ebook img

Cooling neutron star in the Cassiopeia~A supernova remnant: Evidence for superfluidity in the core PDF

0.25 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Cooling neutron star in the Cassiopeia~A supernova remnant: Evidence for superfluidity in the core

Mon.Not.R.Astron.Soc.000,1–6(2010) Printed16March2011 (MNLATEXstylefilev2.2) Cooling neutron star in the Cassiopeia A supernova remnant: Evidence for superfluidity in the core Peter S. Shternin1,2⋆, Dmitry G. Yakovlev1, Craig O. Heinke3, Wynn C. G. Ho4†, Daniel J. Patnaude5 1IoffePhysicalTechnicalInstitute,Politekhnicheskaya26,194021St.Petersburg,Russia 2St.PetersburgStatePolytechnicalUniversity,Politechnicheskaya29,195251,St.Petersburg,Russia 1 3DepartmentofPhysics,UniversityofAlberta,Room238CEB,11322-89Avenue,Edmonton,AB,T6G2G7,Canada 1 4SchoolofMathematics,UniversityofSouthampton,Southampton,SO171BJ,UnitedKingdom 0 5SmithsonianAstrophysicalObservatory,Cambridge,MA02138,USA 2 n Accepted.Received;inoriginalform a J 1 2 ABSTRACT According to recent results of Ho&Heinke (2009) and Heinke&Ho (2010), the Cas- ] siopeia A supernovaremnantcontainsa young(≈ 330 yr old) neutron star (NS) which has R carbonatmosphereandshowsnoticeabledeclineoftheeffectivesurfacetemperature.Were- S port a new (November 2010) Chandra observation which confirms the previously reported . decline rate. The decline is naturallyexplainedif neutronshave recently becomesuperfluid h (intriplet-state)inthe NScore,producinga splashof neutrinoemissiondueto Cooperpair p - formation(CPF) process that currently accelerates the cooling.This scenario puts stringent o constraintsonpoorlyknownpropertiesofNScores:ondensitydependenceofthetemperature r T (ρ)fortheonsetofneutronsuperfluidity[T (ρ)shouldhaveawidepeakwithmaximum t cn cn s ≈ (7−9)×108 K], on the reductionfactor q of CPF processby collectiveeffectsin super- a fluidmatter(q > 0.4),andontheintensityofneutrinoemissionbeforetheonsetofneutron [ superfluidity(30–100timesweakerthanthestandardmodifiedUrcaprocess).Thisisserious 2 evidencefornucleonsuperfluidityinNScoresthatcomesfromobservationsofcoolingNSs. v 5 Key words: dense matter – equation of state – neutrinos – stars: neutron – supernovae: 4 individual(CassiopeiaA)–X-rays:stars–superfluidity 0 0 . 2 1 1 INTRODUCTION on NS surface although no pulsations have been observed, e.g., 0 Pavlov&Luna2009). 1 It is well known that NS cores contain superdense RecentlyHo&Heinke (2009) haveshown that theobserved : matter whose properties are still uncertain (see, e.g., v spectrumissuccessfully fittedtakingacarbon atmospheremodel Haensel,Potekhin&Yakovlev 2007; Lattimer&Prakash 2007). i withalowmagneticfield(B.1011 G).Thegravitationalmassof X One can explore these properties by studying the cooling of the object, as inferred from the fits, is M ≈ 1.3−2M , circum- r isolated NSs (see, e.g., Pethick 1992; Yakovlev&Pethick 2004; ⊙ ferential radius R ≈ 8−15 km, and the non-redshifted effective a Page,Geppert&Weber2006;Pageetal.2009,forreview). surfacetemperatureT ∼ 2×106 K(Yakovlevetal.2011).These We analyse observations of the NS in the supernova rem- s parametersindicatethatthecompactsourceisanNSwiththecar- nant Cassiopeia A (Cas A). The distance to the remnant is d = bonatmosphere.Itemitsthermalradiationfromtheentiresurface 3.4+0.3 kpc(Reedetal.1995).TheCasAageisreliablyestimated −0.1 andhasthesurfacetemperaturetypicalforanisolatedNS.Itisthe as t ≈ 330 ± 20 yr from observations of the remnant expan- youngestinthefamilyofobservedcoolingNSs. sion (Fesenetal. 2006). The compact central source was identi- Yakovlevetal. (2011) compared these observations withthe fied in first-light Chandra X-ray observations (Tananbaum 1999) NScoolingtheory.TheauthorsconcludedthattheCasANShas and studied by Pavlovetal. (2000); Chakrabartyetal. (2001); alreadyreachedthestageofinternalthermalrelaxation.Itcoolsvia Pavlov&Luna(2009)butitsnaturehasbeenuncertain.Thefitsof neutrinoemissionfromthestellarcore; itsneutrinoluminosityis theobservedX-rayspectrumwithmagnetizedornon-magnetized notverydifferentfromthatprovidedbythemodifiedUrcaprocess. hydrogen atmosphere models or with black-body spectrum re- Following Ho&Heinke (2009), Heinke&Ho (2010) anal- vealed too small size of the emission region (could be hot spots ysedChandraobservations of theCasANSduring10yearsand foundasteadydeclineofT byabout4%.Theyinterpretitasdi- s ⋆ E-mail:[email protected] rectobservationof CasANScooling,thephenomenonwhichhas † E-mail:[email protected] neverbeenobservedbeforeforanyisolatedNS.Theseresultsare (cid:13)c 2010RAS 2 P.S. Shterninetal. confirmedbynewobservationswereportbelow.Weinterpretthem Table 1. Carbon atmosphere spectral fits, using the best spectral fit (M, asamanifestationofneutronsuperfluidityintheCasANS. R,NH)ofHeinke&Ho(2010)andYakovlevetal.(2011),withtheaddi- When thispaper wasnearly completed webecame awareof tionof2010data.Epochdatesareforthemidpointsoftheobservations,or thepaper byPageetal.(2010)who proposed similarexplanation weightedmidpointsofmergeddatasets.Temperatureerrorsare1σconfi- oftheCasANSobservations.Howeverthetwopapersarediffer- denceforasingleparameter. entindetails,andcanberegardedascomplementary.Inparticular, Epoch Exposure logTs ObsID(s) wediscussthedependenceofcoolingcurvesonthepoorlyknown (Year) ks K efficiencyofneutrinoemissionduetoCPFprocessandthepossi- bilitytointerpretobservationsofallcoolingstarsbyonemodelof 2000.08 50.56 6.3258+0.0019 114 −0.0019 superdensematter.Itisimportantthatwereportthenewobserva- 2002.10 50.3 6.3237−+00..00001188 1952 tion. 2004.11 50.16 6.3156−+00..00001199 5196 2007.93 50.35 6.3108+0.0019 9117,9773 −0.0019 2009.84 46.26 6.3087+0.0018 10935,12020 −0.0018 2010.83 49.49 6.3060+0.0019 10936,13177 −0.0018 2 NEWCHANDRAOBSERVATIONS We use the Chandra data on the Cas A NS, discussed and fitted shorterrelaxation,lastingtypically. 100yr.Weproposeanother byHeinke&Ho(2010),andaddonenew datapoint. Briefly,the interpretationbasedontheeffectsofsuperfluidityinNScores,in analyseddataincludetheChandraACIS-SobservationsofCasA linewiththeworkofGusakovetal.(2004). longer than 5 ks. In order to ensure that all considered data are Neutrons,protons(andotherbaryonsifpresent)inNSinteri- directlycomparable,wetakeonlythe‘directlycomparabledata’of orscanbesuperfluid(duetoCooperpairing).Freeneutronsinthe Heinke&Ho(2010).WeexcludethesubarrayobservationofCas innercrustandprotonsinthecoreundergoCooperpairinginspin- A(Pavlov&Luna2009),sincethepileupproperties(Davis2001) singletstate,whileneutronsinthecorecanpairinspin-tripletstate. of thisspectrum differ fromthe others, and thoseobservations in Critical temperatures of superfluidity onset T (ρ) are very model c which the Cas A NS dithered over bad pixels (most of the 2004 dependent(asreviewed,e.g.,byPageetal.2004). observations). Ourideaisthattheinitialcrust-corerelaxationinCasANSis The new data point is produced from two ACIS-S observa- over,leavingthestarsufficientlywarm.Weassumefurtherthatnot tionsofCasA(Patnaudeetal.2010:ObsIDs10936,13177)taken too strong triplet-state neutron superfluidity appeared in the core on 2010 October 31 and 2010 November 2for 33 and 17 ks (re- sometimeago.ItinitiatesasplashofneutrinoemissionduetoCPF spectively) and telemetered in GRADED mode (as done for pre- processproducingthesecondT dropthatmimicsthesecond(de- s viousCasAobservations).WeusedCIAO4.2andCALDB4.2.1to layed)thermalrelaxation.Theseconddropismainlyregulatedby reprocess thedataand produce response functions, correctingfor (i)thedensitydependenceT =T (ρ)ofthecriticaltemperature cn cn thetime-dependentACISquantumefficiencydegradationandgain for the neutron pairing in the NS core, (ii) the reduction factor q changes,butnotforthecharge-transferinefficiency(asthiscannot of CPFprocess bycollective effectsinsuperfluid matterand (iii) bemodeledwithGRADEDdata).Weextractedsourcespectrawith theneutrinoluminositypriortotheonsetofneutronsuperfluidity. a4pixel(2.37”)radiusregion,andbackgroundspectrafromanan- Thesepropertiesareverymodeldependentandpoorlyknownbut nulusof5to8pixels,asinHeinke&Ho(2010).Wecombinedthe canbeconstrainedfromtheCasANSobservations. twonew observations intoone setof spectraand responses (with The CPF process was first predicted by aneffectivedateof2010November1),andgroupedthespectrum Flowers,Ruderman&Sutherland (1976) for singlet-state by200counts/bin. pairing neglecting collective superfluid effects. Collec- We fitted these spectra simultaneously, forcing the NS mass tive effects can suppress the process (q < 1) as was and radius, along withthe distance and NH, to be the same as in first noticed by Leinson (2001) and calculated later by thebestfitofHeinke&Ho(2010)andYakovlevetal.(2011),and Leinson&Pe´rez (2006); Sedrakian,Mu¨ther&Schuck (2007); findingthe1σerrorsonthesurfacetemperatureateachepoch.This Kolomeitsev&Voskresensky (2008); Steiner&Reddy (2009); fittingisdesignedtocleanlydefinetherelativevariationinthetem- Leinson (2010); some discussion is also given by Pageetal. perature,separatingthisquestionfromtheabsoluteuncertaintyin (2009); the results are controversial. The main attention has thetemperature (described indetailinYakovlevetal.2011).The been paidtoCPFprocess due tosinglet-statepairing of neutrons fittedvaluesofthenon-redshiftedeffectivesurfacetemperatureTs whichhasbeenfoundtobestronglysuppressed(q ≪ 1).Weare (Table1)areslightlydifferentfromthosereportedbyHeinke&Ho interested in triplet-state pairing in which case the suppression (2010) for the2004–2009 observations, but withinthe1σ errors. isthought tobe lessdramatic. If the latterCPFprocess were not Thekeyresultisthatthenewobservationconfirmsandextendsthe affected by collective effects, then 24% of neutrino emissivity coolingtrendseeninHeinke&Ho(2010). would go through the vector weak interaction channel, while the rest (76%) would go through the axial-vector channel. Collective effects suppress the vector channel almost completely but the axial-vector channel survives. Exact value of q is debatable (the 3 SECONDTEMPERATUREDROP lowest estimate q ≈ 0.19 is given by Leinson 2010). Instead of The observed surface temperature decline is too steep and can- relyingonanyspecificmodel,weconsiderqasafreeparameter. notbedescribedbythetheorydiscussedbyYakovlevetal.(2011) We illustrate this idea by cooling simulations of NSs (whodidnotanalysethedeclineitself).Heinke&Ho(2010)sug- with nucleon cores. We take the Akmal-Pandharipande- gested that Cas A NS undergoes the last years of the internal Ravenhall (APR) equation of state (EOS) in the core crust-core relaxation accompanied by a pronounced surface tem- (Akmal,Pandharipande&Ravenhall1998).ByAPRwemeanthe perature drop. However, the theory predicts (e.g., Lattimeretal. parametrization of APR results by Heiselberg&Hjorth-Jensen 1994;Gnedin,Yakovlev&Potekhin2001;Yakovlevetal.2011)a (1999)–theversionAPRIproposedbyGusakovetal.(2005).The (cid:13)c 2010RAS,MNRAS000,1–6 CoolingCas A NeutronStar 3 10 M M q M M T 868cn [10 K] c1.0 b a 1.65 1.5T 5s b[MK] c =0.76 T12..255s [MK] =1.65 pNSF 1.5 1 2 t a 3 T 10 10 4 [yr] int (330 yr) M 1.75 M 2 1.65 1.45 4 8 12 16 a320 a 340 t 14 -3 Figure1.(Coloronline)Left:Models(a),(b)and(c)forcriticaltemperatureoftriplet-stateneutronpairinginNScore.Verticaldottedlinesshowcentral densitiesofNSswithM=1and1.65M⊙(forAPR [E1O0S) g.T chmins]olidlineisthetemperatureprofileinthe1.65M⊙ s[tyarr]ofage330yrwithneutronsuperfluidity (a).Right:Lines(a),(b)or(c)showcoolingofthe1.65M⊙starwithstrongprotonsuperfluidityandmoderateneutronsuperfluidity(a),(b)or(c)inthecore (q=0.76)comparedwithobservationsofCasANScooling.Thedottedlineisthesameforthe1.75M⊙starandneutronsuperfluidity(a).Theline(a)for M=1.65M⊙isalsoshownintheinsetoverlongertimespan.LinespSFandNintheinsetarecalculatedforM=1.65M⊙neglecting,respectively,neutron superfluidityandentirenucleonsuperfluidityinthecore. maximummassofastableNSforthisEOSis M = 1.929M ; 1.65M star of nearly Cas A NS age with T (ρ) models (a)–(c) max ⊙ ⊙ cn the powerful direct Urca process of neutrino emission is open in fromtheleftpanelandwithq = 0.76(axialvectorchannelisnot stars with M > M = 1.829M . Let the direct Urca process suppressed). The curves are compared with the Cas A NS data. DU ⊙ and even less efficient modified Urca process be either not All three superfluidity models agree with these data. Taking su- allowed or strongly suppressed in the Cas A NS. Otherwise the perfluidity (a) and increasing the stellar mass to 1.75M makes ⊙ star would be too cold after the initial crust-core relaxation; we the CPF process more important and starts the second tempera- would beunable tosignificantlyspeed upitscoolingby theCPF turedropearlier(thedottedcurve),indisagreementwiththedata. process. To suppress Urca processes we assume the presence of However, we could easily readjust (slightly decrease) T (ρ) and cn strong proton superfluidity in the core, with critical temperature explaintheCasANSdatawiththe1.75M model.Therefore,we ⊙ T (ρ) & (2−3)×109 K;exactvalues ofT areunimportant. It cansuccessfullyfitthedataforarangeofNSmassesandtakethe cp cp occurswithinafewdaysafterthestarformation.TheprotonCPF 1.65M starasanexample.Theinsetshowsthecoolingcurve(a) ⊙ neutrinoemissiondoesnotinfluencethecoolingevenifthisemis- (M = 1.65M ) over longer time scale. The second temperature ⊙ sion were not affected by collective effects (e.g., Yakovlevetal. dropatt ∼ 250yrisclearlypronounced here.Also,weshowthe 2001). As long as neutrons are non-superfluid, the neutrino coolingofnon-superfluidstar(curveN)andthestarwithprotonsu- emission is mainly generated in neutron-neutron bremsstrahlung perfluidityalone(curvepSF).WithouttheCPFprocess,theslopes process.ItisweakandleavestheCasANSsufficientlywarmbe- ofbothcurvesaremuchsmallerthanrequired. forethesecondtemperaturedrop.Unlessthecontraryisindicated, In Fig. 2 we test two neutron superfluidity models, (a) and we consider NSs with ordinary (non-accretted, non-magnetized) (c),againstobservationsofotherisolatedNSs.Observationaldata heat blanketing envelopes (e.g., Potekhin,Chabrier&Yakovlev are taken from references cited in Yakovlevetal. (2008) and 1997; Potekhinetal. 2003) and neglect superfluid effects in the Kaminkeretal. (2009) with the exception of PSR J0007+7303. stellar crust (which weakly affect the cooling after the crust-core ThedataonthelattersourcearetakenfromCaraveoetal.(2010) relaxation; e.g.,Yakovlevetal.2001).Note,thatasplashof CPF andLinetal.(2010).Notethatinsimilarfig.5ofYakovlevetal. neutrinosmakesthestarslightlynon-isothermal,withthecooling (2011)sourcelabels12,13and14shouldrefertoRXJ1856–3754, slightlydependentonthethermalconductivityinthecore,butthe GemingaandPSRB1055–52,respectively. isothermalstateissoonrestored. WemakeareasonableassumptionthatallNSshavedifferent Illustrative results are shown in Figs. 1, 2 and 3. The left masses but the same physics of matter in their cores. Wepresent panel of Fig. 1 gives three models of T (ρ). We do not rely on coolingcurves(solidlines)foranumberofmasses(fromtoptobot- cn any specific theoretical model but consider three phenomenolog- tom),from1M to M .Recall,thatweusethemodelofstrong ⊙ max ical curves (a), (b) and (c) (locating neutron superfluidity at pro- proton superfluidity intheentirecore that switchesoff Urcapro- gressivelylowerdensities).Inour casethemaximumofT (ρ)is cessesinallstars.Withthisassumption, neutronsuperfluidity(a) cn strictlyconstrainedtoT ≈ (7−9)×108 K.Higherorlower allows us to explain almost all sources, except for warmest and cnmax T (ρ)peakswouldstartthesecondtemperaturedropintheCasA coolest ones (for their ages). However, neutron superfluidity (c) cn NSearlierorlaterthanrequiredbytheobservations(orevencom- producestoostrongCPFneutrinoemissioninlow-massstarsand pletelywashoutthisdropinaveryyoungoroldstar).TheT (ρ) cannotexplainthemajorityofwarmerstars,althoughitagreeswith cn profilesshouldnotbetoonarrowandthereductionfactorqshould theCasANSdata. notbetoosmall(otherwisethesecondtemperaturedropwouldbe Furthermore, we can rise the cooling curves of low-mass, weak). Other plotsgivetheoretical cooling curvesT∞(t) (i.e.,the not too old NSs assuming they have more heat transparent heat- s redshiftedsurfacetemperatureversust). blanketing envelopes of light elements . For example, the dashed The right panel of Fig. 1 gives three cooling curves for the curvesinFig.2arecalculatedfor M = 1M NSwiththecarbon ⊙ (cid:13)c 2010RAS,MNRAS000,1–6 4 P.S. Shterninetal. 3 1 1 2.5 4 4 12 Geminga K] a 13 PSR B1055-52c 2[M 3 3 1145 RPSXR J 1J2805463-3+7257440 T 1.5s Cas A Cas A 16 RX J0720.4-3125 2 9 2 9 8 11 13 8 11 13 1 5 5 6 7 16 6 7 16 1 Crab 12 12 10 10 2 3C 58 14 14 3 PSR J1119-6127 0.5 4 RX J0822-43 15 8 PSR B1706-44 15 5 PSR J1357-6429 9 PSR J0538+2817 6 RX J0007.0+7303 10 PSR B2334+61 7 Vela 11 PSR 0656+14 2 t 4 6 2 t 4 6 Figure2.(Coloronline)Sequ1encesof(solid1)0coolingcurve1s0forNSsofm1as0ses1from1M⊙ to1M0max (through100.1M⊙)withst1ro0ngprotonsuperfluidityand moderateneutronsuperfluidity(a)(left)or(c)(right)in[ythre]core(q=0.76)comparedwithobservations o[fyirs]olatedNSs.Dashedlinesrefertowarmeststars ofthesetypes–1M⊙starswiththecarbonsurfacelayerofmass10−8M⊙.Dash-and-dottedlinesrefertocoolestMmaxstarswithoutprotonsuperfluidityin theinnercore. envelopeofmass10−8M .Wecanalsolowerthecoolingcurvesof ⊙ massive(M )stars:thedash-dottedlinesarecomputedbytaking max K] more realistic models for proton superfluidity, with T (ρ) going M down at high densities. Thisopens direct Urca processcpinthe in- T2.5s [ nercoreandgivescoldestpossibleNSs.Therefore,wecanreally 1.55 K] 2 explainallthedatawithsuperfluidity(a),butnotwithsuperfluid- M [ ity(c). T s 1.5 0.7 ThesecondtemperaturedropisknownintheNScoolingthe- 0.4 0.19 ory (e.g., Kaminker,Haensel&Yakovlev 2001). Cooling models 1 2 t 3 like (a) and (c) in Fig. 2 have been analysed by Gusakovetal. 10 10 (2004) withthesame conclusion that models like(a)can explain 1.5 [yr] M M observations of allisolated NSs.Similarmodels of NSswithnu- cleoncores,wheredirectUrcaisforbiddenbutCPFoperates,were =1.65 usedasthebasisoftheminimalcoolingtheory(Pageetal.2004, q 2006,2009)although thattheoryemploys selectedT (ρ)profiles, c mostfavorablebythetheoryofnucleonsuperfluidity.Nowwesee =0.7 0.4 0.19 t thatthemodelofGusakovetal.(2004)isalsosuitabletoexplain 1.45 theCasANSdata. Figure3.(Coloro3n2li0ne)Sameasontherigh3t4p0anelofFig.1butforcon- stant Tcn over the core at three [vyarlu]es q = 0.19(Tcn = 7.55×108 K), Finally,Fig.3demonstratestheeffectofsuppressionofCPF 0.4(7.2×108 K)and0.7(7×108 K).Theinsetshowsthesamecooling neutrino emission in the axial-vector channel. To maximize the curves but over larger range ofages, together with the dashed curve for CPFemissionwetakeconstantTcnoverthecore.Itproducesespe- non-superfluidstarandthedash-and-dotcurveforthestarwithoutproton ciallystrongsplashofCPFneutrinoswhenthesecondtemperature superfluiditybutwithneutronsuperfluidityatTcn=4.3×108K. dropstarts.Threesolidlinesarethecoolingcurvesforthe1.65M ⊙ starcalculatedatq=0.7,0.4and0.19.Otherwisetheconditionsare thesameasintherightpanelofFig.1.WithourconstantTcn,CPF layerofmass∼10−12M⊙,wecouldraisethelattercurvetotheCas neutrinoemissionatq=0.7istoostrong;itgivesfasterCasANS A NS level but would be unable to reproduce the cooling slope. coolingthanrequiredbyobservations.Thecaseq=0.4nowagrees Ourcalculationsshow thatthemodifiedUrcaemissionshouldbe withtheobservations. Smallerq = 0.19givesslowercoolingthat suppressed at least by a factor of 30 (for the most efficient CPF cannotexplainthedata.NoticethattheTcn=constmodelishardly emissionwithq=0.76andconstantTcn)togettherequiredslope. realistic.FormorerealisticTcn(ρ)profileswecanreconciletheory TakingsmallerqornarrowerTcn(ρ)-profilewouldrequirestronger withtheCasANSdataatq > 0.4.Thisgivesausefulrestriction suppressionofthemodifiedUrcaprocess. ontheuncertaintheoreticalparameterq. IntheinsetofFig.3weshowthesamethreecoolingcurves overlargerrangeofages.Inaddition,weplotthesamedashedline 4 CONCLUSIONS fornon-superfluidstarasintherightpanelofFig.1,andanother dot-and-dashed line for the star with neutron superfluidity alone We report a new (November, 2010) Chandra observation of the withT =4.3×108 Kandq=0.76.Thelattersuperfluiditytrig- youngCasANSthatconfirmstheobserved(Heinke&Ho2010) cn gers asplash of CPFneutrinos, but the mainmodified Urca neu- steadydeclineofthesurfacetemperatureT (by4%over10years). s trinoemissionistoostrongandthesplashcannotproduceasteep Weproposeanaturalexplanationoftheobserveddecline.Weas- T decline requiredby theobservations. Adding acarbon surface sume that the Cas A NS underwent the traditional internal crust- s (cid:13)c 2010RAS,MNRAS000,1–6 CoolingCas A NeutronStar 5 core relaxation some time ago and now demonstrates the second Chakrabarty D., Pivovaroff M. J., Hernquist L. E., Heyl J. S., temperaturedropduetotheonsetoftriplet-stateneutronsuperflu- NarayanR.,2001,ApJ,548,800 idityinitscoreandassociatedneutrinoemission.Wecanexplain DavisJ.E.,2001,ApJ,562,575 theCasANSobservationsunderthefollowingconditions: FesenR.A.etal.,2006,ApJ,645,283 FlowersE.G.,RudermanM.,SutherlandP.G.,1976, ApJ,205, • Themaximumcriticaltemperaturefortriplet-statepairingof 541 neutronsshouldbeT ≈(7−9)×108K.Otherwisethesecond cnmax Gnedin O. Y., Yakovlev D. G., Potekhin A. Y., 2001, MNRAS, temperaturedropoccursearlierorlaterthanrequiredbyobserva- 324,725 tions. GusakovM.E.,KaminkerA.D.,YakovlevD.G.,GnedinO.Y., • TheT (ρ)profileovertheNScoreshouldberatherwidefor cn 2004,A&A,423,1063 theCPFneutrinoemissiontogainenoughstrength. GusakovM.E.,KaminkerA.D.,YakovlevD.G.,GnedinO.Y., • For the same reason the suppression of the CPF process by 2005,MNRAS,363,555 collectiveeffectscannotbetoostrong(q>0.4). HaenselP.,PotekhinA.Y.,YakovlevD.G.,2007,NeutronStars • The neutrino emission of the star before the second temper- 1.EquationofStateandStructure.Springer,NewYork ature drop should be 30–100 times lower than due to the mod- HeinkeC.O.,HoW.C.G.,2010,ApJ,719,L167 ified Urca process (e.g., the modified Urca can be suppressed HeiselbergH.,Hjorth-JensenM.,1999,ApJ,525,L45 bystrongprotonsuperfluidity).Otherwisethesecondtemperature HoW.C.G.,HeinkeC.O.,2009,Nature,462,71 dropwouldnotbepronounced. Kaminker A. D.,Haensel P.,Yakovlev D. G., 2001, A&A, 373, Whenthesecriteriaaremet,wecanstilllocateT (ρ)profiles L17 cn indifferentpartsoftheNScore.If,however,wewishtoexplainall Kaminker A. D., Potekhin A. Y., Yakovlev D. G., Chabrier G., currentobservationsofisolatedNSswithoneandthesameT (ρ)- 2009,MNRAS,395,2257 cn profile, we will be forced to push this profile deeper in the core KolomeitsevE.E.,Voskresensky D.N.,2008,Phys.Rev.C,77, (Fig.2).Alternatively,wecouldemploybroaderprofilesbutwith 065808 density-dependent factorq(whichcanincreasewithinthecoreas LattimerJ.M.,PrakashM.,2007,Phys.Rep.,442,109 forsinglet-statepairing,e.g.,Kolomeitsev&Voskresensky2008). LattimerJ.M.,vanRiperK.A.,PrakashM.,PrakashM.,1994, Thiswould shift the efficiency of theCPF process to higher ρ in ApJ,425,802 superfluidmatter. LeinsonL.B.,2001,Nucl.Phys.,A687,489 WehavetakenoneEOSandfocusedon1.65M neutronstar LeinsonL.B.,2008,Phys.Rev.C,78,015502 ⊙ modelbutourbasicconclusionswillnotchangeforalargevariety LeinsonL.B.,2010,Phys.Rev.C,81,025501 ofEOSsandmassesM.Forinstance,takingthesameEOSwehave LeinsonL.B.,Pe´rezA.,2006,Phys.Lett.B,683,114 consideredtheCasANSmodelswith M from1.4M to1.9M . Lin L. C. G., Huang R. H. H., Takata J., Hwang C. Y., Kong ⊙ ⊙ ByslightlychangingT (ρ)profilesweareabletoexplainthedata A.K.H.,HuiC.Y.,2010,ApJ,accepted,arXiv:1010.1354 cn foranyMfromthisrange. PageD.,GeppertU.,WeberF.,2006,Nucl.Phys.A,777,497 Our calculations indicate that the second temperature drop PageD., LattimerJ. M., Prakash M., Steiner A. W.,2004, ApJ, lasts for a few tens of years and Cas A NS is at its active CPF 155,623 neutrinoemissionstage.Thesemodelswouldbeinconsistentwith PageD., LattimerJ. M., Prakash M., Steiner A. W.,2009, ApJ, asharpstopofthetemperaturedeclineinafewyears,whichcan 707,1131 beverifiedwithfutureobservations. PageD.,PrakashM.,LattimerJ.M.,SteinerA.W.,2010, PRL, AfterthesecondtemperaturedroptheCasANSisexpected submitted,arXiv:1011.6142v1 tobecomearathercoldslowlycoolingNS. Patnaude D. J., Vink J., Laming J. M., Fesen R. A., 2010, ApJ Lett.,submitted,arXiv:1012.0243 PavlovG.G.,LunaG.J.M.,2009,ApJ,703,910 PavlovG.G.,ZavlinV.E.,AschenbachB.,Tru¨mperJ.,SanwalD., ACKNOWLEDGEMENTS 2000,ApJ,531,L53 We are grateful to A. Y. Potekhin for critical remarks. PSS PethickC.J.,1992,Rev.Mod.Phys.,64,1133 and DGY acknowledge support from Rosnauka (grant NSh Potekhin A. Y., Chabrier G., Yakovlev D. G., 1997, A&A, 323, 3769.2010.2) and Ministry of Education and Science of Russian 415 Federation (contract 11.G34.31.0001 with SPbSPU and Leading PotekhinA.Y.,YakovlevD.G.,ChabrierG.,GnedinO.Y.,2003, Scientist G. G. Pavlov). WCGH acknowledges support from the ApJ,594,404 Science and Technology FacilitiesCouncil (STFC)in the United Reed J.E.,Hester J. J.,Fabian A.C.,Winkler P.F.,1995, ApJ, KingdomthroughgrantnumberPP/E001025/1.PSSacknowledges 440,706 support of the Dynasty Foundation and RF Presidential Program Sedrakian A., Mu¨ther H., Schuck P., 2007, Phys. Rev. C, 76, MK-5857.2010.2. COH acknowledges support from the Natural 055805 SciencesandEngineeringResearchCouncil(NSERC)ofCanada. SteinerA.W.,ReddyS.,2009,Phys.Rev.C,79,015802 TananbaumH.,1999,IAUCirc.No.7246 YakovlevD.G.,GnedinO.Y.,KaminkerA.D.,PotekhinA.Y., 2008, inBassaC.,WangZ.,Cumming A.,KaspiV.,eds., AIP REFERENCES Conf. Proc. V. 983. 40 Years of Pulsars: Millisecond Pulsars, Akmal A., Pandharipande V. R., Ravenhall D. G., 1998, Phys. MagnetarsandMore.Am.Inst.Phys.,Melville,NY,p.379 Rev.C,58,1804 Yakovlev D. G, Ho W. C. G., Shternin P. S., Heinke CaraveoP.A.,DeLucaA.,MarelliM.,BignamiG.F.,RayP.S., C. O., Potekhin A. Y., 2011, MNRAS, doi:10.1111/j.1365- Saz-ParkinsonP.M.,KanbachG.,2010,ApJ,725,L6 2966.2010.17827.x,arXiv:1010.1154 (cid:13)c 2010RAS,MNRAS000,1–6 6 P.S. Shterninetal. YakovlevD.G.,KaminkerA.D.,GnedinO.Y.,HaenselP.,2001, Phys.Rep.,354,1 YakovlevD.G.,PethickC.J.,2004,ARA&A,42,169 (cid:13)c 2010RAS,MNRAS000,1–6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.