ebook img

Coronado-Arora-GLS4 PDF

13 Pages·2006·1.07 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Coronado-Arora-GLS4

J.Non-NewtonianFluidMech.xxx (2006)xxx–xxx Four-field Galerkin/least-squares formulation for viscoelastic fluids Oscar M. Coronadoa, Dhruv Aroraa, Marek Behra,b,∗, Matteo Pasqualia,∗ aDepartmentofChemicalandBiomolecularEngineeringandComputerandInformationTechnologyInstitute,RiceUniversity, MS362,6100MainStreet,Houston,TX77005,USA bChairforComputationalAnalysisofTechnicalSystems,CCES,RWTHAachenUniversity,52056Aachen,Germany Received4November2005;receivedinrevisedform14February2006;accepted24March2006 Abstract AnewGalerkin/Least-Squares(GLS)stabilizedfiniteelementmethodispresentedforcomputingviscoelasticflowsofcomplexfluidsdescribed bytheconformationtensor;itextendsthewell-establishedGLSmethodforcomputingflowsofincompressibleNewtonianfluids.GLSmethods areattractiveforlarge-scalecomputationsbecausetheyyieldlinearsystemsthatcanbesolvedeasilywithiterativesolvers(e.g.,theGeneralized Minimum Residual method) and because they allow simple combinations of interpolation functions that can be conveniently and efficiently implementedonmoderndistributed-memorycache-basedclusters. Likeotherstate-of-the-artmethodsforcomputingviscoelasticflows(e.g.,DEVSS-TG/SUPG),thenewGLSmethodintroducesaseparatevariable torepresentthevelocitygradient;withtheaidofthisvariable,theconservationequationsofmass,momentum,conformation,andthedefinition ofvelocitygradientareconvertedintoasetoffirst-orderpartialdifferentialequationsinfourunknownfields—pressure,velocity,conformation, andvelocitygradient.Theunknownfieldsarerepresentedbylow-order(continuouspiecewiselinearorbilinear)finiteelementbasisfunctions. ThemethodisappliedtotheOldroyd-Bconstitutiveequationandistestedintwobenchmarkproblems—flowinaplanarchannelandflow pastacylinderinachannel.Resultsshowthat(1)themesh-convergencerateofGLSiscomparabletotheDEVSS-TG/SUPGmethod;(2)theLS stabilizationpermitsusingequal-orderbasisfunctionsforallfields;(3)GLShandleseffectivelytheadvectivetermsintheevolutionequationof theconformationtensor;and(4)GLSyieldsaccurateresultsatlowercomputationalcoststhanDEVSS-typemethods. ©2006ElsevierB.V.Allrightsreserved. Keywords: Stabilizedfiniteelementmethod;Viscoelasticflow;Galerkin/least-squares;Oldroyd-Bfluid;Flowpastacylinderinachannel 1. Introduction of models have been proposed for modeling complex fluids: fine-grainedmodels[1,2],(e.g.,bead-springorbead-rodmodels Inthepastdecades,extensiveresearchhasbeendoneonflows ofpolymersolutions),wherethemicrostructureisrepresented ofliquidswithmicro–macrostructure(alsoknownascomplex bymicromechanicalobjectsgovernedbystochasticdifferential fluids);thesefluidsarefoundinseveralindustrialandbiological equations, and coarse-grained ones, where the microstructure applications, e.g., polymer processing, coating of polymer ismodeledbymeansofoneormorecontinuumvariablesrep- solutions, ink-jet printing, microfluidic devices, and human as resenting the expectation value of microscopic features (e.g., well as artificial organs (blood, synovial fluid). Usually these theconformationtensorinmodelsofpolymersolutions)[3–6]. liquids display a viscosity dependent on the rate of straining Fine-grained models incorporate a richer degree of molecular and the flow kinematics (shear versus extension); they also details, but are still limited to fairly simple flows because of show elasticity on time scales that overlap with the flow time computationalcost[7–9]. scales. Coarse-grained models represent the liquid microstructure Realistic models of flowing complex fluids are crucial for intermsofoneormoreconformationtensors;currently,these understandingandoptimizingflowprocesses.Twomainclasses modelsareconsideredthemostappropriateforlarge-scalesim- ulationofcomplexflowsofcomplexfluids.Typically,thecon- formationtensorobeysahyperbolicpartialdifferentialtransport equation.Inpolymersolutionsandmelts,thistensorrepresents ∗ Correspondingauthors.Tel.:+17133485830;fax:+17133485478. the local expectation value of the polymer stretch and orien- E-mailaddress:[email protected](M.Pasquali),[email protected] (M.Behr). tation, e.g., gyration or birefringence tensor. The elastic part 0377-0257/$–seefrontmatter©2006ElsevierB.V.Allrightsreserved. doi:10.1016/j.jnnfm.2006.03.016 JNNFM-2595; No.ofPages13 2 O.M.Coronadoetal./J.Non-NewtonianFluidMech.xxx (2006)xxx–xxx of the stress is related to the conformation tensor through an ined.Thismethodhasbeenrefinedandextendedmorerecently algebraicequation[3–6].Suchmodelsincludemost“classical” toimproveconsistencybyrecoveryofthevelocitygradientas rate-typestress-baseddifferentialmodels(e.g.,Oldroyd-B,PTT, well as a more appropriate expression of the LS stabilization Giesekus,etc.)[3–6]. coefficient[29]. Simulations of complex flows of complex fluids require Fanetal.[30]independentlyintroducedanincompleteGLS solving simultaneously the hyperbolic transport equation of methodforviscoelasticflowandtesteditsperformanceinaflow conformation (or rate-type equation for the stress) together betweeneccentriccylinders,flowaroundasphereinapipe,and with the momentum and mass conservation equations; this flowaroundacylinderinachannel.Thismethoddidnotinclude poses several numerical challenges. In particular, obtaining termsduetotheLSformofthemomentumequation(because mesh-converged solutions in simple benchmark flows at high it degraded performance) and of the constitutive equation; Weissenberg number (Wi, the product of characteristic strain therefore,themethodofFanetal.[30]isbettercharacterizedas rate and fluid relaxation time) is still considered an open apressure-stabilizedSUPGmethod—see[31]foradescription problem. of pressure-stabilized methods for incompressible Newtonian The Galerkin method is perhaps the most effective method flows. forflowswithfreesurfacesanddeformableboundaries.How- ThisarticlepresentsacompleteGLSmethodforcomputing ever, the Galerkin method is unstable in advection-dominated flows of incompressible viscoelastic liquids modeled by con- problems, and yields spurious oscillations in the variable formationtensororrate-typeequations.Theflowequationsare fields. Alternative methods have been developed to handle converted to a set of four first-order partial differential equa- advection-dominatedaswellaspurelyhyperbolicequations— tionsbyrepresentingexplicitlythevelocitygradienttensor(as e.g., Streamline upwind/Petrov–Galerkin (SUPG) for high in DEVSS-G). The GLS weighted residual equations include ReynoldsnumberNewtonianflows[10]andviscoelasticflows naturallytheconsistentstreamlineupwindingfortheadvective [11], also Discontinuous Galerkin (DG) for viscoelastic flows terms in the conformation evolution equation (and in the mo- [12]. mentumequation,althoughthepresentationbelowisrestricted When the Galerkin (or SUPG) method is applied to cou- toinertialessflows).Thechoiceofbasisfunctionsforthefour pled partial differential equations, the selection of the interpo- unknownfields(velocity,pressure,velocitygradient,andcon- lating functions for the various unknowns can be restricted by formation) is not restricted by compatibility conditions; here, compatibilityconditions—e.g.,theBabusˇka-Brezziconditionin theunknownfieldsarerepresentedbythesimplestpossiblefi- flowsofincompressibleNewtonianfluids[13,14].Somecom- niteelementbasisfunctions—continuouspiecewisebilinearon patibility conditions between the basis functions of velocity, quadrilateral elements. The method is termed GLS4 to distin- pressure, velocity gradient, and conformation (or stress) must guishitfromthepreviousGLS3[25,29]method,inwhichthe still be satisfied [15,16] by current Galerkin-type methods for velocity gradient was not represented explicitly. The accuracy simulatingviscoelasticflows—e.g.,thestate-of-the-artDEVSS- andstabilityofthemethodisdemonstratedbyusingtwobench- TG/SUPG,whichevolvedfromsuccessivemodificationsofthe markproblems—theflowinaplanarchannelandtheflowpast EVSS method [17–22] (see also reviews by Baaijens [23] and acylinderinachannel—foranOldroyd-Bfluid. OwensandPhillips[24]). Itisworthnotingthatrecentwork[32–34]identifiedanother Thesetwokeyhurdles(handlingadvection-dominatedprob- sourceofinstabilityinlow-orderfinitedifferenceandfiniteel- lem and satisfying compatibility conditions) have been over- ementmethodsforcomputingviscoelasticflows—namely,the come in Newtonian flows by using Galerkin/Least-Squares inability of low-order methods to capture exponentially grow- (GLS)methods[25–27].WorkonGLSmethodsappliedtoNew- ingprofilesofconformationorelasticstressinregionsofstrong tonian flows has shown that Streamline-upwind terms appear flow.Suchinstabilitycanbeavoidedbyusingthelogarithmof naturallyintheGLSform,thatequal-orderbasisfunctionscan the conformation tensor as field variable [32], which has the beusedforallfields(becausetheLeast-Squares(LS)termsre- additional benefit of ensuring that the conformation tensor is movethecompatibilitycondition),andthattheresultingnonlin- automaticallypositivedefiniteeverywhereintheflow.Thepro- earalgebraicequationsyieldaJacobianmatrixthatcanbesolved posedGLS4methoddoesnotaddressthissourceofinstability moreeasilywithpreconditionedGeneralizedMinimumResid- explicitly. However, as discussed in Ref. [32], the logarithmic ual method (GMRES) (because the LS terms yield a positive- changeofvariableisgenerallyapplicabletoanyfiniteelement definiteJacobiancomponent).Moreover,usingequal-orderba- method(see,e.g.[34]);thus,itshouldbepossibletocombinethe sisfunctionsforallfieldsallows“nodal”(ratherthan“elemen- currentGLS4formulationwiththelog-conformationmethodto tal”)accounting,whichspeedsupgreatlymatrixoperationson improvethemethodfurther. distributedmemoryparallelmachines[28]. WeaklyconsistentformsofGLSmethodhavebeenappliedto 2. Governingequations viscoelasticflows.Behr[25]introducedathree-field(velocity– pressure–elastic stress) GLS method and studied the flow of The steady flow of an inertialess incompressible viscoelas- anOldroyd-Bliquidina4-to-1contraction.However,adetailed tic fluid, occupying a spatial domain Ω, with boundary Γ is comparisonbetweenthismethodandotherpublishedresultswas governedbythemomentumandcontinuityequations: notperformed,andtheeffectoftheexpressionoftheLSstabi- lizationcoefficientfortheconstitutiveequationwasnotexam- ∇·T=0, onΩ, (1) O.M.Coronadoetal./J.Non-NewtonianFluidMech.xxx (2006)xxx–xxx 3 ∇·v=0, onΩ, (2) Boundaryconditionsonthemomentumequationareneeded ontheentireboundaryΓ =Γ ∪Γ .Theessentialandnatural g h wherev istheliquidvelocityandTisthestresstensor,which boundaryconditionsarerepresentedas canbedecomposedintoaconstitutivelyundeterminedisotropic v=g onΓ , (12) g contributionrelatedtoincompressibility,andviscousandelastic contributions: n·T=h onΓh, (13) T=−pI+τ+σ, (3) where g and h are given functions, and n is the outward unit vector normal to the boundary. Because the equation of trans- respectively,wherepisthepressure,Itheidentitytensor,τ = portofconformationishyperbolic,boundaryconditionsonthe 2η Dtheviscousstress(usuallyduetosolventcontribution),η conformationtensor,representedbythetensorG,areimposed s s thesolventviscosity,andDistherate-of-straintensor,i.e.,the atinflowboundariesΓ wherev·n<0, G symmetricpartofthevelocitygradient.Inordertotransformthe M=G onΓ . (14) G equations of motion into a set of first-order partial differential equations(necessaryfordevelopingaconsistentLSformulation 3. Four-fieldGalerkin/least-squaresformulation(GLS4) forlow-orderelements),anadditionalvariableLisintroduced torepresentthevelocitygradient: Inthissection,theGLSformulationofthegoverningequa- tions(7)–(10)ispresented.ThemethodistermedGLS4because 1 L=∇v− (∇·v)I, (4) theequationsethasfourbasicunknownfields—v,p,LandM. trI Thebasis(interpolation)andweightingfunctionspacesare: wheretrdenotestrace. ThelastterminEq.(4)ensuresthatLremainstracelesseven Shv ={vh|vh ∈[H1h(Ω)]nsd, vh ≡ghonΓg}, (15) i(nLt+heLfiTn)/it2e.-pInretchiesiOonldrsooyludt-iBonm[o2d2e]l;,wthietheltahsitsicdsetrfiensistiiosnr,elDate≡d Vhv ={vh|vh ∈[H1h(Ω)]nsd, vh ≡0onΓg}, (16) to the dimensionless conformation tensor M through a simple Shp =Vhp ={ph|ph ∈H1h(Ω)}, (17) linearrelationshipσ =G(M−I),whereG=η /λistheelastic modulus,ηp thepolymercontributiontothevispcosity,andλis ShL =VhL ={Lh|Lh ∈[H1h(Ω)]n2sd}, (18) therelaxationtime.Theconformationtensorobeysahyperbolic Sh ={Mh|Mh ∈[H1h(Ω)]ntc, Mh ≡G onΓ }, (19) M G evolutionequation: Vh ={Mh|Mh ∈[H1h(Ω)]ntc, Mh ≡0 onΓ }, (20) ∇ M G λM+(M−I)=0, (5) where H1h represents functions with square integrable first- ∇ order derivatives, nsd the number of spatial dimensions and whereMdenotesanupper-convectedderivative: n =n (n +1)/2 is the number of independent conforma- tc sd sd ∇ tion tensor components. Bilinear piecewise continuous func- M=v·∇M−LT·M−M·L. (6) tionsareusedhereafter.TheGLS4formulationis:Findvh ∈Sh, v p(cid:1)h ∈Sh,Lh ∈Sh an(cid:1)dMh ∈Sh suchthat: Theequationsgoverningtheflowcanberecastindimensionless p L M formas: ∇wh :ThdΩ+ wh·hhdΓ ∇∗·T∗ =0, (7) Ω ⎡ Γh ⎤ (cid:1) ∇∗·v∗ =0, (8) + τmom⎢⎢⎣∇qh−β∇·(Eh+(Eh)T)− 1−β∇·Sh⎥⎥⎦· 1 Ω (cid:5)Wi(cid:6)(cid:7) (cid:8) L∗−∇∗v∗+ (∇∗·v∗)I=0, (9) A trI (cid:1) ∇ [−∇·Th]dΩ+ qh(∇·vh)dΩ WiM+(M−I)=0, (10) Ω (cid:1) wherev∗ =v/vc,p∗ =p/(ηvc/lc)andL∗ =L/(vc/lc)aredi- + τcont(∇·wh)(∇·vh)dΩ mensionlessvelocity,pressureandinterpolatedtracelessveloc- Ω (cid:1) (cid:12) (cid:13) ity gradient tensor, respectively. ∇∗ =∇lc is the dimension- + Eh : Lh−∇vh+ 1 (∇·vh)I dΩ less gradient operator, vc is a characteristic velocity, and lc is Ω trI acharacteristiclength.ThedimensionlessWeissenbergnumber (cid:1) (cid:12) (cid:13) (cid:14) isWi=λ(vc/lc).ThedimensionlessstresstensorT∗is + τgradv Eh−∇wh+ 1 (∇·wh)I : Lh−∇vh trI T∗ =−p∗I+β(L∗+L∗T)+ 1−β(M−I), (11) Ω (cid:13) (cid:1) (cid:14) 1 Wi + (∇·vh)I dΩ+ Sh : Wi(vh·∇Mh−(Lh)T·Mh trI where β= ηsη+sηp is the viscosity ratio. Hereafter, all variables (cid:15)Ω (cid:1) (cid:14) aredimensionlessandthe(∗)isomittedforclarity. −Mh·Lh)+(Mh−I) dΩ+ τ Wi(vh·∇Sh cons Ω 4 O.M.Coronadoetal./J.Non-NewtonianFluidMech.xxx (2006)xxx–xxx (cid:15) (cid:14) −(Lh)T·Sh−Sh·Lh)+Sh : Wi(vh·∇Mh−(Lh)T·Mh (cid:15) −Mh·Lh)+(Mh−I) dΩ=0, ∀qh ∈Vh,∀wh ∈Vh,∀Eh ∈Vh,∀Sh ∈Vh , (21) p v L M where τ ,τ ,τ and τ are the LS stabilization pa- mom cont gradv cons rameters for the momentum, continuity, interpolated traceless velocity gradient and constitutive equations, respectively. The underbracedtermAisneglectedatlowWibecausethe(1/Wi) termgrowslargeasWi→0,causingnumericalproblems. 3.1. Designofthestabilizationcoefficients Theappropriatedesignofthefourstabilizationparameters— τ ,τ ,τ andτ —inEq.(21)playsacrucialrolein mom cont gradv cons theperformanceofthemethod. Fig.2. Mesh-convergencerateforaplanarchannelflowatdifferentWi.The The τmom-term stabilizes the Galerkin form in advection- slopeofthecurvesgivestherateofconvergencewithmeshrefinement. dominatedflows,andalsoremovesthecompatibilitycondition betweenvelocityandpressurespaces.Theparameterdesigned specificallyforusewithbilinearinterpolations[31]isadapted hereforthedimensionlesssystem: h2 τ = . (22) mom 4 wherehisthedimensionlesselementlength. The τ -term improves the convergence of non-linear cont solvers in advection-dominated problems. Hereafter, τ =0 cont Fig.3. Geometryofaflowpastacylinderinahalfchannel. becauseinertiaisneglected. The τ -term stabilizes Eq. (4); although the associated gradv stabilizationtermisnotstrictlynecessary,τ istakenhereas 1 gradv τ = , (24) τgradv =1. cons2 Wi(cid:8)Lh(cid:8) The τ -term is introduced to stabilize the Galerkin form cons at high Wi, and to bypass the compatibility conditions be- τ = h . (25) tweenvelocityandconformationspaces.Nosystematicderiva- cons3 2Wi(cid:8)vh(cid:8) tion for τ is available in the literature. However, the trans- cons τ andτ areimportantinregionsoftheflowwheregen- portequationofconformationcanbeviewedasanadvection– cons1 cons2 eration is dominant, whereas τ is important in advection- generation equation, and considerable research has been done cons3 dominatedregions.Thesethreecontributionscanbecombined on stabilization parameters for a simple advection–diffusion– generationequation[35–39].Applyingthedefinitionproposed byFrancaetal.[38],basedontheconvergenceandstabilityanal- ysis of advection-diffusion-generation equation, and extended byHauke[39],yields τ =1, (23) cons1 Fig.1. Schematicofaflowinaplanarchannelwithw/L=1/4.Thetopwall iskeptfixed,thebottomwallismovingfromrighttoleftatv0andadifferential Fig.4. Flowpastacylinderinachannel,w/Rc=2:FiniteelementmeshM0 pressureisappliedbetweentheleftandrightwalls. (a)completedomain(b)detailofthemeshfromx=−2tox=2. O.M.Coronadoetal./J.Non-NewtonianFluidMech.xxx (2006)xxx–xxx 5 Fig.5. (Coloronline)Flowpastacylinderinachannel,w/Rc=2:dragforce Fthieg.s7y.mFmloewtryplaisnteaicnytlhinedwerakineaatcWhain=nel0,.w7./(cid:9)Rcfr=om2:Hσuxlxseonnethtealc.y[l3i4n]d.erandon onthecylinderversusWi.TheGLS4resultsforthefourmeshes(M1,M2,M3 andM4)arecomparedwiththeresultspresentedbySunetal.[21]andHulsen etal.[34].Inset:detailofthedragforceathighWi.(cid:1)representsthedragforce onM4atWi=0.6.AtWi=0.6,theextrapolatedvalueofthedragforceis 117.979,whichiswithin0.2%ofthevaluesreportedinRefs.[30,34,40]. as: (cid:16) (cid:17) 1 1 1 −1/r τ = + + , (26) cons τr τr τr cons1 cons2 cons3 Hereafter, the switching parameter is set to r =2 (see also Ref.[29]): ⎡ (cid:18) (cid:19)2⎤−1/2 τ =⎣1+(Wi(cid:8)Lh(cid:8))2+ 2Wi(cid:8)vh(cid:8) ⎦ . (27) cons h 4. Numericalresults The proposed GLS4 formulation is tested in flow in a pla- Fig.8. Flowpastacylinderinachannel,w/Rc=2:DragforceatWi=0.6for narchannelandflowpastacylinderinachannel.Ananalytical GLS4andDEVSS-TG/SUPGforallmeshes;dashedlinerepresentsthedrag solution can be obtained in the former case; in the latter, the forcereportedbyHulsenetal.[34]ontheirfinestmesh. Fthieg.s6y.mFmloewtryplaisnteaicnytlhinedwerakineaatcWhain=nel0,.w6./(cid:9)Rcfr=om2:Hσuxlxseonnethtealc.y[l3i4n]d.erandon tFhieg.d9ra.gFfloowrcepaasttWaicy=lin0d.6e.rinachannel,w/Rc=2:Mesh-convergencerateof 6 O.M.Coronadoetal./J.Non-NewtonianFluidMech.xxx (2006)xxx–xxx computation of the relative errors e=|(numericalvalue− analyticalvalue)/(analyticalvalue)|×100%inregionA.Fig.2 showsthemaximumeinM (whichhasthehighesteamong yy allunknownfields)versustheelementsizeforWi=3,5and7. Fromthethreecurvestherateofmeshconvergenceisestimated tobe1.73,1.63and1.59,respectively.BecauseincreaseinWi results in increased generation, subsequently forming steeper boundary layer close to the channel walls, the rate of conver- gence is found to decrease. At Wi=3, Xie and Pasquali [41] reportedarateofconvergenceof1.89usingDEVSS-TG/SUPG methodwithbi-quadraticinterpolationforvelocity. 4.2. Flowpastacylinderinachannel TheflowofanOldroyd-Bfluidpastacylinderinarectangu- larchannelhasbeenusedasastandardbenchmarkproblemto Fig.10. Flowpastacylinderinachannel,w/Rc=2:Mesh-convergencerate testseveralcomputationalmethods[20–22,29,34,40].Forcom- ofMxxatapointinthewakeflow(x=2;y=0)atWi=0.6. putationalease,thesymmetryoftheproblemisusedandonly halfofthechannelissimulated.Fig.3showstheschematicof numerical results from other state-of-the-art methods are used the problem, where L ,L ,R and w represent the upstream u d c for validation [20–22,29,34,40]. The flow past a cylinder in a length,thedownstreamlength,thecylinderradius,andthehalf channelisastandardbenchmarkproblemwithdesirablechar- channelwidth,respectively. acteristics of smooth boundaries, and poses several numerical Ano-slipboundaryconditionisimposedonthecylindersur- challenges at high Wi due to the formation of sharp boundary faceandchannelwalls,andfullydevelopedflowconditionsare layersonthecylinderandinthewake. assumedattheinflowandoutflowboundaries.Consequently: (cid:16) (cid:17) Q y2 4.1. Flowinaplanarchannel v =1.5 1− , v =0, (30) x w w2 y Fig.1showsacombinationofPoiseuilleflow(pushingliq- (cid:16) (cid:17) uidfromlefttoright)andCouetteflow(inducedbythebottom Q y 3Qλy 2 M =−3 λ , M =M =1−2 − , walldraggingliquidfromrighttoleftwithvelocityv0)inapla- xx w w2 xy yx w3 nar channel of width w=1 and length L=4w. The flow of M =1, (31) anOldroyd-Bfluid(β=0.59)issimulated,andtheresultsare yy compared with the known analytical solution. The figure also where Q is the flow rate. Whereas the velocity is imposed at shows velocity profiles at the two open flow boundaries; both both inflow and outflow, the conformation tensor components right and left ends of the channel have respective inflow and arespecifiedattheinflowonly.Atthesymmetryline,n·T=0 outflowsections.Aregion‘A’(dottedareainFig.1),whichis andv =0,wherenistheunitvectornormaltothesymmetry y 2winlengthandcentrallyplacedinthechannel,ismonitored line.Thecomputeddragonthecylinderf hasbeentraditionally d for comparing numerical results with analytical solution; this usedtocomparenumericalmethods: (cid:1) sufficientlyeliminatestheinfluencesduetotheboundarycondi- tions.Theproblemsetupcloselyfollowsthenumericalexample f =−2 e n:TdS, (32) d 1 employedbyXieandPasquali[41];theanalyticalsolutionfor S velocityandconformationfieldsare whereSrepresentsthesurfaceofthecylinder,ntheunitnormal (cid:12) (cid:12)(cid:20) (cid:21) (cid:13) (cid:13) vector,ande1istheunitvectorinthex-direction. (cid:8)pw y 2 y y v = − − + −1 v , v =0, (28) x 0 y 2 L w w w 4.2.1. Flowpastacylinderinachannel:w/R =2 c (cid:16) dv (cid:17)2 dv Inthiscase,w=2,Rc =1,Lu =−20,Ld =20,Q=2and Mxx =1+2 λ x , Mxy =λ x, Myy =1, (29) β=0.59.Fig.4showsthemeshM0fromwhichfoursystemati- dy dy callyrefinedmeshesareobtained;inthesemeshes,theelements where (cid:8)p=50 is the differential pressure between the left areconcentratedonthecylindersurfaceandinthewakealong and right boundaries. Consequently, Wi=λ[(cid:8)pw/(2L)+ the symmetry line. The M1, M2, M3 and M4 meshes are ob- 1](v /w). The Dirichlet conditions are imposed for ve- tained by dividing every element side of M0 by 3, 4, 5 and 6, 0 locity components on all boundaries, and the conforma- respectively.Thenumberofelementsandcorrespondingnum- tion tensor components are only specified at the cor- berofunknownsarelistedinTable1.Thisflowproblemposes responding inflows. The numerical results are obtained numericalchallengesathighWi;therefore,themaximumWiup on four different uniform meshes — 16×16, 24×24, to which the numerical schemes converge has been employed 32×32 and 64×64 — followed by a node-by-node as a measure of robustness (but not necessarily accuracy). For O.M.Coronadoetal./J.Non-NewtonianFluidMech.xxx (2006)xxx–xxx 7 Fig.11. (Coloronline)Flowpastacylinderinachannel,w/Rc=2:(a)Mxx,(b)Mxyand(c)MyycontoursatWi=0.7onmeshM2. example,usingDEVSS-G/SUPG,Sunetal.[21]reportedsolu- Here, a sequence of flow states is computed by first-order tionsuptoWi=1.85,Fanetal.[30]usinganincompleteGLS arc-lengthcontinuationonWiwithautomaticstepcontrol;the uptoWi=1.05andHulsenetal.[34]usingthelogconforma- continuationterminateswhentheconformationtensorlosesits tion up to Wi=2.0; however, the accuracy of the solutions at positive-definiteness, which occurs at Wi∼0.7. The positive- Wi>0.6wasnotconfirmedintheseworks. definiteness of M was not usually considered in past stud- Fig.12. Flowpastacylinderinachannel,w/Rc=2:Mxxalonglinex=2on Fig.13. Flowpastacylinderinachannel,w/Rc=2:Mxyalonglinex=2on meshM3.Inset:detailofMxxnearthecenterline(y=0). meshM3.Inset:detailofMxynearthecenterline(y=0). 8 O.M.Coronadoetal./J.Non-NewtonianFluidMech.xxx (2006)xxx–xxx Fig.14. Flowpastacylinderinachannel,w/Rc=2:Myyalonglinex=2for Fig.16. (Coloronline)DirectcomparisonofGLS4andDEVSS-TG/SUPGwith M3.Inset:detailofMyynearthecenterline(y=0). respecttothenumberofelements(bottomaxis)andtothenumberofdegreesof freedomforconformation(topaxis).Theleftandrightaxesrepresentthetime ies, with exception of the recent work of Hulsen et al. [34]. perNewtoniteration(s)andmemoryusage(MB),respectively.Afrontalsolver isusedinbothsimulations. Fig. 5 shows the drag forces on the meshes M1, M2 and M3; a good agreement is found up to Wi=0.4 with the re- sults reported by Hulsen et al. [34] and Sun et al. [21]. Be- yond that, the three methods show slight differences in the drag predictions, while following the same trend. Figs. 6 and 7 show σ versus s at Wi=0.6 and 0.7, respectively, where xx σ =(η /λ)M andsisdefinedas:0<s<πR onthecylin- xx p xx c derandπR <s<πR +L −R inthewakealongthesym- c c d c metryline.AtWi<0.6,acompleteoverlapisobservedamong theresultsonthemeshesM1,M2andM3.In Fig.6,σ pro- xx files computed with M1, M2 and M3 are overlapping in the wake; however, the result from M1 shows underprediction on thecylinder,implyingthatrefinementofM1isnotsufficientto capture the steep boundary layer on the cylinder. On the other hand,inFig.7,differencesareobservednotonlyonthecylin- der but also in the wake flow. The figures also show the re- sults reported by Hulsen et al. [34] at the corresponding Wi, Fig.17. Flowpastacylinderinachannel,w/Rc=8:FiniteelementmeshM0 (a)completedomain(b)detailofthemeshfromx=−4tox=4. Fig.15. Flowpastacylinderinachannel,w/Rc=2:σxxonthecylinderand Fig.18. Flowpastacylinderinachannel,w/Rc=8:Dragforceonthethree onthesymmetrylineatWi=0.6.TheGLS4andDEVSS-TG/SUPGresultsare meshes.ThedottedcurveisobtainedfromSunetal.[21].Inset:detailofthe obtainedforM2.(cid:9)fromHulsenetal.[34]. dragforceathighWi. O.M.Coronadoetal./J.Non-NewtonianFluidMech.xxx (2006)xxx–xxx 9 Fig.19. (Coloronline)Flowpastacylinderinachannel,w/Rc=8:(a)Mxx,(b)Mxyand(c)MyycontoursatWi=2.0onmeshM2. Table1 Flowpastacylinderinachannel,w/Rc=2:Characteristicsofthefiniteelementmeshes Mesh Elements Unknowns TimeperNewtoniteration(s) Memoryusage(MB) GLS4 DEVSS GLS4 DEVSS (cid:10)d GLS4 DEVSS (cid:10)d M0 532 − − − − − − − − M1 4788 49960 79102 220 322 31.7 608 1140 46.7 M2 8512 87890 139514 648 934 30.6 1410 2647 46.7 M3 13300 136460 216950 1460 2144 31.9 2720 5122 46.9 M4 19152 195670 311410 2914 − − 4650 − − (cid:10)disthe%relativedifferenceintherespectivevaluesfromDEVSSandGLS4. Table2 Flowpastacylinderinachannel,w/Rc=8:Characteristicsofthefiniteelementmeshes Mesh Elements Unknowns TimeperNewtoniteration(s) Memoryusage(MB) M0 250 − − − M1 4000 41690 198 396 M2 6250 64610 440 863 M3 12250 125450 1505 1859 10 O.M.Coronadoetal./J.Non-NewtonianFluidMech.xxx (2006)xxx–xxx and good agreement is found with results on M3. In previous works,theconvergenceofthestresseshasbeenshownbycom- paringstressprofilesobtainedonsystematicallyrefinedmeshes usingp-andh-refinement[30,34].Whileoverlapoftheresults demonstratesqualitativelymeshconvergence,here,accuracyis measuredmorepreciselybyRichardsonextrapolation: f (h)=f (0)+αhn, (33) d d wheref (0)isthedragforaninfinitelyrefinedmesh,ntherateof d meshconvergenceandαisaconstant.f (0)isusedtocompute d therelativeerrorse=|(f (h)−f (0))/f (0)|×100%inf (h). d d d d Fig.8showsf predictionsfromGLS4andDEVSS-TG/SUPG d alongwiththeresultspresentedbyHulsenetal.[34]atWi=0.6. The extrapolated values of f for an infinitely refined mesh d are 117.979 and 117.778 for GSL4 and DEVSS-TG/SUPG, respectively. Thus, the GLS4 extrapolated results are within 0.2% of the values computed by high resolution finite volume Fig.20. Flowpastacylinderinachannel,w/Rc=8:Mxxonthecylinderand (f =117.79[40]),bypressure-stabilizedfiniteelements(f = alongthesymmetrylineinthewakeatWi=1.5. d d 117.78[30]),byDEVSS-DG-Logconformationfiniteelements (f =117.77 [34]), and by DEVSS-TG/SUPG calculations. d 4.2.2. Flowpastacylinderinachannel:w/R =8 Fig.9showseversush,andameshconvergencerateof2.39is c Inthiscase,w=8,R =1,L =−40,L =40,Q=8and observed. c u d β=0.59.Followingthesameprocedureasinthepreviouscase, Similarly, Richardson extrapolation analysis is also per- formed for M at a point in the wake flow (x=2;y=0). the M1, M2 and M3 meshes are obtained by dividing every xx element side of the mesh M0 by 4, 5 and 7, respectively. Fig. The extrapolated value of M is 26.05 and the rate of mesh xx 17 shows the mesh M0, and details of the subsequent meshes convergence is 1.74. Fig. 10 shows e versus h for M . In xx are listed in Table 2. The drag on the cylinder from the three all cases, results on M4 are also employed to obtain the ex- meshesarecomparedwiththeresultsreportedbySunetal.[21] trapolated values. Fig. 11 shows the conformation contours at Wi=0.7,inwhich,theformationofsharpboundarylayerson inFig.18.Forthiscase,acompleteoverlapofdragpredictions fromthethreemeshesisobserved,andagoodagreementwith thecylinderandalongthesymmetrylineinthewakefloware resultsofSunetal.[21]isfounduptoWi=2.0.Moreover,the observed.Theseboundarylayersaredifficulttoresolvenumer- maximum Wi achieved in this simulation is ∼2.7. In Fig. 19, ically,andtheonsetofoscillationsintheconformationfieldsis thecontourplotsfortheMcomponentsareshownatWi=2.0. observedastheboundarylayersgrowathighWi.Theinfluence Figs. 20 and 21 show M versus s (defined in Section 4.2.1) of the sharp boundary layer at high Wi is shown in Figs. 12– xx 14, which plot M components along line x=2. At Wi=0.5 atWi=1.5and2.0,respectively.AtWi=2.0,thestreamwise normalconformationcomponentM hasnotyetconvergedin and 0.6 a smooth profile for the M components is observed, xx whereas at Wi=0.7 oscillations appear towards the symme- try line (y→0). The maximum Wi attained in these simula- tions is slightly above 0.7; beyond this, M loses its positive- definiteness. A direct comparison of computational cost between GLS4 and DEVSS-TG/SUPG is performed, while keeping the same numberofdegreesoffreedomforconformation;thelatterem- ploys biquadratic interpolation functions for velocity, whereas bilinear for pressure, velocity gradient and conformation. The resultsatWi=0.6onM2areobtainedfrombothmethodsand comparable accuracy is observed. Fig. 15 shows σ versus s xx along with the results of Hulsen et al. [34]. The GLS4 and DEVSS-TG/SUPGcharacteristics(numberofunknowns,time perNewtoniterationandmemoryusage)arelistedinTable1. Fig. 16 shows a direct comparison of GLS4 and DEVSS- TG/SUPG with respect to the number of degrees of freedom forconformation,anditcanbeobservedthat GLS4is∼30% computationallyfasterandusesonly45%ofthememorycom- paredtoDEVSS-TG/SUPG(forthesamenumberofdegreesof Fig.21. Flowpastacylinderinachannel,w/Rc=8.Mxxonthecylinderand freedomforconformation). alongthesymmetrylineinthewakeatWi=2.0.

Description:
of polymer solutions), where the microstructure is represented ternal Microstructure, 1st ed., Oxford University Press, Oxford, 1994. [5] R.J.J.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.