Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are retained by the author and/or other copyright owners. A copy can be downloaded for personal non- commercial research or study, without prior permission or charge. This thesis and the accompanying data cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content of the thesis and accompanying research data (where applicable) must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holder/s. When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g. Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the University Faculty or School or Department, PhD Thesis, pagination. Data: Author (Year) Title. URI [dataset] University of Southampton Faculty of Social, Human and Mathematical Sciences AN INQUIRY INTO THE NATURE OF GRAVITATIONAL SINGULARITIES By: Yafet Erasmo Sanchez Sanchez Thesis for the degree of Doctor of Philosophy August 2016 University of Southampton ABSTRACT Faculty of Social, Human and Mathematical Sciences Doctor of Philosophy AN INQUIRY INTO THE NATURE OF GRAVITATIONAL SINGULARITIES by Yafet Erasmo Sanchez Sanchez We provide different mathematical frameworks to describe singularities in General Relativity. The main idea is to regard singularities as obstructions to the dynamics of different matter models. The first part of the thesis initiates our examination of spacetime by probing space- time with matter that can be modelled as a point-particle. In particular, we dis- cuss the case of two-dimensional Lorentzian metrics. We give concrete applications of the framework in the case of the Minkowski spacetime (which is regular) and the Friedmann-Robertson-Walker spacetime (which is geodesically incomplete). In the second part of the thesis, we probe the geometry of spacetime with classical scalar fields. The general motivation is to redefine a singularity in spacetime not as an obstruction to geodesics or curves but as an obstruction to the dynamics of test fields. We discuss curve-integrable spacetimes, spacetimes with surface layers, impulsive gravitational waves and brane-world scenarios, and spacetimes that contain string-like singularities. In the third part of the thesis, we present the outline of a framework to analyse the geometry of the spacetime by probing it with quantum scalar fields. The main focus of this chapter is to describe what is meant by a quantisation in a spacetime with finite differentiability. The fourth part of the thesis presents future outlooks and some open problems. Contents Abstract iii Declaration of Authorship ix 1 Introduction 1 I The point-particle probe 5 2 Introduction 7 2.1 Singularity Theorems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Proof of the Singularity theorems. . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Outline of the proof. . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 The b-boundary 11 3.1 The boundary of spacetime . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 The Schmidt metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 The classification of singularities . . . . . . . . . . . . . . . . . . . . . . 13 3.4 The b-boundary for 1+1 spacetimes . . . . . . . . . . . . . . . . . . . . 14 3.4.1 The Schmidt metric for 1+1 conformal spacetimes . . . . . . . . 14 3.4.2 The Schmidt metric of Minkowski spacetime . . . . . . . . . . . 16 3.4.3 The Schmidt metric of a FRW spacetime. . . . . . . . . . . . . . 18 3.5 The topology of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 II The classical test-field probe 21 4 Introduction 23 4.1 Test-field Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 Well-posedness and energy estimates . . . . . . . . . . . . . . . . . . . . 25 5 Curve Integrable Spacetimes 31 5.1 The main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.1.1 The general setting . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.1.2 Weak solutions and the main theorem . . . . . . . . . . . . . . . 33 5.2 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2.1 Outline of the proof . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2.2 Existenceofatimelikevectorfieldwithboundedcovariantderiva- tive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 v vi CONTENTS 5.2.3 Energy inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.2.4 Self-adjointness and existence . . . . . . . . . . . . . . . . . . . . 46 5.2.5 Uniqueness and continuity with respect to the source function. . 48 5.2.6 H1 Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6 C0,1 Spacetimes 55 6.1 The main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.1.1 The general setting . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.1.2 Weak solutions and the main theorems . . . . . . . . . . . . . . . 57 6.2 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.2.1 Outline of the proof . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.2.2 Approximate solutions and energy estimate . . . . . . . . . . . . 59 6.2.3 Energy estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2.4 Existence, Uniqueness and Stability . . . . . . . . . . . . . . . . 62 6.2.5 The wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 7 Spacetimes with string-like singularities 69 7.1 The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.1.1 The general setting . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.1.2 Weak solution and the main theorem . . . . . . . . . . . . . . . . 70 7.2 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7.2.1 Outline of the proof . . . . . . . . . . . . . . . . . . . . . . . . . 72 7.2.2 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7.2.3 Uniqueness and stability with respect to the initial data . . . . . 77 7.2.4 Integrability of the energy momentum tensor . . . . . . . . . . . 78 7.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 III The quantum test-field probe. 83 8 Introduction 85 8.1 Quantum fields on spacetimes with rough metrics . . . . . . . . . . . . . 85 9 Quantisation 87 9.1 Rough metrics and weak solutions . . . . . . . . . . . . . . . . . . . . . 87 9.1.1 The general setting . . . . . . . . . . . . . . . . . . . . . . . . . 87 9.1.2 Weak Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 9.2 Classical structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 9.2.1 Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 9.2.2 Space of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 92 9.3 Quantum observables and states . . . . . . . . . . . . . . . . . . . . . . 98 9.4 Unitary equivalence and quantum evolution . . . . . . . . . . . . . . . . 102 9.4.1 Unitary equivalence . . . . . . . . . . . . . . . . . . . . . . . . . 102 9.4.2 Quantum evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 103 9.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 9.5.1 Static Ck(k (cid:62) 2) spacetimes . . . . . . . . . . . . . . . . . . . . . 104 CONTENTS vii IV Future outlook and open problems 109 V Appendix 117 10 Differential Geometry 119 10.1 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 10.2 Vectors, One forms, and Tensors . . . . . . . . . . . . . . . . . . . . . . 120 10.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 10.4 Hypersurfaces and volume forms . . . . . . . . . . . . . . . . . . . . . . 122 10.5 Divergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 10.6 Fibre Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 10.7 Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 10.8 G-Principal Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 10.9 Canonical one forms and Connections . . . . . . . . . . . . . . . . . . . 125 10.10Conjugate points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 11 Causality theory 129 12 Banach and Hilbert spaces 133 13 Measure Theory 135 13.1 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 13.2 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 13.3 Banach space-valued functions . . . . . . . . . . . . . . . . . . . . . . . 136 14 Functional Analysis 139 14.1 Regularity theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 14.2 Important Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 15 Elliptic Theory 143 16 Parabolic Theory 145 17 C∗-algebra 151 18 Gelfand-Naimark-Segal (GNS) representation theorem 155 Bibliography 160 Declaration of Authorship I, Yafet Erasmo Sanchez Sanchez, declare that the thesis entitled An Inquiry into the Nature of Gravitational Singularities” and the work presented in the thesis are both my own, and have been generated by me as the result of my own original research. I confirm that: • this work was done wholly or mainly while in candidature for a research degree at this University; • where any part of this thesis has previously been submitted for a degree or any otherqualificationatthisUniversityoranyotherinstitution,thishasbeenclearly stated; • where I have consulted the published work of others, this is always clearly at- tributed; • where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work; • I have acknowledged all main sources of help; • wherethethesisisbasedonworkdonebymyselfjointlywithothers, Ihavemade clear exactly what was done by others and what I have contributed myself; • parts of this work have been published as: – Y. Sanchez Sanchez: Regularity in curve integrable spacetimes General Relativity and Gravitation 47 80 (2015) ArXiv:1502.06458 – Y. Sanchez Sanchez, J.A Vickers Generalized Hyperbolicity in Spacetimes with string-like singularities Classical and Quantum Gravity 33 20 (2016) ArXiv:1602.03584 – Y. Sanchez Sanchez, J.A Vickers Generalized Hyperbolicity in Spacetimes with Lipschitz regularity ArXiv:1507.06463 Signed:....................................................................................................................... Date:..........................................................................................................................
Description: