Home Search Collections Journals About Contact us My IOPscience Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2000 Phys. Med. Biol. 45 983 (http://iopscience.iop.org/0031-9155/45/4/313) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 129.78.32.23 The article was downloaded on 10/05/2012 at 17:55 Please note that terms and conditions apply. Phys.Med.Biol.45(2000)983–995.PrintedintheUK PII:S0031-9155(00)09047-3 Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations JVSiebers†,PJKeall†,AENahum‡andRMohan† †DepartmentofRadiationOncology,MedicalCollegeofVirginiaHospitals, VirginiaCommonwealthUniversity,POBox980058,Richmond,VA,USA ‡JointDepartmentofPhysics,RoyalMarsdenHospitalandInstituteofCancerResearch,Sutton, Surrey,UK E-mail:[email protected] Received27October1999,infinalform20January2000 Abstract. Currentclinicalexperienceinradiationtherapyisbasedupondosecomputationsthat reporttheabsorbeddosetowater,eventhoughthepatientisnotmadeofwaterbutofmanydifferent typesoftissue.WhileMonteCarlodosecalculationalgorithmshavethepotentialforhigherdose accuracy,theyusuallytransportparticlesinandcomputetheabsorbeddosetothepatientmedia suchassofttissue,lungorbone. Therefore,fordosecalculationalgorithmcomparisons,orto reportdosetowaterortissuecontainedwithinabonematrixforexample,amethodtoconvert dosetothemediumtodosetowaterisrequired. Thisconversionhasbeendevelopedhereby applyingBragg–Graycavitytheory.Thedoseratiofor6and18MVphotonbeamswasdetermined bycomputingtheaveragestoppingpowerratiofortheprimaryelectronspectruminthetransport media.Forsofttissue,thedifferencebetweendosetomediumanddosetowaterisapproximately 1.0%,whileforcorticalbonethedosedifferenceexceeds10%.Thevariationinthedoseratioasa functionofdepthandpositioninthefieldindicatesthatforphotonbeamsasinglecorrectionfactor canbeusedforeachparticularmaterialthroughoutthefieldforagivenphotonbeamenergy.The onlyexceptiontothiswouldbefortheclinicallynon-relevantdosetoair. Pre-computedenergy spectrafor60Coto24MVareusedtocomputethedoseratiosforthesephotonbeamsandto determineaneffectiveenergyforevaluationofthedoseratio. 1. Introduction Conventionaldosecalculationsforphotonbeamradiationtherapytypicallyreporttheabsorbed dosetowater(D ). ThereportingofD isduepartlytothehistoricaldevelopmentoftreatment w w planningalgorithmsaswellasthefactthattreatmentmachinesarecalibratedintermsofthe absorbeddosetowater. Theinputdatausedfortreatmentplanningalgorithmsaregenerally doseprofilesandoutputfactorsmeasuredinwaterphantoms. Thesedataaremanipulatedin various ways by the algorithm used, but converting the in-phantom measured dose to water to dose to medium is not considered. The assumption that the body is water is a good first approximationaswatermakesupthebulkofthevolumeofcellsandbodyfluid(withafew exceptionssuchasboneandtoothenamel)(TortoraandGrabowski1993). MonteCarlo(MC)dosecalculationalgorithmsarebeingintroducedintoroutinetreatment planning practice (Hartmann-Siantar et al 1994, 1995, Mohan 1997, DeMarco et al 1998, Solbergetal1998,Wangetal1998,Fippel1999,Maetal1999). WhenusingMonteCarlo, theabsorbeddoseiscomputedtothemediumcontainedinthedosevoxel(D ). Thesecan med bearbitrarymaterials,andgenerallyarerepresentativeofthosefoundinthebody. However, 0031-9155/00/040983+13$30.00 ©2000IOPPublishingLtd 983 984 JVSiebersetal in order to compare MC algorithms with conventional D algorithms, the dose comparison w shouldbetothesamemedium. ThereareseveralotherreasonswhyD shouldbeconverted med toD ,whichwillbeexpandeduponinthediscussionsection. w Thepurposeofthispaperisto(a)determinethefactorsrequiredforconvertingabsorbed dosetomediumtoabsorbeddosetowaterforphotontherapybeams,(b)determineifuniversal conversionfactorscanbeappliedthroughoutthepatientvolume,(c)determineifconversion factorsdependuponthematerialdensityand(d)provideamethodfordeterminingconversion factorsforarbitrarypatientmaterialsandenergies. 2. Background AbsorbeddoseD canbeconvertedtoD forphotonbeamirradiationusingBragg–Gray med w cavitytheory(Bragg1912,Gray1936,Attix1986,Brahmeetal 1988). Bragg–Graycavity theoryanditsextensiontheSpencer–Attixcavitytheory(SpencerandAttix1955)havebeen successfully applied to ionization chamber dosimetry (AAPM TG-21 1983, ICRU-35 1984, Attix1986). Bragg–Graycavitytheoryisapplicablewhenthecavitymaterial(waterinthis case)doesnotperturbthefluenceofchargedparticlesthatwouldhaveexistedifthecavitywere composedofthesurroundingmaterial. Inthecaseofphotons,thisrequiresthattherangesof thesecondaryelectronsaremuchgreaterthanthedimensionsofthecavityi.e.thatthecavity doesnot‘perturb’thiselectronfluence,whichisthenentirelycharacteristicofthesurrounding medium. Inpractice,forphotonsatmegavoltageenergies,theonlyrealdosimeterthatfulfills this requirement is the gas-filled ionization chamber (Ma and Nahum 1991). The original Bragg–Graytheoryrequiresthatdelta-ray(secondaryelectron)equilibriumexistsorthatthe energytransferredtodeltaraysisdeposited‘onthespot’;itisevaluatedbyusingtheprimary electron fluence and the unrestricted collision stopping powers (see below). Spencer–Attix theory (Spencer and Attix 1955, ICRU-35 1984) removed this limitation in an approximate fashionbyincludingdeltaraysinthefluenceofchargedparticlesenteringthecavity,andthen usingthestoppingpowerrestrictedtolosseslessthan1, wherethiscutoffenergyisrelated to the size of the cavity. For small cavities such as ion chambers 1 is generally set equal to10keV(Nahum1978,ICRU-351984). Itcanbenotedthat,somewhatparadoxically,the greatestdeviationbetweentheBragg–GrayandSpencer–Attixvaluesforthestopping-power ratiooccurforthesmallestvaluesof1i.e.forthesmallestcavities. To circumvent the unnecessary issues introduced by the selection of the Spencer– Attixcutoffenergy, weconsiderahypotheticalBragg–Graywatercavityinwhichdelta-ray equilibriumisestablished. Thustheconversioncanproceedasfollows. Using Bragg–Gray cavity theory, the absorbed dose to water is related to the absorbed dosetomediumby D D s (1) w med w,med = wheres istheunrestrictedwater-to-mediummasscollisionstoppingpowerratioaveraged w,med overtheenergyspectraofprimaryelectrons,(8 ) . Theso-calledprimaryelectronsdonot E m includeknock-onelectronsor�-rays,astheircontributionstoenergydepositionareaccounted forintheunrestrictedstoppingpowers. Thestoppingpowerratioaveragedovertheprimary electronspectrumiscalculatedusing Emax Emax s (8 ) (S/⇢) dE (8 ) (S/⇢) dE (2) w,med E m w E m med = Z0 �Z0 where(S/⇢) and(S/⇢) aretheunrestrictedmasscollisionstoppingpowerforthewater w med andtransportmediumrespectively,andE isthemaximumenergyinthe(8 ) distribution max E m (NCRP-271961). Convertingabsorbeddosetomediumtoabsorbeddosetowater 985 To evaluate the Bragg–Gray stopping power ratio for photon beams, knowledge of the electronfluenceinthemediaisrequired. Presently,onlyMC-baseddosecalculationalgorithms arecapableofdeterminingthisquantity. 3. Materialsandmethods In order to determine s , the Monte Carlo code MCNP (Briesmeister 1997) was used w,med to transport photons and accompanying electrons through various homogeneous and simple heterogeneousphantoms. ThemajorityofthecalculationsusedfullMonteCarlosimulations ofthetreatmentheadtodescribetheoutputbeamsfromthelinearaccelerator. Detailsofthe transportthroughthetreatmentheadaregivenelsewhere(Siebersetal1999),andarereviewed herebriefly. Electronswithenergyequaltothenominalaccelerationpotentialofthetherapy acceleratorwereincidentupontheacceleratorbremsstrahlungtarget. Photonsandelectrons exiting the target were transported through the beam-line components (primary collimator, flatteningfilterandionizationchamber)andhadtheirenergy,positionanddirectionstoredinto aphase-spacedescriptionfile. Thesesavedparticleswerethensampledandtransportedinthis studythroughthebeam-definingjawstoaphantomwhosesurfacewasattheisocentreplane location. Particlesweretransportedthroughaphantomandtheprimaryelectronfluenceinthe phantommedium((8 ) )wasscored(toscoreonlyprimaryfluence, theMCNPparameter E m RNOKwassetto0). Thelowenergyelectroncut-offenergywassetto7.5keVfortheMonte Carlo simulation in this study. Below this energy, the electron fluence was estimated to be equaltothefluenceat7.5keVandthemeanstoppingpowerfortheseelectronswasestimated tobeequaltotheresidualenergydividedbytheCSDArange. Theuncertaintyintroducedby thistechniqueisaddressedintheresultssection. Monte Carlo simulations were performed for 6 MV and 18 MV photon beams from a Varian2100Caccelerator. Thefieldsizewassetto10 10cm2at100cmSSDincidentupon ⇥ a 50 50 50 cm3 phantom. The electron fluence in each scoring region was determined ⇥ ⇥ using the track length estimate of the cell flux (which in steady state conditions equals the cell fluence). In each region of the phantom, the electron fluence was used to compute the fluence-averagedmediumandwaterstoppingpowervalues,andthestoppingpowerratio(using equation(2)). Stoppingpowerratioswithrespecttowaterweredeterminedforair(ICRU-44 1988),lung(ICRU-441988),ICRUtissue(ICRU-331980),softbone(spongiosa)(ICRU-44 1988)andcorticalbone(ICRP-231975). Thedensitiesandcompositionsofthesematerials arelistedintable1. Althoughairisnotapatientmaterial,itisincludedinthisworksoresults canbecomparedwithAndreoandBrahme(1986)whoevaluateds usingSpencer–Attix w,air theoryforionizationchamberdosimetryasfunctionsofdepthandfieldsize. The variation of the dose ratio as a function of off-axis position and depth was studied by evaluating s at multiple depths in a pure water phantom both inside and outside w,med the 10 10 cm2 field. For the ‘inside the field’ evaluation, (8 ) was evaluated inside a E m ⇥ 4 4cm2areacentredaboutthecentralaxis,whilethe‘outsidethefield’evaluationconsisted ⇥ of evaluating (8 ) for electrons outside a 12 12 cm2 area centred on the central axis. E m ⇥ 1 108 phase-spaceparticlesweretransportedfromthephase-spacedefinitionplaneinthis ⇥ portionofthestudy. The electron spectra produced in photon interactions will depend upon the material in whichthetransporttakesplace. Toinvestigatetheinfluenceofthedifferingelectronenergy spectra produced by various patient-like materials on s , the field-positional tests above w,med wererepeatedwiththewaterphantomreplacedwithacorticalboneandalung-tissuephantom. Thestoppingpowerratiowasalsoevaluatedattheinterfacebetweenlungandboneslabs toinvestigateiftheratiovariesinsituationsofelectronicdisequilibrium. Twophantomswere 986 JVSiebersetal Table 1. The atomic percentage composition by relative mass of the materials used in these calculationsaswellasthephysicaldensity,andthedensityrangeoverwhichthematerialisused inourMonteCarlodosecalculations. Density [densityrange] Material (gcm�3) H C N O Other Water 1.0 11.2 88.8 Air 1.2⇥10�3[0–0.08] 0.0124 75.5 23.2 Ar1.28 (ICRU-441988) Lung 0.26[0.08–0.5] 10.3 10.5 3.1 74.9 Na0.2,P0.2,S0.3,Cl0.3, (ICRU-441988) K0.2 ICRUtissue 1.0[0.5–1.1] 10.1 11.1 2.6 76.2 (ICRU-331980) Softbone 1.18[1.1–1.4] 8.5 40.4 2.8 36.7 Na0.1,Mg0.1,P3.4,S0.2, (ICRU-441988) Cl0.2,K0.1,Ca7.4,Fe0.1 Corticalbone 1.85[1.4–2.5] 4.72 14.4 4.20 44.6 Mg0.22,P10.5,S0.315, (ICRP-231975) Ca21.0,Zn0.01 configured. Oneconsistedofa5cmthicksemi-infinitelung(⇢ 0.25gcm 3)slabfollowed � = by a 5 cm thick semi-infinite cortical bone (⇢ 1.85 g cm 3) slab; the other phantom � = was similar, except the bone slab preceded the lung slab. In this case, the electron fluence crossingthelung–boneinterfacewithin4cmofthebeamcentralaxiswasscoredandusedto computethefluenceaveragedstoppingpowerratioswithrespecttowaterforeachmaterial. Thesesimulationswereperformedfor6MVand18MVphotonsusing1 109 phase-space ⇥ particles. Additional calculations were performed using pre-computed energy spectra incident on thephantomtodetermines forphotonbeamscommonlyusedinradiotherapy. The60Co w,air beamenergyspectrumfromRogersetal(1988)wasused,whichincludestheeffectofphotons scatteredinthesourceandbythebeamcollimators. Energyspectrafor4,6,10,15and24MV acceleratorswereusedfromthecalculationsofMohanetal (1985). Inthesecases,a10cm diameterinputbeamwasnormallyincidentuponthephantom. Thetrack-lengthaverageofthe primaryelectronfluenceinthecentre8cmdiameterregionwasscoredasafunctionofdepth inwater,lungandbonephantoms. Theseprimaryelectronfluenceswereusedtocomputethe water-to-mediumstoppingpowerforeachmateriallistedintable1. Thegeometricdifferences inthebeamorientationandthescoringgeometrybetweenthesecalculationsandthefullMonte Carlosimulationsareexpectedtobenegligible. InmostpatienttreatmentplanningMonteCarlodosecalculations,dataforagivenmaterial (mass-stoppingpowersandcross-sections)arepre-calculatedatagivendensity,andthenused overarangeofmaterialdensities. Inreality, thestoppingpowerofthematerialvarieswith the material density due to the density effect (Swann 1938, ICRU-37 1984). To study the effectofmaterialdensityonstoppingpowerratioevaluation,stoppingpowerratiovalueswith respecttowaterwereevaluatedattheminimum,maximumandnominaldensityvaluesshown intable1. Inordertoextendtheconceptslistedinthispapertomaterialsandenergiesnotcoveredin thispaper,aneffectiveenergy(E )forthestoppingpowerratiolook-upisdefinedastheenergy eff at which the mono-energetic stopping power equals that produced by (8 ) . The effective E m energyforeachpre-computedenergyspectrawasdeterminebyleastsquaresminimizationof thedifferencebetweentheMonteCarlodeterminedaveragestoppingpowerratioandthatat the sample effective energy for each material. A linear fit was then applied to the nominal Convertingabsorbeddosetomediumtoabsorbeddosetowater 987 accelerationpotentialversuseffectiveenergyresultstoallowinterpolationtodifferentnominal accelerationpotentials. AlthoughotherbeamqualityspecifierssuchasTPR20/10arebetter indicatorsofthebeamquality,useofthenominalacceleratingpotentialisjustifiedheregiven thatthedependenceofs onbeamqualityisweak. ItcanbenotedthatneitherE nor w,med eff TPR20/10allowsaccuratesimpleinterpolationofs . w,air Theeffectofapplyingthedose-to-mediumcorrectionfactorsonpatientdosecalculationsis demonstratedonaheadandnecktreatmentplan. Here,aMonteCarlopatientdosecalculation was performed using MCV, an in-house developed Monte Carlo dose calculation system directlylinkedtotheADACPinnacle†treatmentplanningsystem. Isodoseanddose–volume histogramsaregivenforbothdose-to-mediumanddose-to-waterpatientdosecalculations. 4. Results Thedependenceofs onenergyformono-energeticelectronsfortypicalpatientmaterials w,med is shown in figure 1. (A similar plot evaluated at the mean energy of primary electrons for electronbeams,butlikelyapplicabletoelectronenergyspectraindependentoftheirsource,can befoundinBrahmeetal(1988).) Stoppingpowervalueswerecomputedusingthecomputer codeESTAR(Berger1993)whichusestheICRU-37(1984)formalismanddata. From0.01to 20MeV,thestoppingpowerratioformono-energeticelectronschangessubstantially(>4%) forair,corticalboneandlung,whileforICRUtissueandsoftbone,theratiovarieslittle. Figure1.Water-to-mediummasscollisionstoppingpowerratiosasafunctionofelectronenergy. Materialsindicatedareasspecifiedintable1. Inordertodetermines foraphotonbeam,firsttheprimaryelectronfluence((8 ) ) w,med E m over which the stopping-power ratio is calculated must be determined. Figure 2 displays (8 ) computedatdepthsof1.5and45cminawaterphantomfor6MVand18MVphoton E m † ADACLaboratories,Milpitas,CA95035,USA. 988 JVSiebersetal Figure2. Fluenceofprimaryelectronscomputedatdepthsof1.5cmand45cmfor6MVand 18MVphotons. beams. Thedepthswerechosenfordisplayastheyshowthemaximumdeviationin(8 ) E m for the depths computed. For each incident photon beam, the electron spectrum shifts to higherenergiesasthedepthincreases. Fortheinstanceofthe6MVphotonbeam,themean electronenergyat1.5cmdepthis1.00MeVwhileat45cmdepth,themeanelectronenergy is1.16MeV. The stopping power ratio computed using the 6 MV and 18 MV electron energy as a function of depth in a water phantom is shown in figure 3. At both energies, the water-to- mediumstoppingpowerratiosarenearlyconstantasafunctionofdepthinthephantomfor the materials of interest. Values at 10 cm depth in the phantom are given in table 2. The statisticaluncertaintiesinthes valuesarelessthan0.1%. Thesystematicuncertaintiesof w,med stoppingpowervaluesandstoppingpowerratiosarediscussedinICRU-37(1984)andAndreo (1990). Theeffectofestimatingtheelectronfluencebelow7.5keVasbeingthesameasthat at7.5keVhadlittleeffectonthecalculationasignoringtheelectronfluencebelow7.5keV changeds byonly0.1%. w,med Evaluationofthestoppingpowerratioinacorticalbonephantomandlungphantom(using theelectronenergyspectraproducedinthesematerials)revealedresultssimilartothewater phantomresults. Valuesat10cmdepthinthesephantommaterialsaresummarizedintable2. Fortypicalpatientmedia, s isinsensitivetovariationsintheelectronspectraproduced w,med byphotontransportinthatmaterial. Otherlocationswhere(8 ) ands mightbeexpectedtovaryareatmaterialinterfaces E m w,med andoutsidethetreatmentfield. Table2alsosummarizesresultsfromtheevaluationofs w,med outside the treatment field area and at lung–bone and bone–lung interfaces. For the patient materials(neglectingair),s isquiteconstantfortheconditionsstudied. Themaximum w,med deviationof1.1%seenforcorticalboneisduethefactthattheoutsidethefield,theelectron Convertingabsorbeddosetomediumtoabsorbeddosetowater 989 (a) (b) Figure 3. Water-to-medium stopping power ratios as a function of depth in the phantom for (a)6MVphotonsand(b)18MVphotons.Thephantommaterialforthiscaseiswater. energyspectrumisshiftedtolowerenergiesduetoapredominanceofscatteredphotons. The bone s changes more than the other patient materials due to its higher effective atomic w,med number. Theseresults,combinedwiththepreviousresults,showthatforpatientmedia,s w,med 990 JVSiebersetal Table2. Averagewater-to-mediumstoppingpowerratioscalculatedforthevarietyofconditions andphantomsstudied. Theincidentbeamwas10 10cm2atthephantomsurface. Thein-field resultsevaluatethedoseratiowithinthecentral4 ⇥4cm2areaofthisfieldwhiletheoutside-field resultsevaluatetheratiooutsidea12 12cm2⇥area. Thein-fieldandoutside-fieldresultsare ⇥ evaluatedatadepthof10cmdepth,whiletheothersareatthedepthoftheinterface. ICRU Soft Cortical Location Air Lung tissue bone bone 6MV Infield(water) 1.117 0.999 1.010 1.035 1.116 Infield(bone) 1.117 1.000 1.010 1.035 1.117 Lung–bone 1.120 1.000 1.010 1.035 1.117 Bone–lung 1.118 1.001 1.010 1.035 1.116 Outsidefield 1.132 1.006 1.010 1.035 1.127 18MV Infield(water) 1.085 0.985 1.010 1.035 1.110 Infield(bone) 1.086 0.986 1.010 1.035 1.111 Lung–bone 1.092 0.989 1.010 1.035 1.111 Bone–lung 1.086 0.987 1.010 1.035 1.110 Outsidefield 1.117 0.999 1.010 1.035 1.112 Table3.Calculatedwater-to-mediumstoppingpowerratiosat10cmdepthforthebeamenergies specified. AlsoincludedistheSpencer–Attix(sSA )stoppingpowerratiocomputedforeachof w,air thesespectrabyAndreoandBrahme(1986). Air (Andreo) ICRU Soft Cortical Beamenergy (sSA ) Air Lung tissue bone bone w,air 60Co 1.133 1.131 1.008 1.010 1.034 1.119 4MV 1.126 1.123 1.003 1.010 1.034 1.117 6MV 1.120 1.117 0.999 1.010 1.035 1.116 10MV 1.108 1.103 0.992 1.010 1.035 1.113 15MV 1.097 1.090 0.988 1.010 1.035 1.111 24MV 1.078 1.071 0.981 1.010 1.035 1.108 isaratherinsensitiveparameter. Thus,undertheassumptionthatBragg–Graycavitytheory isvalid,forphotonbeamsasinglecorrectionfactorcanbeusedforeachmediumforagiven photonenergywhenconvertingabsorbeddosetomediumtoabsorbeddosetowater. Inother words,forphotonbeams,avoxel-by-voxelevaluationofthedosetomediumanddosetowater isnotrequired. Water-to-mediumstoppingpowerratiosevaluatedusingpre-computedpublishedenergy spectraaresummarizedintable3. Theresultsat6MVagreewiththevaluesobtainedusingthe fullMonteCarlosimulation(table2),andthe15and24MVresultsbracketthe18MVresults fromthefullsimulation,confirmingthatthegeometricapproximationsmadeforthissimulation are negligible. ICRU tissue and soft-bone s values do not depend upon the photon w,med energyfrom60Coto24MV,whilelungandcorticalbonevaluesdecreaseby2.7%and1.1% respectively. Theairs change(from1.131to1.071)issignificant, andagreeswiththe w,med Spencer–AttixstoppingpowerratiosreportedbyAndreoandBrahme(1986)towithin0.7%. Evaluations of s at the minimal, nominal and maximum material densities (from w,med table1)foragivenmaterialforan18MVbeamareshowninfigure4. Notethatthedifference between lung and ICRU tissue stopping power ratios is almost entirely due to the material density. Thestoppingpowerratiodeviatesfromthatevaluatedatthenominaldensitybyupto Convertingabsorbeddosetomediumtoabsorbeddosetowater 991 Figure4. Thewater-to-mediumstoppingpowerratioscomputedusingstoppingpowersatthe physicalmaterialdensity, andalsoatthelimitsofthedensityrangesshownintable1, forthe 18MVbeam. Table4.Effectiveenergyforlookingupthestoppingpowerratioforeachmaterialat10cmdepth. Effectiveenergyisdefinedastheenergyatwhichthemono-energeticstoppingpowerratioequals thatobtainedusingtheenergyspectra. Foreachmaterial,thedeviationfromtheMCdetermined stoppingpowerratioisalsogiven. Nominal ICRU Soft Cortical energy Eeff Air Lung tissue bone bone 60Co 0.098 0.2% 0.1 0 0.1 0 � � 4MV 0.731 0 0.1 0 0.3 0.1 � � 6MV 0.905 0 0 0 0.2 0 � 10MV 1.245 0.3% +0.3 0 0.3 0 � � 15MV 1.578 0.4% +0.6 0 0.3 0 � � 24MV 2.364 0.3% +0.9 0 0.2 0 � � 0.6%forICRUtissue,0.3%forlung,0.2%forsoftboneand0.5%forcorticalboneat6MV, whileat18MVthedifferencesare1.3%forICRUtissue,1.0%forlung,0.4%forsoftbone and 0.8% for cortical bone. Thus, for Monte Carlo codes that evaluate the stopping power at the local density of each voxel, the use of a single s for all densities of the material w,med introduces a maximum error of 1.3%. For Monte Carlo codes that use stopping power data fromanominaldensityatalldensitiesofagivenmedium,s isproperlyevaluatedatthe w,med nominaldensity. Theeffectiveenergies(E )forlook-upofs foreachpre-computedenergyspectra eff w,med arelistedintable4. Usingthistable, s valuesformaterialsnotlistedinthispapercan w,med becomputedbylookingupthemono-energetics attheE forthenominalacceleration w,med eff potentialslisted. Themaximumerrorobservedusingthismethodtodetermines isless w,med
Description: