ebook img

Convergence of logarithmic means of quadratical partial sums of double Fourier series PDF

0.17 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Convergence of logarithmic means of quadratical partial sums of double Fourier series

CONVERGENCE OF LOGARITHMIC MEANS OF QUADRATICAL PARTIAL SUMS OF DOUBLE FOURIER SERIES UHANGI GOGINAVA Abstract. Inthis paperweinvestigatesomeconvergenceanddivergencepropertiesofthe 3 logarithmic means of quadratical partial sums of double Fourier series of functions in the 1 0 measure and in the L Lebesgue norm. 2 n 1. Introduction a J 3 In the literature, it is known the notion of the Riesz’s logarithmic means of a Fourier series. 1 The n-th mean of the Fourier series of the integrable function f is defined by ] n−1 P 1 Sk(f) , A l k n . Xk=1 h where S (f) is the partial sum of its Fourier series. This Riesz’s logarithmic means with t k a respect to the trigonometric system has been studied by a lot of authors. We mention for m instance the papers of Szász, and Yabuta [13, 14]. This mean with respect to the Walsh, [ Vilenkin system is discussed by Simon, and Gát [12, 2]. 1 v Let {q : k ≥ 0} be a sequence ofnonnegative numbers. The Nörlund means for the Fourier k 7 series of f are defined by 5 n−1 7 1 2 n q qn−kSk(f). 1. k=1 k k=0 X 30 If qk = k1, then we get the (NörlundP) logarithmic means: 1 n−1 n 1 S (f) 1 : k v ,l := . n l n−k k i n X k=0 k=1 X X r Inthis paper we call it logarithmic means. Although, it isa kind of “reverse” Riesz’s logarith- a mic means. In [6] we proved some convergence and divergence properties of the logarithmic means of Walsh-Fourier series of functions in the class of continuous functions, and in the Lebesgue space L. In this paper we discuss some convergence and divergence properties of logarithmic means of quadratical partial sums of the double Fourier series of functions in the L Lebesgue norm (see Theorems 2 and 3 ). The partial sums S (f) of the Fourier series of a function f ∈ L(T), T = [−π,π) con- n verges in measure on T. The condition f ∈ LlogL(T2) provides convergence in measure on T2 of the rectangular partial sums S (f) of double Fourier series [15]. The first example n,m of a function from classes wider than LlogL(T2) with S (f) divergent in measure on T2 n,n was obtained in Getsadze [9] and Konyagin [11]. 2010 Mathematics Subject Classification 42A24 . Key words and phrases: double Fourier series, Orlicz space, Convergence in measure 1 2 UHANGIGOGINAVA Inthepresentpaperweinvestigateconvergenceinmeasureoflogarithmicmeansofquadrat- ical partial sums n−1 1 S (f,x,y) i,i l n−i n i=0 X of double Fourier series and prove Theorem 4, that is, for any Orlicz space, which is not a subspace of LlogL(I2), the set of the functions that these means converges in measure is of first Baire category. From this result follows that (Corollary 1) in classes wider than LlogL(T2) there exists functions f for which logarithmic means t (f) of quadratical partial n sums of double Fourier series diverges in measure. Besides, it is surprising that the two cases (thelogarithmicmeansofquadraticalandthetwo-dimensionalpartialsums)arenotdifferent inthispointofview. Namely, forinstanceinthecaseof(C,1)meanswehaveaquitedifferent n situation. That is, it is well-known [15] that the Marcinkiewicz means σ (f) = 1 S (f), n n j,j j=1 that is the (C,1) means of quadratical partial sums of double trigonometric FouPrier series of a function f ∈ L converges in L-norm and a.e. to f. Thus, in question of convergence in measure and in norm logarithmic means of quadratical partial sums of double Fourier series differs from Marcinkiewicz means and like the usual quadratical partial sums of double Fourier series. The results for summability of quadratical partial sums of Walsh-Fourier series can be found in [7, 5] 2. Definitions and Notation We denote by L = L (T2) the Lebesque space of functions that are measurable and finite 0 0 almost everywhere on T2 = [−π,π) × [−π,π). mes(A) is the Lebesque measure of the set A ⊂ T2. Let L = L (T2) be the Orlicz space [10] generated by Young function Q, i.e. Q is convex Q Q continuous even function such that Q(0) = 0 and Q(u) Q(u) lim = +∞, lim = 0. u→+∞ u u→0 u This space is endowed with the norm kfk = inf{k > 0 : Q(|f(x,y)|/k)dxdy ≤ 1}. LQ(T2) ZZ T2 In particular, if Q(u) = ulog(1+u) and Q(u) = ulog2(1+u) u > 0, then the correspond- ing space will be denoted by LlogL(T2) and Llog2L(T2), respectively. Let f ∈ L (T2). The Fourier series of f with respect to the trigonometric system is the 1 series +∞ S[f] := f (m,n)eimxeiny, m,n=−∞ X where b 1 f (m,n) = f(x,y)e−imxe−inydxdy 4π2 ZZ T2 b CONVERGENCE OF LOGARITHMIC MEANS 3 are the Fourier coefficients of the function f. The rectangular partial sums are defined as follows: M N S (f;x,y) := f (m,n)eimxeiny. M,N m=−Mn=−N X X The logarithmic means of quadratical partial sumbs of double Fourier series is defined as follows n−1 1 S (f,x,y) i,i t (f,x,y) = . n l n−i n i=0 X It is evident that t (f,x,y) = f (s,t)F (x−s,y −t)dsdt, n n ZZ T2 where n−1 1 D (t)D (s) k k F (t,s) = . n l n−k n k=0 X 3. Main Results It is well-known that the following theorem is true. Theorem 1. Let f ∈ Llog2L(T2). Then kS (f)−fk → 0 as n → ∞. nn L1(T2) Due to the inequality kt (f)−fk ≤ 1 n−1 kSkk(f)−fkL1(T2) n L1(T2) l n−k n k=0 X and the fact that the Nörlund logarithmic summability method is regular ([8], Ch. 3) Theorem 1 yield Theorem 2. Let f ∈ Llog2L(T2). Then 1 n−1 kSkk(f)−fkL1(T2) → 0 as n → ∞. l n−k n k=0 X In this paper we investigate the sharpness of Theorem 2. Moreover, we prove Theorem 3. Let L (T2) be an Orlicz space, such that Q L T2 * Llog2L(T2). Q Then (cid:0) (cid:1) a) supkt k = +∞; n LQ(T2)→L1(T2) n b) there exists a function f ∈ L (T2) such that t (f) does not converge to f in L (T2)- Q n 1 norm. 4 UHANGIGOGINAVA Theorem 4. Let L (T2) be an Orlicz space, such that Q L (T2) * LlogL(T2). Q Then the set of the functions from the Orlicz space L (T2) with logarithmic means of Q quadratical partial sums of double Fourier series convergent in measure on T2 is of first Baire category in L (T2). Q Corollary 1. Let ϕ : [0,∞[→ [0,∞[ be a nondecreasing function satisfying for x → +∞ the condition ϕ(x) = o(xlogx). Then there exists the function f ∈ L (T2) such that 1 a) ϕ(|f(x,y)|)dxdy < ∞; ZZ T2 b) logarithmic means of quadratical partial sums of double Fourier series of f diverges in measure on T2. 4. Auxiliary Results We apply the reasoning of [1] formulated as the following proposition in particular case. Theorem 5 (Garsia). Let H : L (T2) → L (T2) be a linear continuous operator, which 1 0 commutes with family of translations E, i. e. ∀E ∈ E ∀f ∈ L (T2) HEf = EHf. Let 1 kfkL1(T2) = 1 and λ > 1. Then for any 1 ≤ r ∈ N under condition mes{(x,y) ∈ T2 : |Hf| > λ} ≥ 1 there exist E ,...,E ,E′,...,E′ ∈ E and ε = ±1, i = 1,...,r such that r 1 r 1 r i r 1 mes{(x,y) ∈ T2 : |H( ε f(E x,E′y)| > λ} ≥ . i i i 8 i=1 X Lemma 1. Let {H }∞ be a sequence of linear continues operators, acting from Orlicz m m=1 space L (T2) in to the space L (T2). Suppose that there exists the sequence of functions Q 0 {ξ }∞ from unit bull S (0,1) of space L (T2), sequences of integers {m }∞ and {ν }∞ k k=1 Q Q k k=1 k k=1 increasing to infinity such that ε = infmes{(x,y) ∈ T2 : |H ξ (x,y)| > ν } > 0. 0 mk k k k ThenB - the setof functionsf from space L (T2), forwhich the sequence{H f} converges Q m in measure to an a. e. finite function is of first Baire category in space L (T2). Q The proof of Lemma 1 can be found in [3]. Lemma 2. Let L (T2) be an Orlicz space and let ϕ : [0,∞) → [0,∞) be measurable function Φ with condition ϕ(x) = o(Φ(x)) as x → ∞. Then there exists Orlicz space L (T2), such that ω ω(x) = o(Φ(x)) as x → ∞, and ω(x) ≥ ϕ(x) for x ≥ c ≥ 0. The proof of Lemma 2 can be found in [4]. CONVERGENCE OF LOGARITHMIC MEANS 5 Lemma 3. Let arccos(1/4)+2πm π/2+2πm α := ,β := ,n,m = 0,1,.... mn 22n +1/2 mn 22n +1/2 Then there exists a posotive integer n , such that 0 c F (x,y) ≥ ,n ≥ n , 22n 0 xy where 2n−3 (x,y) ∈ I := {(x,y) : α ≤ x ≤ β ,α ≤ x ≤ β }. n mn mn ln ln l,m=1 [ Proof of Lemma 3. We can write 22n D (x)D (y) 22n−k 22n−k (1) l F (x,y) = 22n 22n k k=1 X 22n 1sin(22n +1/2−k)xsin(22n +1/2−k)y = k 2sin x 2sin y k=1 2 2 X sin(22n +1/2)xsin(22n +1/2)y 22n coskxcosky = 2sin x 2sin y k 2 2 k=1 X cos(22n +1/2)xcos(22n +1/2)y 22n sinkxsinky + 2sin x 2sin y k 2 2 k=1 X sin(22n +1/2)xcos(22n +1/2)y 22n coskxsinky − 2sin x 2sin y k 2 2 k=1 X cos(22n +1/2)xsin(22n +1/2)y 22n sinkxcosky − 2sin x 2sin y k 2 2 k=1 X sin(22n +1/2)xsin(22n +1/2)y = 2sin x 2sin y 2 2 22n 22n 1 cosk(x+y) cosk(x−y) × + 2 k k ( ) k=1 k=1 X X cos(22n +1/2)xcos(22n +1/2)y + 2sin x 2sin y 2 2 22n 22n 1 cosk(x−y) cosk(x+y) × − 2 k k ( ) k=1 k=1 X X sin(22n +1/2)xcos(22n +1/2)y − 2sin x 2sin y 2 2 22n 22n 1 sink(x+y) sink(x−y) × − 2 k k ( ) k=1 k=1 X X 6 UHANGIGOGINAVA cos(22n +1/2)xsin(22n +1/2)y − 2sin x 2sin y 2 2 22n 22n 1 sink(x+y) sink(x−y) × + . 2 k k ( ) k=1 k=1 X X Since 22n cosku k k=1 X 22n−2 2 sin2 (k +1) u = 2 k(k +1)(k +2) 2sin2 u k=1 (cid:0) 2 (cid:1) X 1 sin2 22nu 1 sin(22n +1/2)u 3 − 2 + − 22n(22n −1) 2sin2 u 22n 2sin u 4 (cid:0) 2 (cid:1) 2 from (1) we have sin(22n +1/2)xsin(22n +1/2)y1 (2) l F (x,y) = 22n 22n 2sin x 2sin y 2 2 2 22n−2 2 sin2 (k +1) x+y × 2 k(k +1)(k +2) 2sin2 x+y k=1 (cid:0) 2 (cid:1) X sin(22n +1/2)xsin(22n +1/2)y1 + 2sin x 2sin y 2 2 2 22n−2 2 sin2 (k +1) x−y × 2 k(k +1)(k +2) 2sin2 x−y k=1 (cid:0) 2 (cid:1) X cos(22n +1/2)xcos(22n +1/2)y1 + 2sin x 2sin y 2 2 2 22n−2 2 sin2 (k +1) x−y × 2 k(k +1)(k +2) 2sin2 x−y k=1 (cid:0) 2 (cid:1) X cos(22n +1/2)xcos(22n +1/2)y1 − 2sin x 2sin y 2 2 2 22n−2 2 sin2 (k +1) x+y × 2 k(k +1)(k +2) 2sin2 x+y k=1 (cid:0) 2 (cid:1) X sin(22n +1/2)xsin(22n +1/2)y1 − 2sin x 2sin y 2 2 2 1 sin2 22nx+y × 2 22n(22n −1) 2sin2 x+y (cid:0) 2 (cid:1) sin(22n +1/2)xsin(22n +1/2)y1 1 sin((22n +1/2)(x+y)) + 2sin x 2sin y 222n 2sin x+y 2 2 2 CONVERGENCE OF LOGARITHMIC MEANS 7 sin(22n +1/2)xsin(22n +1/2)y3 − 2sin x 2sin y 2 2 2 sin(22n +1/2)xsin(22n +1/2)y 1 sin2 22nx−y − 2 2sin x 2sin y 22n+1(22n −1) 2sin2 x−y 2 2 (cid:0) 2 (cid:1) sin(22n +1/2)xsin(22n +1/2)y 1 sin((22n +1/2)(x−y)) + 2sin x 2sin y 22n+1 2sin x−y 2 2 2 cos(22n +1/2)xcos(22n +1/2)y 1 sin2 22nx−y − 2 2sin x 