Convex Approximation and Optimization with Applications in Magnitude Filter Design and Radiation Pattern Synthesis Peter William Kassakian Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2006-64 http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-64.html May 18, 2006 Copyright © 2006, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. ConvexApproximationandOptimizationwithApplicationsin MagnitudeFilterDesignandRadiationPatternSynthesis by PeterWilliamKassakian B.A.(MassachusettsInstituteofTechnology)1995 M.S.(MassachusettsInstituteofTechnology)1999 Adissertationsubmittedinpartialsatisfaction oftherequirementsforthedegreeof DoctorofPhilosophy in ElectricalEngineeringandComputerScience inthe GRADUATE DIVISION ofthe UNIVERSITYOFCALIFORNIA, BERKELEY Committeeincharge: ProfessorLaurentElGhaoui,Chair ProfessorDavidWessel ProfessorMichaelGastpar Spring2006 ThedissertationofPeterWilliamKassakianisapproved: Chair Date Date Date UniversityofCalifornia,Berkeley Spring2006 ConvexApproximationandOptimizationwithApplicationsin MagnitudeFilterDesignandRadiationPatternSynthesis Copyright2006 by PeterWilliamKassakian ABSTRACT ConvexApproximationandOptimizationwithApplicationsin MagnitudeFilterDesignandRadiationPatternSynthesis by PeterWilliamKassakian DoctorofPhilosophyinElectricalEngineeringandComputerScience UniversityofCalifornia,Berkeley ProfessorLaurentElGhaoui,Chair Usingconvexoptimizationtohelpsolvenonconvexproblemsinengineeringisanarea ofintenseresearchactivity. Inthisthesiswestudyaspeci(cid:2)cnonconvexoptimizationprob- lem called magnitude least-squares that has applications primarily in magnitude (cid:2)lter de- sign. Solving the problem is dif(cid:2)cult because of the existence of many local minima. We study it in depth, deriving methods for its approximate solution, proving equivalences among differing formulations, relating it to other well-studied problems, and proving esti- mates of the quality of the solutions obtained using the methods. We discover structure in the problem that distinguishes it from some more general problems of the same algebraic form. The structure is related to the fact that the variables in the problem are complex- valued. Weexploitthisstructurewhenprovingboundsonthequalityofsolutionsobtained usingsemide(cid:2)niterelaxation. Inadditiontoadetailedandgenerallyabstractstudyofthisspeci(cid:2)coptimizationprob- lem, we solve several practical problems in signal processing. Some of the application examples serve to illustrate the applicability of the magnitude least-squares problem, and include multidimensional magnitude (cid:2)lter design, magnitude (cid:2)lter design for nonlinearly delayed tapped (cid:2)lters, and spatial (cid:2)ltering using arbitrarily positioned array elements. We alsopresentseveralapplicationexamplesthatillustratethemodelingcapabilitiesofconvex optimization. We use least-squares techniques to reason about the capabilities of clustered 1 arrays of loudspeakers to accurately synthesize radiation patterns. We also provide an ele- gantconvexoptimization-basedprocedurefordesigninglinear-phaseaudioequalizers. 2 DEDICATION DedicatedtoMom,Dad,andMeg i ACKNOWLEDGMENTS IwouldliketothankDavidWesselandtheCenterforNewMusicandAudioTechnolo- gies for (cid:2)nancially supporting me from my (cid:2)rst term at U.C. Berkeley to my last. I would also like to express my gratitude to Meyer Sound Laboratories for consistently funding this research. Support for the project was also provided by a UC Discovery Grant in Dig- ital Media from the University of California’s Industry-University Cooperative Research Program(IUCRP). I would like to thank my advisors Laurent, Michael, David, and Lieven, all of whom provided invaluable assistance both in terms of technical expertise and research strategy. I would also like to acknowledge the Center for New Music and Audio Technologies and MeyerSoundLaboratoriesforallowingmespaceandtimetotacklesometopicsthatdidnot immediatelyadmitdirectpracticalvalue. Itrulyappreciatehavingbeengiventhatopportu- nity. I would like to thank Richard Andrews, Edmund Campion, and the other researchers inthelab,AdrianFreed,RimasAvizienis,PerrinMeyer,BrianVogel,EdBerdahl,Michael Zbyszynski, Matt Wright, Psyche Loui, Ali Momeni, Roberto Morales, and John MacCal- lum. FinallyI’dliketoexpressmydeepgratitudetoRuthGjerdeandMaryByrnes. ii Contents 1 Introduction 1 1.1 MathematicalModelingandOptimization . . . . . . . . . . . . . . . . . . 1 1.2 PreviewofThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 ConvexOptimizationProblemsinAcoustics 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 CharacterizationofClusteredLoudspeakerArrays . . . . . . . . . . . . . . 7 2.2.1 RadiationPatterns . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 PhysicalSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 ContinuousandSampledLeast-Squares . . . . . . . . . . . . . . . 12 2.2.4 SphericalHarmonics . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.5 UniformError . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.7 UniformErrorExample . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.8 UniformErrorCharacterizations . . . . . . . . . . . . . . . . . . . 21 2.2.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 DesignofLinear-PhaseEqualizer . . . . . . . . . . . . . . . . . . . . . . 24 2.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.2 Ten-BandEqualizer . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.3 Three-BandEqualizer . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 iii
Description: