ebook img

Conventional and Alternative Power Generation: Thermodynamics, Mitigation and Sustainability PDF

286 Pages·2018·6.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Conventional and Alternative Power Generation: Thermodynamics, Mitigation and Sustainability

ConventionalandAlternativePowerGeneration Conventional and Alternative Power Generation Thermodynamics,MitigationandSustainability NeilPackerandTarikAl-Shemmeri Thiseditionfirstpublished2018 ©2018JohnWiley&Sons,Ltd Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailable athttp://www.wiley.com/go/permissions. TherightofNeilPackerandTarikAl-Shemmeritobeidentifiedastheauthor(s)ofthisworkhasbeen assertedinaccordancewithlaw. RegisteredOffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK EditorialOffices 9600GarsingtonRoad,Oxford,OX42DQ,UK TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproducts visitusatwww.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats. LimitofLiability/DisclaimerofWarranty Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkand specificallydisclaimallwarranties,including,withoutlimitation,anyimpliedwarrantiesofmerchantability orfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,written salesmaterialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproductis referredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthe publisherandauthorsendorsetheinformationorservicestheorganization,website,orproductmayprovide orrecommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengaged inrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyour situation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethat websiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhen itisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercial damages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages. LibraryofCongressCataloging-in-PublicationData Names:Packer,Neil,author.|Al-Shemmeri,Tarik,author. Title:Conventionalandalternativepowergeneration:thermodynamics, mitigationandsustainability/NeilPacker,Prof.TarikAl-Shemmeri. Description:1edition.|Chichester,UK;Hoboken,NJ:JohnWiley&Sons, 2018.|Includesbibliographicalreferencesandindex.| Identifiers:LCCN2018006236(print)|LCCN2018012068(ebook)|ISBN 9781119479376(pdf)|ISBN9781119479406(epub)|ISBN9781119479352 (cloth) Subjects:LCSH:Electricpowerproduction.|Renewableenergysources.| Thermodynamics. Classification:LCCTK1001(ebook)|LCCTK1001.P3252018(print)|DDC 621.31/21–dc23 LCrecordavailableathttps://lccn.loc.gov/2018006236 CoverDesign:Wiley CoverImages:©chinaface/iStockphoto; ©westcowboy/iStockphoto; ©DiyanaDimitrova/Shutterstock Setin10/12ptWarnockProbySPiGlobal,Chennai,India 10 9 8 7 6 5 4 3 2 1 v Contents Preface xi StructureoftheBook xiii Notation xvii 1 ThermodynamicSystems 1 1.1 Overview 1 LearningOutcomes 1 1.2 ThermodynamicSystemDefinitions 1 1.3 ThermodynamicProperties 1 1.4 ThermodynamicProcesses 3 1.5 FormationofSteamandtheStateDiagrams 4 1.5.1 PropertyTablesandChartsforVapours 6 1.6 IdealGasBehaviourinClosedandOpenSystemsandProcesses 7 1.7 FirstLawofThermodynamics 9 1.7.1 FirstLawofThermodynamicsAppliedtoOpenSystems 10 1.7.2 FirstLawofThermodynamicsAppliedtoClosedSystems 10 1.8 WorkedExamples 11 1.9 TutorialProblems 17 2 VapourPowerCycles 19 2.1 Overview 19 LearningOutcomes 19 2.2 SteamPowerPlants 19 2.3 VapourPowerCycles 20 2.3.1 TheCarnotCycle 21 2.3.2 TheSimpleRankineCycle 22 2.3.3 TheRankineSuperheatCycle 22 2.3.4 TheRankineReheatCycle 23 2.3.4.1 AnalysisoftheRankineReheatCycle 24 2.3.5 RealSteamProcesses 25 2.3.6 RegenerativeCycles 25 2.3.6.1 SingleFeedHeater 26 2.3.6.2 MultipleFeedHeaters 27 2.3.7 OrganicRankineCycle(ORc) 29 2.3.7.1 ChoiceoftheWorkingFluidforORc 29 vi Contents 2.4 CombinedHeatandPower 30 2.4.1 ScenarioOne:PowerOnly 30 2.4.2 ScenarioTwo:HeatOnly 31 2.4.3 ScenarioThree:HeatandPower 32 2.4.4 Cogeneration,TrigenerationandQuadGeneration 33 2.5 SteamGenerationHardware 33 2.5.1 SteamBoilerComponents 34 2.5.2 TypesofBoiler 35 2.5.3 FuelPreparationSystem 35 2.5.4 MethodsofSuperheatControl 36 2.5.5 PerformanceofSteamBoilers 36 2.5.5.1 BoilerEfficiency 36 2.5.5.2 BoilerRating 37 2.5.5.3 EquivalentEvaporation 38 2.5.6 SteamCondensers 38 2.5.6.1 CondenserCalculations 38 2.5.7 CoolingTowers 39 2.5.8 Power-stationPumps 39 2.5.8.1 PumpApplications 39 2.5.9 SteamTurbines 41 2.6 WorkedExamples 41 2.7 TutorialProblems 54 3 GasPowerCycles 57 3.1 Overview 57 LearningOutcomes 57 3.2 IntroductiontoGasTurbines 57 3.3 GasTurbineCycle 57 3.3.1 IrreversibilitiesinGasTurbineProcesses 58 3.3.2 TheCompressorUnit 58 3.3.3 TheCombustionChamber 59 3.3.4 TheTurbineUnit 60 3.3.5 OverallPerformanceofGasTurbinePlants 60 3.4 ModificationstotheSimpleGasTurbineCycle 61 3.4.1 HeatExchanger 61 3.4.2 Intercooling 61 3.4.3 Reheating 62 3.4.4 CompoundSystem 63 3.4.5 CombinedGasTurbine/SteamTurbineCycle 65 3.5 GasEngines 68 3.5.1 InternalCombustionEngines 68 3.5.2 TheOttoCycle 68 3.5.2.1 AnalysisoftheOttoCycle 69 3.5.3 TheDieselCycle 69 3.5.3.1 AnalysisoftheDieselCycle 70 3.5.4 TheDualCombustionCycle 71 3.5.4.1 AnalysisoftheDualCycle 72 3.5.5 DieselEnginePowerPlants 72 Contents vii 3.5.6 ExternalCombustionEngines–TheStirlingEngine 72 3.6 WorkedExamples 75 3.7 TutorialProblems 84 4 Combustion 87 4.1 Overview 87 LearningOutcomes 87 4.2 MassandMatter 87 4.2.1 ChemicalQuantities 88 4.2.2 ChemicalReactions 88 4.2.3 PhysicalQuantities 88 4.3 BalancingChemicalEquations 89 4.3.1 CombustionEquations 90 4.4 CombustionTerminology 90 4.4.1 OxidizerProvision 90 4.4.2 CombustionProductAnalyses 91 4.4.3 Fuelmixtures 92 4.5 EnergyChangesDuringCombustion 92 4.6 FirstLawofThermodynamicsAppliedtoCombustion 93 4.6.1 Steady-flowSystems(SFEE)[ApplicabletoBoilers,Furnaces] 93 4.6.2 ClosedSystems(NFEE)[ApplicabletoEngines] 93 4.6.3 FlameTemperature 94 4.7 OxidationofNitrogenandSulphur 94 4.7.1 NitrogenandSulphur 95 4.7.2 FormationofNitrogenOxides(NO ) 95 x 4.7.3 NO Control 97 x 4.7.3.1 ModifytheCombustionProcess 97 4.7.3.2 Post-flameTreatment 97 4.7.4 FormationofSulphurOxides(SO ) 98 x 4.7.5 SO Control 98 x 4.7.5.1 FlueGasSulphurCompoundsfromFossil-fuelConsumption 98 4.7.5.2 SulphurCompoundsfromPetroleumandNaturalGasStreams 100 4.7.6 AcidRain 100 4.8 WorkedExamples 101 4.9 TutorialProblems 111 5 ControlofParticulates 115 5.1 Overview 115 LearningOutcomes 115 5.2 SomeParticleDynamics 115 5.2.1 NatureofParticulates 115 5.2.2 Stokes’sLawandTerminalVelocity 116 5.3 PrinciplesofCollection 119 5.3.1 CollectionSurfaces 119 5.3.2 CollectionDevices 119 5.3.3 FractionalCollectionEfficiency 121 5.4 ControlTechnologies 121 5.4.1 GravitySettlers 121 viii Contents 5.4.1.1 Model1:UnmixedFlowModel 122 5.4.1.2 Model2:Well-mixedFlowModel 123 5.4.2 CentrifugalSeparatorsorCyclones 124 5.4.3 ElectrostaticPrecipitators(ESPs) 128 5.4.4 FabricFilters 132 5.4.5 SprayChambersandScrubbers 135 5.5 WorkedExamples 137 5.6 TutorialProblems 140 6 CarbonCaptureandStorage 145 6.1 Overview 145 LearningOutcomes 145 6.2 ThermodynamicPropertiesofCO 146 2 6.2.1 GeneralProperties 146 6.2.2 EquationsofState 148 6.2.2.1 TheIdealorPerfectGasLaw 148 6.2.2.2 TheCompressibilityFactor 148 6.2.2.3 VanderWaalEquationofState 148 6.2.2.4 Beattie–BridgemanEquation(1928) 149 6.2.2.5 Benedict–Webb–RubinEquation(1940) 150 6.2.2.6 Peng–RobinsonEquationofState(1976) 150 6.3 GasMixtures 150 6.3.1 FundamentalMixtureLaws 151 6.3.2 PVTBehaviourofGasMixtures 151 6.3.2.1 Dalton’sLaw 152 6.3.2.2 Amagat’sLaw 152 6.3.3 ThermodynamicPropertiesofGasMixtures 153 6.3.4 ThermodynamicsofMixtureSeparation 155 6.3.4.1 MinimumSeparationWork 155 6.3.4.2 SeparationofaTwo-componentMixture 156 6.4 GasSeparationMethods 157 6.4.1 ChemicalAbsorptionbyLiquids 157 6.4.1.1 AqueousCarbonDioxideandAlkanolamineChemistry 158 6.4.1.2 AlternativeAbsorberSolutions 159 6.4.2 PhysicalAbsorptionbyLiquids 160 6.4.3 Oxyfuel,CryogenicsandChemicalLooping 161 6.4.4 GasMembranes 162 6.4.4.1 MembraneFlux 163 6.4.4.2 MaximizingFlux 163 6.4.4.3 MembraneTypes 163 6.5 AspectsofCO ConditioningandTransport 164 2 6.5.1 Multi-stageCompression 165 6.5.2 PipeworkDesign 167 6.5.2.1 PressureDrop 167 6.5.2.2 Materials 167 6.5.2.3 MaintenanceandControl 167 6.5.3 CarbonDioxideHazards 168 Contents ix 6.5.3.1 Respiration 168 6.5.3.2 Temperature 168 6.5.3.3 Ventilation 168 6.6 AspectsofCO Storage 169 2 6.6.1 BiologicalSequestration 169 6.6.2 MineralCarbonation 171 6.6.3 GeologicalStorageMedia 172 6.6.4 OceanicStorage 174 6.7 WorkedExamples 176 6.8 TutorialProblems 182 7 PollutionDispersal 185 7.1 Overview 185 LearningOutcomes 185 7.2 AtmosphericBehaviour 186 7.2.1 TheAtmosphere 186 7.2.2 AtmosphericVerticalTemperatureVariationandAirMotion 187 7.3 AtmosphericStability 189 7.3.1 StabilityClassifications 190 7.3.2 StabilityandStackDispersal 191 7.3.2.1 Non-inversionConditions 191 7.3.2.2 InversionConditions 192 7.3.3 VariationinWindVelocitywithElevation 192 7.4 DispersionModelling 193 7.4.1 PointSourceModelling 193 7.4.2 PlumeRise 198 7.4.3 EffectofNon-uniformTerrainonDispersal 199 7.5 AlternativeExpressionsofConcentration 200 7.6 WorkedExamples 200 7.7 TutorialProblems 203 8 AlternativeEnergyandPowerPlants 207 8.1 Overview 207 LearningOutcomes 207 8.2 NuclearPowerPlants 208 8.2.1 ComponentsofaTypicalNuclearReactor 208 8.2.2 TypesofNuclearReactor 209 8.2.3 EnvironmentalImpactofNuclearReactors 209 8.3 SolarPowerPlants 210 8.3.1 PhotovoltaicPowerPlants 211 8.3.2 SolarThermalPowerPlants 215 8.4 BiomassPowerPlants 216 8.4.1 Forestry,AgriculturalandMunicipalBiomassforDirectCombustion 217 8.4.1.1 BulkDensity(kg/m3) 217 8.4.1.2 MoistureContent(%byMass) 217 8.4.1.3 AshContent(%byMass) 218 8.4.1.4 CalorificValue(kJ/kg)andCombustion 218 x Contents 8.4.2 AnaerobicDigestion 220 8.4.3 Biofuels 222 8.4.3.1 Biodiesel 222 8.4.3.2 Bioethanol 222 8.4.4 GasificationandPyrolysisofBiomass 223 8.5 GeothermalPowerPlants 224 8.6 WindEnergy 226 8.6.1 TheoryofWindEnergy 227 8.6.1.1 ActualPowerOutputoftheTurbine 229 8.6.2 WindTurbineTypesandComponents 230 8.7 Hydropower 230 8.7.1 TypesofHydraulicPowerPlant 231 8.7.1.1 Run-of-riverHydropower 231 8.7.1.2 StorageHydropower 232 8.7.2 EstimationofHydropower 233 8.7.3 TypesofHydraulicTurbine 233 8.8 WaveandTidal(orMarine)Power 233 8.8.1 CharacteristicsofWaves 234 8.8.2 EstimationofWaveEnergy 235 8.8.3 TypesofWavePowerDevice 235 8.8.4 TidalPower 237 8.8.4.1 TidalBarrageEnergy 238 8.8.4.2 TidalStreamEnergy 239 8.9 ThermoelectricEnergy 239 8.9.1 DirectThermalEnergytoElectricalEnergyConversion 240 8.9.2 ThermoelectricGenerators(TEGs) 241 8.10 FuelCells 242 8.10.1 PrinciplesofSimpleFuelCellOperation 243 8.10.2 FuelCellEfficiency 243 8.10.3 FuelCellTypes 244 8.11 EnergyStorageTechnologies 244 8.11.1 EnergyStorageCharacteristics 246 8.11.2 EnergyStorageTechnologies 246 8.11.2.1 HydraulicEnergy 246 8.11.2.2 PneumaticEnergy 247 8.11.2.3 IonicEnergy 247 8.11.2.4 RotationalEnergy 248 8.11.2.5 ElectrostaticEnergy 249 8.11.2.6 MagneticEnergy 249 8.12 WorkedExamples 250 8.13 TutorialProblems 255 A PropertiesofWaterandSteam 257 B ThermodynamicPropertiesofFuelsandCombustionProducts 263 Bibliography 265 Index 267 xi Preface Thermodynamics,oftentranslatedas‘movementofheat’,issimplythescienceofenergy andwork.Energyitselfisdescribedasthecapacitytodowork. French steam engineer Nicolas Leonard Sadi Carnot, who was well aware that the realizationofwaterpowerisafunctionofwaterlevelorheaddifferenceacrossatur- bine,suggestedin1824thatcapacityforworkandpoweracrossaheatenginewouldbe dependentontheprevailingtemperaturedifference. Between 1840 and 1850, British scientist and inventor James Joule investigated the natureofworkinarangeofforms,forexample,electricalcurrent,gascompressionand thestirringofaliquid.Heconcludedfromhisworkthat‘lost’mechanicalenergywould express itself as heat, for example, friction, air resistance etc., and hence spoke of the mechanicalequivalentofheat. In 1847, German physicist, Hermann Von Helmholtz first postulated the principle of energy accountancy and energy conservation. In 1849, British physicist William Thomson (later Lord Kelvin) is thought to have coined the term Thermodynamics to describethesubjectofenergystudy,andtheHelmholtzprinciplebecameenshrinedas theFirstlawofthermodynamics. In 1850, German physicist Rudolf Julius Emmanuel Clausius used the term entropy to describe non-useful heat and proposed that, in universal terms, entropy increase is a natural, spontaneous process, leading to the development of a Second law of thermodynamics.Thiscanbestatedinseveralwaysbutperhapsthesimplestisthatit isnotpossibleforanengineoperatinginacycletoconvertheatintoworkwith100% efficiency. Civilizations are often judged on their cultural legacy, described in terms of their contributiontoarchitecture,artandliterature,anditsspreadacrosstheglobe. Itcouldbearguedthatthecurrentmanifestationofhumancivilizationwillbejudged onthelegacyofitstechnologicalingenuityand,inparticular,itsendeavourstosupply energytoarapidlyexpandingplanetarypopulationseekingever-increasingstandards ofliving. Thechallengeistomakethemostefficientuseofenergysourcesandproducepower attheminimumcostandleastenvironmentalimpact.Failuretoachievethishasglobal consequencesintermsofanunwantedenvironmentallegacy.

Description:
A much-needed, up-to-date guide on conventional and alternative power generation This book goes beyond the traditional methods of power generation. It introduces the many recent innovations on the production of electricity and the way they play a major role in combating global warming and improving
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.