2sin y 22n+1(22n −1) 2sin2 x−y 2 2 (cid:0) 2 (cid:1) cos(22n +1/2)xcos(22n +1/2)y 1 sin((22n +1/2)(x−y)) + 2sin x 2sin y 22n+1 2sin x−y 2 2 2 cos(22n +1/2)xcos(22n +1/2)y 1 sin2 22nx+y − 2 2sin x 2sin y 22n+1(22n −1) 2sin2 x+y 2 2 (cid:0) 2 (cid:1) cos(22n +1/2)xcos(22n +1/2)y 1 sin((22n +1/2)(x+y)) + 2sin x 2sin y 22n+1 2sin x+y 2 2 2 sin(22n +1/2)xcos(22n +1/2)y − 2sin x 2sin y 2 2 22n 22n 1 sink(x+y) sink(x−y) × − 2 k k ( ) k=1 k=1 X X cos(22n +1/2)xsin(22n +1/2)y − 2sin x 2sin y 2 2 22n 22n 1 sink(x+y) sink(x−y) × + 2 k k ( ) k=1 k=1 X X 15 := R . j j=1 X Since 22n sinkx ≤ c < ∞,n = 1,2,.. k (cid:12) (cid:12) (cid:12)Xk=1 (cid:12) and (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12)2 π π (3) |sinx| ≥ |x|,− ≤ x ≤ π 2 2 we obtain 15 1 (4) |R | = O . j xy j=5 (cid:18) (cid:19) X Let (x,y) ∈ I . Then it is easy to show that n 1 sin 22n +1/2 x > 2 (cid:0) (cid:1) 8 UHANGIGOGINAVA and 1 cos 22n +1/2 x ≤ . 4 Consequently, from (3) we obtain (cid:0) (cid:1) R +R +R +R 1 2 3 4 ≥ R +R −R +R 1 2 3 4 1 1 22n−2 1 sin2 (k +1) x+y ≥ 2 4xy k(k +1)(k +2) 2sin2 x+y k=1 (cid:0) 2 (cid:1) X 1 1 22n−2 1 sin2 (k +1) x−y + 2 4xy k(k +1)(k +2) 2sin2 x−y k=1 (cid:0) 2 (cid:1) X 1 π 2 1 22n−2 1 sin2 (k +1) x+y − 2 16 2 xy k(k +1)(k +2) 2sin2 x+y (cid:16) (cid:17) Xk=1 (cid:0) 2 (cid:1) 1 π 2 1 22n−2 1 sin2 (k +1) x−y − 2 16 2 xy k(k +1)(k +2) 2sin2 x−y (cid:16) (cid:17) Xk=1 (cid:0) 2 (cid:1) c 2n−1−1 1 sin2 (k +1) x+y ≥ 2 xy k(k +1)(k +2) 2sin2 x+y k=1 (cid:0) 2 (cid:1) X c 2n−1−1 1 sin2 (k +1) x−y + 2 xy k(k +1)(k +2) 2sin2 x−y k=1 (cid:0) 2 (cid:1) X 2n−1−1 c 1 cn ≥ ≥ xy k xy k=1 X which complete the proof of Lemma 3. (cid:3) Corollary 2. Let n ≥ n and 0 ≤ s,t ≤ γ := π/2−arccos(1/4). Then 0 n 4(22n+1/2) c F (x−s,y −t) ≥ , 22n xy for (x,y) ∈ J n 2n−3 : = {(x,y) : α +γ ≤ x ≤ β −γ ,α +γ ≤ x ≤ β −γ }. mn n mn n ln n ln n l,m=1 [ 5. Proof of the Theorems Proof of Theorem 3. a) Let Q(24n) ≥ c24n for n > n . By virtue of estimate ([10], Ch2) 0 kfk ≤ c 1+kQ(|f|)k LQ(T2) L1(T2) (cid:16) (cid:17) CONVERGENCE OF LOGARITHMIC MEANS 9 we get (5) t π/2−arccos(1/4) 2 1[0,γn]2 22n 8 γ2 (cid:13)(cid:13) (cid:18) (cid:19) n !(cid:13)(cid:13)L1(T2) (cid:13) (cid:13) ≤ k(cid:13)(cid:13)t k π/2−arccos(1/4(cid:13)(cid:13)) 2 1[0,γn]2 22n LQ(T2)→L1(T2)(cid:13)(cid:13)(cid:18) 8 (cid:19) γn2 (cid:13)(cid:13)LQ(T2) (cid:13) (cid:13) ≤ ckt k (cid:13)(cid:13) 1+ Q π/2−arccos(1/4(cid:13)(cid:13)) 2 1[0,γn]2 22n LQ(T2)→L1(T2) (cid:13)(cid:13) (cid:18) 8 (cid:19) γn2 !(cid:13)(cid:13)L1(T2) (cid:13) (cid:13)  (cid:13) π/2−arccos(1/4) 2 1 (cid:13)  ≤ ckt k 1+γ(cid:13)2Q (cid:13) 22n LQ(T2)→L1(T2) n 8 γ2 (cid:18) (cid:19) n!! Q(24n) ≤ ckt k . 22n LQ(T2)→L1(T2) 24n On the other hand, from Corollary 2 we obtain t π/2−arccos(1/4) 2 1[0,γn]2;x,y 22n 8 γ2 (cid:18) (cid:19) n ! 2 γn γn π/2−arccos(1/4) 1 = F (x−s,y −t)dsdt 8 γ2 22n (cid:18) (cid:19) n Z Z 0 0 c ≥ , (x,y) ∈ J . n xy Consequently, (6) t π/2−arccos(1/4) 2 1[0,γn]2 22n 8 γ2 (cid:13)(cid:13) (cid:18) (cid:19) n !(cid:13)(cid:13)L1(T2) (cid:13) (cid:13) (cid:13) 1 (cid:13) ≥ (cid:13)c dxdy (cid:13) xy ZZ Jn 2n−3 c c ≥ c log 1+ log 1+ m l l,Xm=1 (cid:16) (cid:17) (cid:16) (cid:17) ≥ cn2. The fact that L (T2) * Llog2L(T2) is equivalet to the condition Q ulog2u lim = +∞. u→∞ Q(u) Thus there exists {u : k ≥ 1} such that k u log2u k k lim = +∞, u > u ,k = 1,2,... k+1 k k→∞ Q(uk) and a monotonically increasing sequence of positive integers {r : k ≥ 1} such that k 24rk ≤ u < 24(rk+1). k 10 UHANGIGOGINAVA Then we have 24rkr2 u log2u k ≥ c k k → ∞ as k → ∞, Q(24rk) Q(uk) thus from (5) and (6) we obtain that supkt k = +∞. 22n LQ(T2)→L1(T2) n Part b) follows immediately from part a). This completes the proof of Theorem 3. (cid:3) Proof of Theorem 4. By Lemma 1 the proof of Theorem 4 will be complete if we show that there exists sequences of integers {n : k ≥ 1} and {ν : k ≥ 1} increasing to infinity, and a k k sequence of functions {ξ : k ≥ 1} from the unit bull S (0,1) of Orlicz space L (T2), such k Q Q that for all k 1 (7) mes{(x,y) ∈ T2 : |t (ξ ;x,y)| > ν } ≥ . 22nk k k 8 First, we prove that there exists c ,c > 0 such that 1 2 (8) mes{(x,y) ∈ T2 : t 1[0,γn]2;x,y > c 23n} > c2n. 22n γ2 1 23n (cid:12) (cid:18) n (cid:19)(cid:12) (cid:12) (cid:12) From Corollary 2 we can write (cid:12) (cid:12) (cid:12) (cid:12) 1 (9) mes (x,y) ∈ T2 : t [0,γn]2;x,y > c 23n 22n γ2 1 (cid:26) (cid:12) (cid:18) n (cid:19)(cid:12) (cid:27) (cid:12) 1 (cid:12) ≥ mes (x,y) ∈ J : (cid:12)t [0,γn]2;x,y (cid:12)> c 23n n (cid:12)22n γ2 (cid:12) 1 (cid:26) (cid:12) (cid:18) n (cid:19)(cid:12) (cid:27) 1(cid:12) (cid:12) > mes{(x,y) ∈ J : (cid:12) > 23n}. (cid:12) n (cid:12) (cid:12) xy Set 1 r := max l : β ≤ +γ . n,m ln 23n(β −γ ) n (cid:26) mn n (cid:27) For the simple calculation we obtain that 2n r ∼ . n,m m Then from (9) we have 1 mes (x,y) ∈ T2 : t [0,γn]2;x,y > c 23n 22n γ2 1 (cid:26) (cid:12) (cid:18) n (cid:19)(cid:12) (cid:27) 2n−12rn,m (cid:12)(cid:12) (cid:12)(cid:12) ≥ c mes(J )(cid:12) (cid:12) n m=1 l=1 X X 2n−12 2n−12 c c 1 c n 2 ≥ r ≥ ≥ n,m 24n 23n m 23n m=1 m=1 X X Hence (8) is proved.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.