ebook img

Convex functions : constructions, characterizations and counterexamples PDF

533 Pages·2010·4.156 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Convex functions : constructions, characterizations and counterexamples

ConvexFunctions:Constructions,Characterizations andCounterexamples Likedifferentiability,convexityisanaturalandpowerfulpropertyoffunctionsthat playsasignificantroleinmanyareasofmathematics,bothpureandapplied.Itties togethernotionsfromtopology,algebra,geometryandanalysis,andisanimportant toolinoptimization,mathematicalprogrammingandgametheory.Thisbook, whichistheproductofacollaborationofover15years,isuniqueinthatitfocuses onconvexfunctionsthemselves,ratherthanonconvexanalysis.Theauthors explorethevariousclassesandtheircharacteristics,treatingconvexfunctionsin bothEuclideanandBanachspaces. Theybeginbydemonstrating,largelybywayofexamples,theubiquityof convexity.Chapter2thenprovidesanextensivefoundationforthestudyofconvex functionsinEuclidean(finite-dimensional)space,andChapter3reprisesimportant specialstructuressuchaspolyhedrality,selectiontheorems,eigenvalueoptimization andsemidefiniteprogramming.Chapters4and5playthesamerolein (infinite-dimensional)Banachspace.Chapter6discussesanumberofotherbasic topics,suchasselectiontheorems,setconvergence,integralandtraceclass functionals,andconvexfunctionsonBanachlattices. Chapters7and8examineLegendrefunctionsandtheirrelationtothegeometry ofBanachspaces.Thefinalchapterinvestigatestheapplicationofconvexfunctions to(maximal)monotoneoperatorsthroughtheuseofarecentlydiscoveredclassof convexrepresentativefunctionsofwhichtheFitzpatrickfunctionistheprogenitor. The book can either be read sequentially as a graduate text, or dipped into by researchersandpractitioners. Eachchaptercontainsavarietyofconcreteexamples and over 600 exercises are included, ranging in difficulty from early graduate to researchlevel. EncyclopediaofMathematicsandItsApplications Allthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfrom CambridgeUniversityPress.Foracompleteserieslistingvisit http://www.cambridge.org/uk/series/sSeries.asp?code=EOM 73 M.SternSemimodularLattices 74 I.LasieckaandR.TriggianiControlTheoryforPartialDifferentialEquationsI 75 I.LasieckaandR.TriggianiControlTheoryforPartialDifferentialEquationsII 76 A.A.IvanovGeometryofSporadicGroupsI 77 A.SchinzelPolynomialswithSpecialRegardtoReducibility 78 T.Beth,D.JungnickelandH.LenzDesignTheoryII,2ndedn 79 T.W.PalmerBanachAlgebrasandtheGeneralTheoryof*-AlgebrasII 80 O.StormarkLie’sStructuralApproachtoPDESystems 81 C.F.DunklandY.XuOrthogonalPolynomialsofSeveralVariables 82 J.P.MayberryTheFoundationsofMathematicsintheTheoryofSets 83 C.Foias,O.Manley,R.RosaandR.TemamNavier–StokesEquationsandTurbulence 84 B.PolsterandG.SteinkeGeometriesonSurfaces 85 R.B.ParisandD.KaminskiAsymptoticsandMellin–BarnesIntegrals 86 R.McElieceTheTheoryofInformationandCoding,2ndedn 87 B.A.MagurnAnAlgebraicIntroductiontoK-Theory 88 T.MoraSolvingPolynomialEquationSystemsI 89 K.BichtelerStochasticIntegrationwithJumps 90 M.LothaireAlgebraicCombinatoricsonWords 91 A.A.IvanovandS.V.ShpectorovGeometryofSporadicGroupsII 92 P.McMullenandE.SchulteAbstractRegularPolytopes 93 G.Gierzetal.ContinuousLatticesandDomains 94 S.R.FinchMathematicalConstants 95 Y.JabriTheMountainPassTheorem 96 G.GasperandM.RahmanBasicHypergeometricSeries,2ndedn 97 M.C.PedicchioandW.Tholen(eds.)CategoricalFoundations 98 M.E.H.IsmailClassicalandQuantumOrthogonalPolynomialsinOneVariable 99 T.MoraSolvingPolynomialEquationSystemsII 100 E.OlivieriandM.EuláliaVaresLargeDeviationsandMetastability 101 A.Kushner,V.LychaginandV.RubtsovContactGeometryandNonlinearDifferentialEquations 102 L.W.BeinekeandR.J.Wilson(eds.)withP.J.CameronTopicsinAlgebraicGraphTheory 103 O.StaffansWell-PosedLinearSystems 104 J.M.Lewis,S.LakshmivarahanandS.K.DhallDynamicDataAssimilation 105 M.LothaireAppliedCombinatoricsonWords 106 A.MarkoeAnalyticTomography 107 P.A.MartinMultipleScattering 108 R.A.BrualdiCombinatorialMatrixClasses 109 J.M.BorweinandJ.D.VanderwerffConvexFunctions 110 M.-J.LaiandL.L.SchumakerSplineFunctionsonTriangulations 111 R.T.CurtisSymmetricGenerationofGroups 112 H.Salzmann,T.Grundhöfer,H.HählandR.LöwenTheClassicalFields 113 S.PeszatandJ.ZabczykStochasticPartialDifferentialEquationswithLévyNoise 114 J.BeckCombinatorialGames 115 L.BarreiraandY.PesinNonuniformHyperbolicity 116 D.Z.ArovandH.DymJ-ContractiveMatrixValuedFunctionsandRelatedTopics 117 R.Glowinski,J.-L.LionsandJ.HeExactandApproximateControllabilityforDistributedParameterSystems 118 A.A.BorovkovandK.A.BorovkovAsymptoticAnalysisofRandomWalks 119 M.DezaandM.DutourSikiric´GeometryofChemicalGraphs 120 T.NishiuraAbsoluteMeasurableSpaces 121 M.PrestPurity,SpectraandLocalisation 122 S.KhrushchevOrthogonalPolynomialsandContinuedFractions:FromEuler’sPointofView 123 H.NagamochiandT.IbarakiAlgorithmicAspectsofGraphConnectivity 124 F.W.KingHilbertTransformsI 125 F.W.KingHilbertTransformsII 126 O.CalinandD.-C.ChangSub-RiemannianGeometry 127 M.Grabisch,J.-L.Marichal,R.MesiarandE.PapAggregationFunctions 128 L.W.BeinekeandR.J.Wilson(eds)withJ.L.GrossandT.W.TuckerTopicsinTopologicalGraphTheory 129 J.Berstel,D.PerrinandC.ReutenauerCodesandAutomata 130 T.G.FaticoniModulesoverEndomorphismRings Convex Functions: Constructions, Characterizations and Counterexamples JonathanM.Borwein UniversityofNewcastle, NewSouthWales JonD.Vanderwerff LaSierraUniversity, California CAMBRIDGEUNIVERSITYPRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore, SãoPaulo,Delhi,Dubai,Tokyo CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9780521850056 ©J.M.BorweinandJ.D.Vanderwerff2010 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithout thewrittenpermissionofCambridgeUniversityPress. Firstpublished2010 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcataloguerecordforthispublicationisavailablefromtheBritishLibrary ISBN978-0-521-85005-6Hardback Additionalresourcesforthispublicationathttp://projects.cs.dal.ca/ddrive/ConvexFunctions/ CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Toourwives JudithandJudith Contents Preface pageix 1 Whyconvex? 1 1.1 Why‘convex’? 1 1.2 Basicprinciples 2 1.3 Somemathematicalillustrations 8 1.4 Somemoreappliedexamples 10 2 ConvexfunctionsonEuclideanspaces 18 2.1 Continuityandsubdifferentials 18 2.2 Differentiability 34 2.3 ConjugatefunctionsandFenchelduality 44 2.4 Furtherapplicationsofconjugacy 64 2.5 Differentiabilityinmeasureandcategory 77 2.6 Second-orderdifferentiability 83 2.7 Supportandextremalstructure 91 3 FinerstructureofEuclideanspaces 94 3.1 Polyhedralconvexsetsandfunctions 94 3.2 Functionsofeigenvalues 99 3.3 Linearandsemidefiniteprogrammingduality 107 3.4 Selectionsandfixedpoints 111 3.5 Intotheinfinite 117 4 ConvexfunctionsonBanachspaces 126 4.1 Continuityandsubdifferentials 126 4.2 Differentiabilityofconvexfunctions 149 4.3 Variationalprinciples 161 4.4 ConjugatefunctionsandFenchelduality 171 4.5 Cˇebyševsetsandproximality 186 4.6 Smallsetsanddifferentiability 194 5 Dualitybetweensmoothnessandstrictconvexity 209 5.1 Renorming:anoverview 209 5.2 Exposedpointsofconvexfunctions 232 5.3 Strictlyconvexfunctions 238 5.4 Moduliofsmoothnessandrotundity 252 5.5 Lipschitzsmoothness 267 viii Contents 6 Furtheranalytictopics 276 6.1 Multifunctionsandmonotoneoperators 276 6.2 Epigraphicalconvergence:anintroduction 285 6.3 Convexintegralfunctionals 301 6.4 Stronglyrotundfunctions 306 6.5 Traceclassconvexspectralfunctions 312 6.6 Deepersupportstructure 317 6.7 Convexfunctionsonnormedlattices 329 7 BarriersandLegendrefunctions 338 7.1 Essentialsmoothnessandessentialstrictconvexity 338 7.2 Preliminarylocalboundednessresults 339 7.3 Legendrefunctions 343 7.4 ConstructionsofLegendrefunctionsinEuclideanspace 348 7.5 FurtherexamplesofLegendrefunctions 353 7.6 ZoneconsistencyofLegendrefunctions 358 7.7 Banachspaceconstructions 368 8 ConvexfunctionsandclassificationsofBanachspaces 377 8.1 Canonicalexamplesofconvexfunctions 377 8.2 Characterizationsofvariousclassesofspaces 382 8.3 Extensionsofconvexfunctions 392 8.4 Someothergeneralizationsandequivalences 400 9 MonotoneoperatorsandtheFitzpatrickfunction 403 9.1 Monotoneoperatorsandconvexfunctions 403 9.2 Cyclicandacyclicmonotoneoperators 413 9.3 MaximalityinreflexiveBanachspace 433 9.4 Furtherapplications 439 9.5 Limitingexamplesandconstructions 445 9.6 ThesumtheoremingeneralBanachspace 449 9.7 Moreaboutoperatorsoftype(NI) 450 10 Furtherremarksandnotes 460 10.1 Backtothefinite 460 10.2 Notesonearlierchapters 470 Listofsymbols 483 References 485 Index 508 Preface Thisbookonconvexfunctionsemergesoutof15yearsofcollaborationbetweenthe authors.Itisfarfrombeingthefirstonthesubjectnorwillitbethelast.Itisneither abookon convexanalysissuchasRockafellar’sfoundational1970book[369]nor abookon convexprogramming suchasBoydandVandenberghe’sexcellentrecent text [128]. There are a number of fine books – both recent and less so – on both thosesubjectsoron convexity andrelatedlyon variationalanalysis. Bookssuchas [371,255,378,256,121,96,323,332]complementoroverlapinvariouswayswith our own focus which is to explore the interplay between the structure of a normed spaceandthepropertiesofconvexfunctionswhichcanexistthereon.Insomeways, amongthemostsimilarbookstooursarethoseofPhelps[349]andofGiles[229]in thatbothalsostraddlethefieldsofgeometricfunctionalanalysisandconvexanalysis –butwithouttheconvexfunctionitselfbeingthecentralcharacter. Wehavestructuredthisbooksoastoaccommodateavarietyofreaders.Thisleads tosomeintentionalrepetition.Chapter1makesthecasefortheubiquityofconvexity, largelybywayofexamples,manybutnotallofwhicharefollowedupinlaterchapters. Chapter2thenprovidesafoundationforthestudyofconvexfunctionsinEuclidean (finite-dimensional)space,andChapter3reprisesimportantspecialstructuressuch aspolyhedrality,eigenvalueoptimizationandsemidefiniteprogramming. Chapters 4 and 5 play the same role in (infinite-dimensional) Banach space. Chapter 6 comprises a number of other basic topics such as Banach space selec- tion theorems, set convergence, integral functionals, trace-class spectral functions andfunctionsonnormedlattices. Theremainingthreechapterscanbereadindependentlyofeachother.Chapter7 examinesthestructureof Legendrefunctionswhichcomprisesthosebarrierfunctions whichareessentiallysmoothandessentiallystrictlyconvexandconsidershowthe existenceofsuchbarrierfunctionsisrelatedtothegeometryoftheunderlyingBanach space; as always the nicer the space (e.g. is it reflexive, Hilbert or Euclidean?) the morethatcanbeachieved.Thiscouplingbetweenthespaceandtheconvexfunctions whichmaysurviveonitisattackedmoremethodicallyinChapter8. Chapter9investigates(maximal)monotoneoperatorsthroughtheuseofaspecial- izedclassofconvexrepresentativefunctionsofwhichtheFitzpatrickfunctionisthe progenitor.Wehavewrittenthischaptersoastomakeitmoreusableasastand-alone sourceonconvexityanditsapplicationstomonotoneoperators.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.