Wireless Networks Xilin Cheng Liuqing Yang Xiang Cheng Cooperative OFDM Underwater Acoustic Communications Wireless Networks SeriesEditor: Xuemin(Sherman)Shen UniversityofWaterloo,Waterloo,Ontario,Canada Moreinformationaboutthisseriesathttp://www.springer.com/series/14180 Xilin Cheng • Liuqing Yang (cid:129) Xiang Cheng Cooperative OFDM Underwater Acoustic Communications 123 XilinCheng LiuqingYang ElectricalandComputerEngineering ElectricalandComputerEngineering ColoradoStateUniversity ColoradoStateUniversity FortCollins,CO,USA FortCollins,CO,USA XiangCheng SchoolofElectronicsEngineering PekingUniversity Beijing,China ISSN2366-1186 ISSN2366-1445 (electronic) WirelessNetworks ISBN978-3-319-33206-2 ISBN978-3-319-33207-9 (eBook) DOI10.1007/978-3-319-33207-9 LibraryofCongressControlNumber:2016939985 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface The Earth is a blue planet. Approximately 71% of the Earth’s surface is covered by ocean, which corresponds to an area of 361 million km2 and a volume of 1:3 billion km3. Most of this vastness is unexplored and remains a mystery. To explore the intriguing world undersea, the need for robust and reliable underwater wirelessnetworksisrapidlygrowing.Amongthevariousmeansofcommunications, underwater acoustic communications (UAC) is widely considered as the most feasible option at reasonable distances. The earliest UAC arises from the military need. During World War II, UAC is used for communications among submarines, andtheanalogsingle-sidebandsuppressed-carrieramplitudemodulationisadopted. In the 1980s, the noncoherent frequency shift keying (FSK) digital modulation is widelyused.However,FSKhasverylowdatarate.Inthe1990s,toachievehigher datarate,UACresearchisgraduallyshiftedtothephase-coherentcommunications with high receiver complexity to handle the large delay spread of underwater acoustic (UWA) channels. Over the last decade, the advance of UAC includes the implementationofthemultiple-inputandmultiple-output(MIMO)communications which can improve the data rate and the reliability of UAC and orthogonal frequency-division multiplexing (OFDM) communications due to its low receiver complexity, capability of inter-symbol interference (ISI) removal, and robustness againstlargedelayspread.Thismonographfocusesonanotherpromisingtechnique for the future UAC, namely, cooperative communications with the benefits of improving the transmission reliability and distances. With OFDM adopted as the physical layer transmission technique, many different aspects of cooperative UAC are covered by this monograph such as power allocation, decomposed LT (DLT) codesdesign,andpackettransmissionreliability. Thechaptersofthismonographarerelativelyindependentwitheachother.The readers can go directly to the chapter(s) of interest. The monograph starts with the motivation and the literature review of cooperative OFDM UAC in Chap.1. TheUWAchannelmodelingisintroducedinChap.2.Theadaptivesystemdesign including optimal power allocation and distribution for the short-range relay- aided(RA-)UACisstudiedinChap.3.Themedium-long-rangeasynchronousrelay selection protocol is investigated in Chap.4. The energy-efficient hybrid (h-)DLT v vi Preface codes design for RA-UAC is presented in Chap.5, and this chapter also includes a statistical polynomial decomposition algorithm to facilitate the h-DLT codes decomposition. The effective mirror-mapping-based ICI cancellation for OFDM transmissioninRA-UACisprovidedinChap.6. This monograph is designed for professionals and researchers in the field of UAC. Advanced-level students in electrical engineering or computer science will alsofindthismonographuseful. WewouldliketothankDr.RuiCao,Dr.FengzhongQu,Dr.MiaowenWen,and Dr. Dongliang Duan for their much help in the research. We also want to express ourthankstoDr.MahmoodRAzimi-Sadjadi,Dr.J.RockeyLuo,andDr.Haonan Wangfortheirvaluableinsightsandcomments.Finally,wewouldliketothankthe continuedsupportfromtheNationalScienceFoundation. FortCollins,CO,USA XilinCheng FortCollins,CO,USA LiuqingYang Beijing,China XiangCheng Contents 1 Introduction .................................................................. 1 1.1 UnderwaterAcousticCommunications andItsChallenges....................................................... 1 1.2 CooperativeOFDMCommunicationsoverUWAChannels.......... 2 1.2.1 PowerAllocationofShort-RangeRA-UAC................... 3 1.2.2 PowerAllocationofMedium-Long-RangeRA-UAC ........ 5 1.2.3 DecomposedFountainCodesDesignforRA-UAC........... 6 1.2.4 ReliableOFDMTransmissioninRA-UAC ................... 8 1.3 OrganizationoftheMonograph........................................ 9 References..................................................................... 10 2 UnderwaterAcousticChannelModels .................................... 13 2.1 EmpiricalUWAChannelModel ....................................... 13 2.2 StatisticalTime-VaryingUWAChannelModel ....................... 14 2.3 RelationshipBetweenCoherenceTimeandTransmission Distances ................................................................ 15 References..................................................................... 15 3 Short-RangeAdaptiveRA-UAC............................................ 17 3.1 SystemModel........................................................... 17 3.2 OptimalPowerAllocation.............................................. 19 3.3 ChannelPrediction...................................................... 24 3.3.1 ProblemStatement.............................................. 24 3.3.2 MSEAnalysis................................................... 25 3.3.3 PredictionAdvanceFactor ..................................... 27 3.3.4 RLSAlgorithm ................................................. 27 3.4 ChannelQuantization................................................... 28 3.5 PerformanceEvaluations ............................................... 28 3.5.1 CapacityAnalysisforEmpiricalUWAChannelModel ...... 29 3.5.2 CapacityAnalysisforStatisticalTime-Varying UWAChannelModel........................................... 32 vii viii Contents 3.6 Summary ................................................................ 37 References..................................................................... 38 4 Medium-Long-Range Asynchronous Relay Selection ProtocolforRA-UAC........................................................ 39 4.1 AsAPProtocol .......................................................... 39 4.1.1 SourceTransmitting ............................................ 39 4.1.2 RelayAmplifyingandForwarding ............................ 41 4.1.3 DestinationDecoding........................................... 41 4.2 PowerAllocationBasedonStatisticalCSI ............................ 43 4.3 SR-AsAPProtocol...................................................... 47 4.3.1 ProtocolDescription............................................ 47 4.3.2 AsynchronousTransmissionDesign........................... 48 4.3.3 EfficiencyAnalysis............................................. 50 4.4 PerformanceEvaluations ............................................... 52 4.5 Summary ................................................................ 53 References..................................................................... 55 5 Energy-EfficientHybridDecomposedLTCodesforRA-UAC ......... 57 5.1 Background.............................................................. 57 5.1.1 LTCodes........................................................ 57 5.1.2 DLTCodes...................................................... 58 5.1.3 StochasticOptimizationMethods.............................. 59 5.2 NonnegativePolynomialDecompositionAlgorithm.................. 60 5.2.1 ProjectedGradientMethod..................................... 61 5.2.2 MultistartMethod............................................... 65 5.2.3 NonnegativePolynomialDecompositionResults............. 66 5.3 h-DLTCodes............................................................ 69 5.3.1 h-DLTICodes.................................................. 69 5.3.2 h-DLTIICodes ................................................. 70 5.3.3 DistributionDecompositionforh-DLTIICodes.............. 71 5.3.4 h-DLTIICodesPerformance .................................. 72 5.4 h-DLTIICodesAssistedCooperative CommunicationsProtocol.............................................. 73 5.5 PerformanceEvaluations ............................................... 75 5.5.1 h-DLTCodesComparisonandChoice ofStorageSchemes............................................. 75 5.5.2 EffectofModeRatio ........................................... 76 5.5.3 EffectofRelayNumber ........................................ 77 5.6 Summary ................................................................ 79 References..................................................................... 79 6 EffectiveICICancellationforOFDMTransmissioninRA-UAC ...... 81 6.1 PropertiesofICICoefficients .......................................... 81 6.2 ProposedICICancellationSchemes ................................... 83 6.2.1 ICISelf-CancellationwithMirror-Mapping .................. 83 6.2.2 ICITwo-PathCancellationwithMirror-Mapping............. 84 Contents ix 6.3 CIREvaluation.......................................................... 86 6.3.1 PlainOFDM .................................................... 86 6.3.2 MSR............................................................. 86 6.3.3 MCSR........................................................... 89 6.3.4 MCVT........................................................... 91 6.3.5 MCJT............................................................ 93 6.3.6 CIRComparison................................................ 95 6.4 SeaExperimentalResults............................................... 96 6.4.1 ExperimentalSettings .......................................... 98 6.4.2 TimeSynchronizationandResampling........................ 100 6.4.3 ChannelEstimation............................................. 100 6.4.4 ExperimentalResults........................................... 100 6.5 Summary ................................................................ 101 References..................................................................... 102 7 ConclusionsandFutureDirections ........................................ 103 7.1 Conclusions ............................................................. 103 7.2 FutureDirections........................................................ 104
Description: