ebook img

Convergence of One-Parameter Operator Semigroups: In Models of Mathematical Biology and Elsewhere PDF

454 Pages·2016·13.154 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Convergence of One-Parameter Operator Semigroups: In Models of Mathematical Biology and Elsewhere

ConvergenceofOne-ParameterOperatorSemigroups This book presents a detailed and contemporary account of the classical the- ory of convergence of semigroups and its more recent developments treating the case where the limit semigroup, in contrast to the approximating semi- groups,actsmerelyonasubspaceoftheoriginalBanachspace(thisisthecase, for example, with singular perturbations). The author demonstrates the far- reachingapplicationsofthistheoryusingrealexamplesfromvariousbranches of pure and applied mathematics, with a particular emphasis on mathemati- calbiology.Theseexamplesalsoserveasshort,nontechnicalintroductionsto biologicalconceptsinvolved,allowingreaderstodevelopintuitionsunderlying mathematicalresults. Thebookmayserveasausefulreference,containingasignificantnumber ofnewresultsrangingfromtheanalysisoffishpopulationstosignalingpath- waysinlivingcells.Itcomprisesmanyshortchapters,whichallowsreadersto pickandchoosethosetopicsmostrelevanttothem,anditcontains160end-of- chapterexercisessothatreaderscantesttheirunderstandingofthematerialas theygoalong. Adam Bobrowski isaprofessorandChairmanoftheDepartmentofMath- ematics at Lublin University of Technology, Poland. He has authored over 50 scientific papers and two books Functional Analysis for Probability and StochasticProcessesandAnOperatorSemigroupinMathematicalGenetics. NEW MATHEMATICAL MONOGRAPHS EditorialBoard BélaBollobás,WilliamFulton,AnatoleKatok,FrancesKirwan,PeterSarnak, BarrySimon,BurtTotaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversity Press.Foracompleteserieslisting,visitwww.cambridge.org/mathematics. 1. M.CabanesandM.EnguehardRepresentationTheoryofFiniteReductiveGroups 2. J.B.GarnettandD.E.MarshallHarmonicMeasure 3. P.CohnFreeIdealRingsandLocalizationinGeneralRings 4. E.BombieriandW.GublerHeightsinDiophantineGeometry 5. Y.J.IoninandM.S.ShrikhandeCombinatoricsofSymmetricDesigns 6. S.Berhanu,P.D.CordaroandJ.HounieAnIntroductiontoInvolutiveStructures 7. A.ShlapentokhHilbert’sTenthProblem 8. G.MichlerTheoryofFiniteSimpleGroupsI 9. A.BakerandG.WüstholzLogarithmicFormsandDiophantineGeometry 10. P.KronheimerandT.MrowkaMonopolesandThree-Manifolds 11. B.Bekka,P.delaHarpeandA.ValetteKazhdan’sProperty(T) 12. J.NeisendorferAlgebraicMethodsinUnstableHomotopyTheory 13. M.GrandisDirectedAlgebraicTopology 14. G.MichlerTheoryofFiniteSimpleGroupsII 15. R.SchertzComplexMultiplication 16. S.BlochLecturesonAlgebraicCycles(2ndEdition) 17. B.Conrad,O.GabberandG.PrasadPseudo-ReductiveGroups 18. T.DownarowiczEntropyinDynamicalSystems 19. C.SimpsonHomotopyTheoryofHigherCategories 20. E.FricainandJ.MashreghiTheTheoryofH(b)SpacesI 21. E.FricainandJ.MashreghiTheTheoryofH(b)SpacesII 22. J.Goubault-LarrecqNon-HausdorffTopologyandDomainTheory 23. J.S´niatyckiDifferentialGeometryofSingularSpacesandReductionofSymmetry 24. E.RiehlCategoricalHomotopyTheory 25. B.A.MunsonandI.Volic´CubicalHomotopyTheory 26. B.Conrad,O.GabberandG.PrasadPseudo-ReductiveGroups(2ndEdition) 27. J.Heinonen,P.Koskela,N.ShanmugalingamandJ.T.TysonSobolevSpacesonMetric MeasureSpaces 28. Y.-G.OhSymplecticTopologyandFloerHomologyI 29. Y.-G.OhSymplecticTopologyandFloerHomologyII 30. A.BobrowskiConvergenceofOne-ParameterOperatorSemigroups Convergence of One-Parameter Operator Semigroups In Models of Mathematical Biology and Elsewhere ADAM BOBROWSKI LublinUniversityofTechnology,Poland UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107137431 ©AdamBobrowski2016 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2016 AcataloguerecordforthispublicationisavailablefromtheBritishLibrary ISBN978-1-107-13743-1Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Tothemostenthusiasticdrummer,boxer,andeaterever–myson Marek Contents Preface pagexi 1 SemigroupsofOperatorsandCosineOperatorFunctions 1 PART I REGULAR CONVERGENCE 2 TheFirstConvergenceTheorem 13 3 ContinuousDependenceonBoundaryConditions 17 4 SemipermeableMembrane 24 5 ConvergenceofForms 32 6 UniformApproximationofSemigroups 40 7 ConvergenceofResolvents 45 8 (Regular)ConvergenceofSemigroups 51 9 AQueueinHeavyTraffic 56 10 ElasticBrownianMotions 60 11 BacktotheMembrane 65 12 TelegraphwithSmallParameter 70 13 MinimalMarkovChains 74 14 OutsideoftheRegularitySpace:ABird’s-EyeView 81 15 Hasegawa’sCondition 85 16 Blackwell’sExample 90 viii Contents 17 Wright’sDiffusion 96 18 Discrete-TimeApproximation 100 19 Discrete-TimeApproximation:Examples 105 20 BacktoWright’sDiffusion 112 21 Kingman’sn-Coalescent 116 22 TheFeynman–KacFormula 121 23 TheTwo-DimensionalDiracEquation 128 24 ApproximatingSpaces 132 25 Boundedness,Stabilization 136 PART II IRREGULAR CONVERGENCE 26 FirstExamples 145 27 ExtremelyStrongGeneticDrift 152 28 TheNatureofIrregularConvergence 157 29 IrregularConvergenceIsPreservedUnder BoundedPerturbations 163 30 Stein’sModel 166 31 UniformlyHolomorphicSemigroups 171 32 AsymptoticBehaviorofSemigroups 177 33 FastNeurotransmitters 189 34 FastNeurotransmittersII 197 35 FromDiffusionsonGraphstoMarkovChainsand BackAgain 203 36 SemilinearEquations,EarlyCancerModeling 210 37 Coagulation-FragmentationEquation 219 38 HomogenizationTheorem 228 39 ShadowSystems 236 Contents ix 40 Kinases 241 41 UniformlyDifferentiableSemigroups 250 42 Kurtz’sSingularPerturbationTheorem 253 43 ASingularlyPerturbedMarkovChain 258 44 ATikhonov-TypeTheorem 263 45 FastMotionandFrequentJumpsTheoremsforPiecewise DeterministicProcesses 271 46 ModelsofGeneRegulationandGeneExpression 281 47 Oligopolies,ManufacturingSystems,andClimateChanges 287 48 ConvexCombinationsofFellerGenerators 292 49 TheDorrohTheoremandtheVolkonskiiFormula 299 50 ConvexCombinationsinBiologicalModels 303 51 Recombination 311 52 Recombination(Continued) 318 53 AveragingPrincipleofFreidlinandWentzell: Khasminskii’sExample 327 54 ComparingSemigroups 335 55 RelationstoAsymptoticAnalysis 341 56 Greiner’sTheorem 345 57 FishPopulationDynamicsandConvexCombinationof BoundaryConditions 352 58 AveragingPrincipleofFreidlinandWentzell:Emergenceof TransmissionConditions 361 59 AveragingPrincipleContinued:L1-Setting 370 PART III CONVERGENCE OF COSINE FAMILIES 60 RegularConvergenceofCosineFamilies 383 61 CosinesConvergeinaRegularWay 390

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.