1987), it 0.37M and0.45M (Gu¨deletal.1995a).Gu¨deletal.(1995b) ⊙ ⊙ sufferedlittle magneticbrakingand its shortrotationalperiod found that the X-ray and radio emissions are modulated with (∼2.7days, Guinanetal.2003)makesitabrightX-raysource therotationalperiod,stronglysuggestingthatthecoronalemis- (L ∼1030ergs−1). sion comespredominantlyfrom the G star. If we assume that X The more massive (M ∼ 3M⊙) giant star 31 Com (age thesecondarystarhasM ∼ 0.4M⊙ andage∼ 70Myr,andhas ∼4×108yr, Friel&Boesgaard1992)hasalreadyevolvedout asaturatedcorona(theworstcase),itsX-rayluminositywould of the main sequence andnow it is crossingthe Hertzsprung- be∼ 1029ergs−1,sowemightexpectcontaminationoftheX- gap.Thepositionof31ComintheH-Rdiagramandtheevo- rayemissionoftheGstarfromthecompanionatmostat∼10 lutionarymodelsindicateaspectraltypelate-B/early-Aonthe %level. mainsequence;therefore,thisstarhasdevelopedaconvective subphotosphericlayer and a dynamo only in its current post- 3. Observations mainsequenceevolutionaryphase(Pizzolatoetal.2000).The X-rayluminosityis∼7×1030ergs−1. TheobservationsofHD283572,EKDraand31Comwereper- formedwithXMM-NewtonrespectivelyonSeptember,5,2000 Thestellarparametersofthethreetargets,withtherelevant (PI:R.Pallavicini),onDecember,30,2000(PI:A.Brinkman) references,aresummarizedinTable1.ForHD283572were- andonJanuary9,2001(PI:Ph.Gondoin).Thenon-dispersive portbothestimates,mentionedabove,ofthestellarradiusand CCD cameras (EPIC MOS and EPIC , Turneretal. 2001; thecorrespondingvaluesofgravityandsurfaceX-rayflux. Stru¨deretal.2001),lyinginthefocalplaneoftheX-raytele- HD 283572, EK Dra and 31 Com were chosen because scopes,havespectralresolutionR= E/∆E ∼5−50intherange their stellar parameters offer the possibility to get useful in- 0.1 − 10 keV, while the two reflection grating spectrometers sightintotheircoronalpropertiesfromthecomparisonoftheir (RGS, denHerderetal.2001)provideresolutionR∼70−500 EMD. Note, in particular, that while the X-ray luminosity of inthewavelengthrange5−38Å(0.32−2.5keV). 31 Com and HD 283572 are about equal and larger than that Forthepresentstudy,weconsideredonlytheEPICand of EK Dra by about an order of magnitude, EK Dra and HD RGSdata;inTable2wereportdetailsontheinstrumentcon- 283572arethestarswiththehighestsurfacefluxes,whoseval- figurationsandontheobservations. uesexceedsignificantlythatof31Com,byaboutoneorderof Atthetimeoftheseobservations,bothCCD7ofRGS1and magnitude.Notealsothatthedifferentevolutionaryphasesim- CCD4ofRGS2werenotoperating.TheseCCDscorrespondto plydifferentstellarinternalstructures;moreover,thesetargets thespectralregionscontainingtheHe–liketripletsofneonand havequitedifferentgravities,implyingdifferentpressurescale oxygen,respectively.NotealsothattheRGS1spectrumofHD heightsandpossiblechangesinthepropertiesofthedominant 283572isentirelymissing,duetoinstrumentsetupproblemsin coronalloops. theearlyphaseofXMM-Newtonobservations;hencewehave Finally,therapidlyrotatingstarsHD 283572and31Com noinformationontheOtripletforthissource. areputativesinglesources:thisavoidsdifficultiesintheinter- pretationoftheresults,duebothtotheuncertainoriginofthe 4. Dataanalysis emission,incaseofmultiplecomponents,andtothepossibility ofanenhancedactivityasfound,forexample,intidally-locked We usedSASversion5.3.3,togetherwiththecalibrationfiles RSCVnsystems.Onthecontrary,EKDrahasadistantcom- availableatthetimeoftheanalysis(June2002),toreducethe Table2.LogoftheXMM-Newtonobservations. Exposuretime(ks) EPIC Q.E.Exposurea(ks) Count-rateb(s−1) RGS1 RGS2 Mode/Filter RGS1 RGS2 RGS1 RGS2 HD283572 41.1 0 48.7 FullFrame/Medium 41.1 0 47.4 2.20 0 0.15 EKDra 46.9 51.7 50.2 LargeWindow/Thick 38.5 44.9 43.6 2.20 0.16 0.22 31Com 33.5 41.7 40.5 FullFrame/Thick 32.2 39.6 38.5 1.45 0.11 0.16 aExposuretimefortheanalysisofthequiescentemission(Q.E.),i.e.excludingthetimeintervalsaffectedbyprotonflares, occurredinthecasesofHD283572and31Com,andbythesourceflareinthecaseofEKDra(seeSect.4.1). bMeancount-rateinthe1.2−62Å(0.2−10keV)bandforandinthe5−38Å(0.32−2.5keV)bandforRGS(1storder spectrum)relevanttotheQ.E.Exposure. dataofHD 283572and31Com;thedataofEKDrawerere- ceedsbymorethan1σtheaverageHRvaluecalculatedfrom ducedwithSASversion5.4andtheanalysiswasperformedin timeintervalsbeforeandaftertheflare.Weexcludedthetime September2003.We generatedall responseswiththeSAS intervaloftheflarefromtheemissionmeasureanalysis(Sect. andtasks. 4.3),sincewewanttostudythethermalpropertiesofthequi- GoodTimeIntervalswereselectedbyexcludingthosetime escent corona, and we analyzed the flare separately. The qui- intervalsshowing the presenceof presumableprotonflares in escentemissionofEKDraisstillvariable,yieldingareduced thebackgroundlightcurveextractedfromCCD9oftheRGS, χ2 = 6.2(190d.o.f.)againstthenullhypothesisofaconstant r following denHerder (2002): we cut the intervals where the source;thevariabilityisonatime-scaleof∼15ksanditsam- count-rate exceeds 0.1 ctss−1 for 31 Com and 1.6 ctss−1 in plitude(calculatedasabove)is∼16%. thecaseofHD283572(whoseobservationiscontaminatedby highlevelofbackground),whilewedidnotexcludeanyinter- 4.2.EPICspectra valinthecaseofEKDra. In order to obtain X-ray light curves and spectra, we ex- WehaveperformedglobalfittingoftheEPICspectra(Fig.3) tractedtheeventsfromacircularregion(∼ 50′′ radius)within withtheaimofderiving,frommulti-componentthermalmod- CCD 4 for HD 283572, while we used annular regions (∼ els,theinitialguessofthecontinuumlevelforthelinemeasure- 7.5′′−50′′radii)for31ComandEKDra,becausetherelevant mentsin theRGSspectra.Moreover,theabundancesofsome datawereaffectedbypile-up.Inallcases,backgroundphotons elements(Si,S,Ar,Ca)canbebetterdeterminedfromspec- were extractedfromtherestof CCD 4,excludingthe sources tra,ratherthanfromRGSspectra,thankstothewiderspectral andtheirout-of-timeevents. rangeoftheformer–whichincludesthestrongK-shelllinesof therelevantH–likeandHe–likeions–andtothehigherphoton countingstatistics2. 4.1.Lightcurves We analyzed these spectra with XSPEC v11.2 and we Figure 2 shows the background-subtractedlight curves of found that an absorbed, optically-thin plasma with three the sources, with a 200s time binning. The light curve of 31 isothermal components provides an acceptable description Comistheonlyonethatisconsistentwiththehypothesisofa of each of them (see results in Sect. 5.1). The models constantemission(seeSect.3.1in Scelsietal.2004). are based on the Astrophysical Plasma Emission Database In the case of HD 283572,there is evidenceof variability (APED/ATOMDB V1.2) and have variable abundances; we of the emission, on a time-scale of the order of 30ks, which adopted the criterion of leaving free to vary only the abun- is nota typicalflare event.The reducedχ2 is 5.9(229d.o.f.) dances of those elements (O, Ne, Mg, Si, S, Fe, Ni, in some r in the null hypothesis of a constant emission; the variability casesCaandAr)withstrongandclearlydetectablelinecom- amplitude,calculatedas0.5[max(rate)-min(rate)]/mean(rate), plexesinEPICspectra.Theabundancesoftheotherelements is∼20%.Thereisalesspronouncedvariabilityonatime-scale weretiedtothatofiron,theirbest-fitvaluesbeingpoorlycon- of∼10ks.FromTables1and2,wenotethatthedurationofthe strainedwhenleftfreetovary. observation is about one third of the stellar rotational period, Weeventuallyusedthehigh-energytailofthespectrum hencea largefractionofthestellarsurfacewasvisibleduring alsotocheckthehigh-temperaturetailoftheemissionmeasure thepointing;thissuggeststhatatleastpartofthevariabilityis distributions,asdescribedinthenextsectionandinAppendix due to an inhomogeneousdistributiuon of active regionsover A. thestellarsurface. Finally,weperformedtime-resolvedspectroscopyofthe ThelightcurveofEKDraclearlyshowsthepresenceofa dataofEKDraduringtheflare,togetinformationontheprop- flare;theverticallinesinthefiguremarkthestartandtheendof theflare,obtainedastheminimumandmaximumtimeswhere 2 The Si- lines fall also in the RGS spectral range, but the thehardness-ratio,HR=(H−S)/(H+S)1,systematicallyex- statisticsareusuallyverylowandthecalibrationoftheeffectiveareais lesspreciseatthesewavelengths;nonetheless,theresultsofouranal- 1 We have evaluated the soft emission count-rate, S, in the 0.3− ysisshowthattheSiabundancesderivedfromdataareconsistent 1keV band and the hard emission count-rate, H, in the 1−10keV withthoseobtainedfromRGSspectrawithinstatisticaluncertainties band. (seeTable4). Figure3.EPICspectraofHD283572,EKDraand31Comwith theirbest-fitmodelspectra(theparametersofthemodels arelistedinTable3).Thespectraof31ComandHD283572,withtheirrelevantbest-fitmodels,havebeenshiftedby-0.5and +0.5dexforclarity. erties(inparticularthesize)oftheflaringloop,employingthe selectedasetoflines,amongtheidentifiedones,withreliable methodbyRealeetal.(1997).Thisanalysisanditsresultsare flux measurementsand theoreticalemissivities. Most of them reportedinAppendixB. are blendedwith other lines, so the measuredspectralfeature isactuallythesumofthecontributionsofanumberofatomic transitions; accordingly, we evaluated the ”effective emissiv- 4.3.EmissionMeasureReconstruction ity”ofeachlineblendasthesumoftheemissivitiesofthelines whichmostlycontributetothatspectralfeature.Moreover,we The approach we adopted for the line-based analysis of the carefullyselectedonlyironlinesnotblendedwithlinesofother RGS spectra of each star is discussed in detail in Scelsietal. elements,becausetheprocedureweemployed(seebelow)uses (2004)togetherwithastudyofitsaccuracy;herewelimitour- theseironlinesinthefirststepofthe EMDanalysis,andesti- selvestoreportthemainpointsofouriterativemethod. matesoftheabundancesoftheotherelementsarenotyetavail- We employed the software package PINTofALE ableatthisstep. (Kashyap&Drake 2000) and, in part, also XSPEC, and used the APED/ATOMDB V1.2 database which includes the We performedthe EMD reconstructionwith the Markov- Mazzottaetal.(1998)ionizationequilibrium. Chain Monte Carlo (MCMC) method by Kashyap&Drake Wefirstrebinnedandco-addedthebackground-subtracted (1998). This method yields a volume emission measure dis- RGS1andRGS2spectrafortheidentificationofthestrongest tribution, EM(T ) = dem(T )∆logT, and related statistical k k emission lines and the measurement of their fluxes. In this uncertainties∆EM(T ), where dem(T) = n2dV/dlogT is the k e latter step, we adopted a Lorentzian line profile and we as- differential emission measure of an optically thin plasma and sumed initially the continuum level evaluated from the 3-T ∆logT = 0.1isa constantbinsize;themethodalsoprovides modelbestfittingthespectrum,becausethewidelinewings estimatesofelementabundances,relativetoiron,withtheirsta- makeitimpossibletodeterminethetruesourcecontinuumbe- tisticaluncertainties.Theironabundanceisestimatedbyscal- low ∼ 17Å directly from the RGS data, in particular in the ingtheemissionmeasuredistributionassumingdifferentmetal- ∼ 10−17Årange,wherethespectrumisdominatedbymany licities andby comparingthe synthetic spectrumwith the ob- strongoverlappinglines.Then,withtheaimtoreconstructthe servedoneatλ > 20ÅintheRGSspectrum(thisisaspectral Emission Measure Distribution (EMD) vs. Temperature, we region free of strong overlappingemission lines). Finally, we are importanttests for the reliability of the amountof plasma inthehigh-temperaturetailoftheEMD. We also checked the consistency between the continuum level assumed for flux measurements and the continuum pre- dicted by the EMD. In fact, since our methodis iterative,the continuum assumed for flux measurements in the RGS range is adjusted at each iteration for consistency with the EMD, and it maybecomedifferentfrom thatpredictedby the 3−T modelbest-fittingthe spectrum,whichis adoptedasinitial guess. Therefore, this procedure ensures that possible cross- calibrationoffsetsbetween andRGS donotaffectthefinal EMD. 5. Results 5.1.3-Tmodels Figure3showsthespectrawiththeirrelevant3-Tmod- els, obtainedby fitting the data in the 0.3−8keV range. The best-fitparametersofthemodelsarelistedinTable3. The presence of the Fe 6.7 keV emission line in all thesespectraisindicativeofhotcoronae,asexpectedfromear- lierworksandconfirmedbyouranalysis.Notethelargebest-fit EMvaluesofthehottestcomponentsforallstars,comparable totheEMsofthecoolercomponents;inparticular,thehottest plasmadominatesthecoronaofHD283572,asalsoconfirmed bytheanalysisofChandraspectra(Audardetal.2004). Thelinecomplexesof Mg-(∼ 1.3−1.5keV),Si- (∼1.8−2.1keV)andS(∼2.5keV),aswellasthelarge bumpbetween0.6and1keVduetotheFe-,Ni- andNe-linesallowedustoconstraintheabundancesofMg, Si, S, Fe, Ne and Ni. These complexesare less evidentin the spectrumofHD283572,asaconsequenceofthesignificantly lowermetallicitywithrespecttotheothertwostars;instead,the Figure2.Background-subtractedlightcurvesofHD283572 Calinecomplex(∼3.9keV)ismostprominentinthespec- (upper), EK Dra (middle) and 31 Com (lower), in the 0.2 − trumofthisstar(Fig.3)andtheestimatedabundanceofthisel- 10keVbandandwith timebinsof200s. Theverticallinesin ementishigherthanfortheothertwocases.Notealsothatwe the light curve of EK Dra mark the time interval of the flare, wereabletoconstraintheArabundanceforEKDra,thanksto excludedfromtheanalysisofthequiescentemission. theclearlyvisiblelinesofArat∼3.1keV.Intheothertwo cases we linked the abundancesof Ca and/orAr to that of Fe assumingthesameratiosasinthesolarcorona(Grevesseetal. 1992).Moreover,we usedtheresultsofthe EMD analysesto fixthecoronalC/FeabundanceratioforEKDraand31Comto checkedthe solution obtainedwith the MCMC by comparing respectively0.7and0.25solar,andtheN/FeratioforEKDra (i)thelinefluxespredictedfromoursolutionwiththemeasured onesand(ii)themodelspectrum,basedonthereconstructed to0.5solar. EMD, with the observed spectrum at E > 2keV. These Finally,wecouldnotconstraintheinterstellarabsorptionin checks are illustrated respectively in Fig. 6 and in Appendix thedirectionsofEKDraand31Comwiththefittingprocedure, A, taking the case of EK Dra as an example (similar results sowefixedthemattherelativelylowvaluesof3×1018cm−2 wereobtainedfortheothertwostars).Inparticular,thecorrect and 1018cm−2 measured, respectively, by Gu¨deletal. (1997) prediction of the O- line fluxes allowed us to check the and Piskunovetal. (1997). On the contrary, the spectrum of reliabilityoftheamountofplasmainthelow-temperaturetail HD283572issignificantlyabsorbed,asexpectedfromthelo- oftheEMD;analogously,thecorrectpredictionoftheFe- cationofthisstarintheTaurus-Aurigastarformingregion.The linefluxesandofthehigh-energytailofthespectrum hydrogencolumndensitywederivedfromthefitiscompatible Table3.Best-fitmodelsoftheEPICdata(inthe0.3−8keVband),with90%statisticalconfidencerangescomputedforone interestingparameteratatime;nominalerrorsonT andEM areatthe10%level.Elementabundancesarerelativetothesolar i i ones (Grevesseetal. 1992). Mean temperaturesare calculated as < T >= P3 EM T/P3 EM. Abundancesand hydrogen i=1 i i i=1 i columndensitieswithouterrorswerefixedasexplainedinthetext. HD283572 EKDra 31Com logT (K) 6.64,7.04,7.43 6.58,6.94,7.33 6.44,6.92,7.28 1,2,3 logEM (cm−3) 53.5,53.5,53.7 52.5,52.4,52.3 52.6,53.1,53.0 1,2,3 log<T > (K) 7.21 6.99 7.06 C 0.37 0.57 0.38 N 0.37 0.42 1.54 O 0.236 ± 0.014 0.346 ± 0.015 0.58 ± 0.03 Ne 0.46 ± 0.03 0.83 ± 0.04 2.35 ± 0.14 Mg 0.32 ± 0.05 0.86 ± 0.06 1.95 ± 0.13 Si 0.25 ± 0.04 0.59 ± 0.06 1.23 ± 0.11 S 0.26 ± 0.09 0.15 ± 0.10 0.58 ± 0.20 Ar 0.37 0.82 ± 0.22 1.54 Ca 1.8 ± 0.3 0.83 1.54 Fe 0.37 ± 0.01 0.83 ± 0.01 1.54 ± 0.02 Ni 1.52 ± 0.11 1.80 ± 0.20 4.1 ± 0.3 N (cm−2) (8.7 ± 0.4)×1020 3×1018 1018 H χ2/d.o.f. 1.1/688 1.26/411 1.1/367 ν Figure4.Co-addedRGSspectraofHD283572(upper),EKDra(middle)and31Com(lower)withtheidentificationofthemost prominentlines;thebinsizeis0.02Å. withA andconsistentwithpreviousresultsobtainedbyfitting inallcases,whileO,Mg-andSi-emissionlines V ASCA,ROSAT,EinsteinandSAXdata(Favataetal.1998). 5.2.EmissionMeasureDistributionsandabundances The rebinned and co-added RGS spectra (Fig. 4) show emis- sionlinesfromFe-,Ne-,OandNi-ions arevisible onlyforEK Draand31Com,andthe N linein the case of EK Dra only. Actually, we could not identify any lineoutsidethewavelengthrange10−20Åinthespectrumof HD 283572,because of contaminationfromhigh background andlackoftheRGS1spectrumaltogether.Thereconstruction of the EMD of EK Dra and 31 Com was based on about 40 lines, while we used 25 lines in the case of HD 283572 as a consequenceofthelowerqualityofitsspectrum. ThederivedEMDsareplottedinFig.5;notethatthealgo- rithmweusedisnotabletoconstrainstatisticallythevaluesof the emissionmeasure in allthe temperaturebins.We show in Fig.6theobserved-to-predictedfluxesforthecaseofEKDra, which is representative of the spread of these ratios obtained in ouranalyses, and in Fig. 7 we comparethe observedspec- tra and the modelspectra generatedwith the solutions(EMD andabundances)foundinthiswork.Theelementalabundances areshowninTable4;weestimatedtheironabundances(rela- tivetothesolarvalue)ofHD283572,EKDraand31Comat 0.7±0.2,1.2±0.2and1.4±0.2,respectively.Table5reports theratios3R= f/iandG =(f+i)/rrelativetotheOtriplet, andtheestimatesofelectrontemperatures,densitiesandpres- sures, averagedoverthe regionwhere the triplet forms, using thetheoreticalcurvesbySmithetal.(2001). In Fig. 8 we show the element-to-iron abundance ratios for the three stars, ordering the elements for increasing First IonizationPotential(FIP).WheneverbothEPIC-andRGS- based estimates were available, we always reportthe latter in theplot,becauseweconsiderthevaluesderivedwiththeRGS the most accurate. It is worth noting that, despite widely dif- feringmethodsemployedto deriveelementalabundances,we obtainedconsistency between the - and RGS-derivedabun- dance ratios, except for Ne in the case of 31 Com (the value indicatedbytheistwotimeslargerthantheRGSone)and for Ni in the case of EK Dra and HD 283572(the values ob- tainedwiththearelargerthantheRGSonesbyfactorsof2 and4respectively). Thepatternsofabundancesvs.FIParesimilarinthecases of 31Com andHD 283572,with an initialdecrease (with re- specttosolarphotosphericvalues)downtoaminimumaround carbon, followed by increasing abundancesfor elements with higherFIP(> 11eV).Thispatternisalsosimilartowhatwas foundfortheyoungactivestarABDorbySanz-Forcadaetal. (2003),butitislessevidentinthecaseofEKDra.Notethat31 ComandEK Drahaveironabundancesdifferingfromthatof HD 283572byabouta factorof2,hencethe patternofabun- dancesvs.FIPappearstobealmostindependentoftheglobal coronalmetallicity. Figure5.DistributionsofemissionmeasurederivedfromRGS data.Valueswithouterrorbarsarenotstatisticallyconstrained by the MCMC algorithm. Note the different ordinate scale in theplotofEKDrawithrespecttothoseofHD283572and31 6. Discussion Com. XMM-Newton data allowed us to derive the plasma emission measuredistributionsforourthreetargetsandtheircoronalel- ementalabundances;inparticular,theEMDofHD283572has beenderivedhereforthefirsttimeusingahigh-resolutionspec- 3 r,iand f denotethefluxesoftheresonance,intercombinationand trum.Ourresultsaresufficientlywelldeterminedandhomoge- forbiddenlines. neousforthe purposeofa detailedcomparisonofthecoronal Figure7.ModelspectracomparedtotheoriginalRGSspectra. Table4.Ratiosbetweenelementalandironcoronalabundances,relativetothesolarphotosphericratios(Grevesseetal.1992), derivedfromRGSdata;errorsareat68%confidencelevel.Forcompleteness,wealsoreporttheabsoluteironabundance.The -derivedvaluesareshownforpurposeofcomparison.Foreachstar,thenumberoflinesusedforthe EMD reconstructionis reported(thenumberoflinesofagivenelementisshowninparenthesisneartherelevant(RGS)abundancevalue). HD283572 EKDra 31Com RGS RGS RGS C/Fe 0.69+0.28(1) 0.24+0.22(1) −0.08 −0.07 N/Fe 0.52+0.4 (1) −0.16 O/Fe 0.6+0.4(2) 0.64 ± 0.04 0.50+0.04(3) 0.42 ± 0.02 0.49+0.15(2) 0.38 ± 0.02 −0.2 −0.07 −0.08 Ne/Fe 1.2+0.23(2) 1.24 ± 0.09 1.00+0.21(3) 1.00 ± 0.05 0.78+0.13(2) 1.53 ± 0.09 −0.3 −0.23 −0.3 Mg/Fe 0.86 ± 0.14 0.88+0.6 (2) 1.04 ± 0.07 1.0+0.4(2) 1.27 ± 0.08 −0.13 −0.3 Si/Fe 0.68 ± 0.11 0.7+0.5(1) 0.71 ± 0.07 0.9+0.9(1) 0.80 ± 0.07 −0.4 −0.3 Ni/Fe 1.2+1.0(2) 4.1 ± 0.3 0.9+1.0(1) 2.17 ± 0.24 3.5+2.1(6) 2.7 ± 0.2 −0.6 −0.3 −0.7 Fe 0.7 ± 0.2(19) 0.37 ± 0.01 1.2 ± 0.2(24) 0.83 ± 0.01 1.4 ± 0.2(27) 1.54 ± 0.02 totallines 25 36 41 Figure6.Comparisonbetweenobservedfluxesandthe fluxes Figure8.Element-to-ironabundanceratios,relativetotheso- predicted with the EMD model, for lines used in the EM re- larphotosphericvalues(Grevesseetal.1992),forHD283572 construction of EK Dra; Fe: open diamonds, Ne: triangles, (squares),EKDra(triangles)and31Com(diamonds).Theel- Mg:opensquares,Si:filleddiamond,Ni:filledcircle,O:filled ementsareorderedbyincreasingFIP. squares,N:asterisk,C:opencircle. theyareproportionalto∼T5,wheretheexponentofthepower properties of the selected stars. We recall that these stars are lawhasaformalconfidenceintervalbetween∼ 3.4and∼ 6.6; in differentevolutionarystages, butsharethe characteristicof therearealso indicationsofasignificantamountofplasmaat beingactive(highX-rayluminosity)G-typestars.Ouranalysis temperatures hotter than T (up to logT ∼ 7.6) and, at least p hasconfirmedthatthethreestarshaveveryhotcoronae,with in the case of 31 Com, in the range logT ∼ 6−6.2. We re- similar average temperatures(∼ 11−12MK for EK Dra and callthatwe arenotabletostatistically constrainthe emission 31Com,and∼16MKforHD283572). measureinallthetemperaturebins,andhencetogetinforma- A remarkableresult of this work is the close similarity of tionontheexactshapeofthedistributionsbelowlogT ∼ 6.5 theemissionmeasuredistributionsofHD283572and31Com, andabovelogT ∼ 7.3,yetthepresenceinbothstarsofanon- whichhavesimilar L aswell.Bothdistributionshaveawell- X negligibleamountofplasma upto logT ∼ 7.6hasbeenveri- definedpeakatT = 107Kand,intherangelogT ∼ 6.5−7, p fied,asdescribedinSect.4.3,throughthecorrectpredictionof the Fe-linefluxesandbycomparisonwith the high- Table5.PressureestimateswithO. energy tail of the observed EPIC spectra (App. A), while the correctpredictionoftheO-linesallowedustoverifythe presence of cool plasma down to logT ∼ 6 in the EMD of R ne(range) G T P(range) 31 Com (the O line is notavailable in the spectrumof HD (1010cm−3) (106K) (dyncm−2) EKDra 3.0±1.7 1(<7) 0.93±0.25 1.5+2.0 4(<70) 283572).Note,also,thattheshapeoftheconstrainedpartofthe −0.5 31Com 2.0±1.4 3(0.6−20) 0.94±0.36 1.5+2.5 13(1.5−220) distributionof31Comandthepresenceofsignificantemission −0.7