ebook img

Convective Properties of Rotating Two-Dimensional Core-Collapse Supernova Progenitors PDF

2.8 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Convective Properties of Rotating Two-Dimensional Core-Collapse Supernova Progenitors

SUBMITTEDTOAPJON2016JANUARY21 PreprinttypesetusingLATEXstyleemulateapjv.01/23/15 CONVECTIVEPROPERTIESOFROTATINGTWO-DIMENSIONALCORE-COLLAPSESUPERNOVAPROGENITORS E.CHATZOPOULOS1,9,SEANM.COUCH2,3,4,5,W.DAVIDARNETT6,7,ANDF.X.TIMMES8 1DepartmentofAstronomy&Astrophysics,FlashCenterforComputationalScience,UniversityofChicago,Chicago,IL,60637,USA 2DepartmentofPhysicsandAstronomy,MichiganStateUniversity,EastLansing,MI48824,USA 3DepartmentofComputationalMathematics,Science,andEngineering,MichiganStateUniversity,EastLansing,MI48824,USA 4NationalSuperconductingCyclotronLaboratory,MichiganStateUniversity,EastLansing,MI48824,USA 5JointInstituteforNuclearAstrophysics,MichiganStateUniversity,EastLansing,MI48824,USA 6StewardObservatory,UniversityofArizona,Tucson,AZ85721,USA 7AspenCenterforPhysics,Aspen,CO81611,USA 8SchoolofEarthandSpaceExploration,ArizonaStateUniversity,Tempe,AZ85287,USA 6 SubmittedtoApJon2016January21 1 0 ABSTRACT 2 Weexploretheeffectsofrotationonconvectivecarbon,oxygen,andsiliconshellburningduringthelatestages n ofevolutionina20M star.UsingtheModulesforExperimentsinStellarAstrophysics(MESA)weconstruct a (cid:12) 1Dstellarmodelsbothwithnorotationandwithaninitialrigidrotationof50%ofcritical. Atdifferentpoints J during the evolution, we map the 1D models into 2D and follow the multidimensional evolution using the 5 FLASH compressible hydrodynamics code for many convective turnover times until a quasi-steady state is 2 reached. We characterize the strength and scale of convective motions via decomposition of the momentum densityintovectorsphericalharmonics. Wefindthatrotationinfluencesthetotalpowerinsolenoidalmodes, ] R with a slightly larger impact for carbon and oxygen shell burning than for silicon shell burning. Including rotation in one-dimensional (1D) stellar evolution models alters the structure of the star in a manner that has S a significant impact on the character of multidimensional convection. Adding modest amounts of rotation to . h astellarmodelthatignoresrotationduringtheevolutionarystage,however,haslittleimpactonthecharacter p ofresultingconvection. Sincethespatialscaleandstrengthofconvectionpresentatthepointofcorecollapse - directly influence the supernova mechanism, our results suggest that rotation could play an important role in o settingthestageformassivestellarexplosions. r t Keywords: supernovae: general – hydrodynamics – convection – turbulence –stars: interiors – methods: nu- s a merical–stars: massive–stars: evolution [ 2 1. INTRODUCTION fidelity of 1D treatments of mixing. The properties of con- v vectiveoxygenshell–burningintheprogenitorofSN1987A The final years in the lives of massive stars are charac- 6 prior to collapse were studied by Baza´n & Arnett (1998) in terized by vigorous convective shell burning, hydrodynamic 1 2D hydrodynamics simulations. One of the implications of and convective instabilities and, in many cases, episodic 8 this study was the potential for post-explosion mixing of ra- mass-lossevents(Meakin&Arnett2007;Quataert&Shiode 5 dioactive 56Ni throughout the SN envelope. The first three- 2012;Shiode&Quataert2014;Smith&Arnett2014;Arnett 0 dimensional (3D) simulations of massive star oxygen shell . etal.2014)thatchangetheirthree-dimensionalstructureand 1 the initial conditions (ICs) for the core–collapse supernova convection were presented by Meakin (2006) and Meakin & 0 Arnett(2007).Thisworkshowedthattheboundariesbetween (CCSN) explosion. In addition, rotation and magnetic fields 6 non-convective and convective regions are not stationary as may further complicate the core-collapse process in a non- 1 standardMLTtheorypredictedbutdynamicalandthesource linearfashion. : ofgravitywaves. Arnett&Meakin(2011)followedupwith v The advanced stages of burning in massive stars have 2DsimulationsofsimultaneouslyactiveC,Ne,OandSiburn- i long been studied with 1D approximations (Clayton 1984; X ingshellsfora23M progenitor1hrpriortocore–collapse Woosleyetal.2002). Forconvection,themixing-lengththe- (cid:12) finding significant departures from spherical symmetry and r ory (MLT; Bo¨hm-Vitense 1958) remains the technique used a strongdynamicalinteractionsbetweenshells. The3Dhydro- and implemented in stellar evolution codes with options to dynamics simulations together with developments in math- choose the associated efficiency parameter, α , and the MLT ematical methods, indicate that MLT needs significant revi- condition determining where convection becomes active by sionespeciallyforlatestagesofstellarevolution(Arnettetal. using the Schwarzchild or the Ledoux criterion accounting 2015;Gilkis&Soker2015). forsuppressionduetocompositionalgradients. Parametriza- Theapparentdeparturesfromsphericalsymmetrythatarise tionsfor1Dmodelsofconvectiveovershoot,semiconvection, in the velocity fields of convective shells prior to iron core– andthermohalinemixingarefrequentlyadopted,asisthe1D collapse have a qualitative and quantitative impact to the shellularapproximationtotreatrotation(Zahn1992;Meynet susceptibility to explosion itself (Couch & Ott 2013, 2015; &Maeder1997). Mu¨ller&Janka2015).Couch&Ott(2013,2015)haveshown Advances in numerical algorithms, hydrodynamic soft- that successful explosions occur for models whose ICs in- wareinstruments,andcomputingpowerhaveallowedmulti– clude velocity field perturbations due to convective burning, dimensional studies of stellar convection that can assess the in contrast to the same models without these asphericities. Thisisduetonon-radialmotionsintheaccretionflowexciting 9EnricoFermiFellow;manolis@flash.uchicago.edu SUBMITTEDTOAPJON2016JANUARY21 CHATZOPOULOSETAL. stronger post-shock turbulence that aids shock revival. Full 3D simulations of the final minutes of iron core growth and 1.5 no-rot collapse also suggest that non-spherical progenitor structure rot-ST ] should not be ignored (Couch et al. 2015). One might char- un acterize convection seen in 2D or 3D hydrodynamic simula- Ms 1 [ tions and then map realizations of convective velocity fields e F as ICs for simulations of CCSNe. Efforts to do so include M0.5 thesphericalFourier–Besseldecomposition(Ferna´ndezetal. 2014)andnonlocalandtime-dependentaveraging(Meakin& Arnett 2007; Arnett et al. 2009; Viallet et al. 2013). In our analysis we use vector spherical harmonic (VSH) decompo- sition of the momentum density field as presented by Chat- zopoulosetal.(2014). ] K The stochastic nature of 1D convection algorithms has a [ 9.8 profound impact to the outcome of massive stellar evolution T c itself. For stars of very similar mass and metallicity the end g o points can be dramatically different. These give remnant l 9.6 masses and explosion properties which depend strongly on thepre–SNstellarstructureandexhibitlargevariabilityeven innarrowintervalsofZeroAgeMainSequence(ZAMS)mass (Uglianoetal.2012;Sukhbold&Woosley2014). 0.48 Additional uncertainty arises from the dynamical bound- aries between convective zones (Meakin & Arnett 2007), 0.46 whichareasourceofgravitywavesandmightleadtoepisodic Ye mass-loss events shortly before the SN explosion (Quataert 0.44 & Shiode 2012; Shiode & Quataert 2014; Smith & Arnett 2014). The circumstellar (CS) environment that is formed 0.42 around pre–SN stars due to this mass–loss history can have a significant impact on the radiative properties of the result- ingexplosion. Rapid rotation has been observed for many massive stars 3] 10 (Hunter et al. 2008; Vink et al. 2010; Dufton et al. 2011; -m Almeida et al. 2015) and can affect their pre–SN internal c g 9 structure and composition via instabilities that alter the effi- [ c ciencyofangularmomentumtransportandtherateofchem- ρ ical mixing (Brott et al. 2011a,b; Ekstro¨m et al. 2012; see og 8 l Maeder & Meynet 2012 for a review). The effects of ro- tation on convection in the extended envelopes of red giant stars has been studied with 3D simulations by Brun & Pala- -4×104 -2×104 0 cios(2009),whofoundthepropertiesofturbulentconvection Time before collapse [s] to be sensitive to the rotation rate. Currently, the effects of Figure1. Fromtoptobottom: evolutionofglobalparametersforthe“no- rotationontheconvectivepropertiesofmassive,pre–SNstars rot”(solidblackcurves)andthe“rot-ST”(solidredcurves)modelsascal- and their implications for CCSNe have not been thoroughly culatedinMESA.Ironcoremass(MFe), centraltemperature(Tc), central investigated. Inthispaperwepresent2Dsimulationsofrotat- Yeandcentraldensity(ρc).Thedashedverticallinesindicatethetimesthat correspondtotheSi-shellburningmodelsmappedinFLASH. ingpre–SNstarsduringconvectiveC–andO–shellburning andSi–shellburning,andusetheVSHmethodtoquantifythe behaviorofconvectivevelocityflowsasafunctionofinternal rotationrate. Thepaperisorganizedasfollows.In§2wepresentthestel- Paxtonetal.2011,2013,2015).Subsequently,MESA1Dpro- larevolutionand2Dhydrodynamicssimulationsofa20M filesareextracteddayspriortocore–collapse,duringcoreSi– (cid:12) pre–SN star during convective shell burning of C, O and Si. andshellC–andO–burning,and∼1hrpriortocollapsedur- In § 3 we apply the method of VSH to decompose the con- ingSi–shellburning. Theseprofilesarethenmappedinto2D vective velocity fields and obtain power spectra in order to usingtheadaptivemeshrefinement(AMR)multi-physicshy- characterize the convective properties of models of different drodynamics code FLASH version 4.3 (Fryxell et al. 2000; rotationrates. Finally,in§4wediscussourconclusionsand Dubey et al. 2012) including rotation perpendicular to the implicationsforCCSNe. plane of the simulation (“2.5D” approach). The 2D simula- tions are run for > 3 convective turn-over timescales, long 2. STELLAREVOLUTIONANDHYDRODYNAMICS enough to diminish the effects of the initial dynamical tran- SIMULATIONS sient resulting from mapping 1D “convective” profiles to a Ouranalysisof2Dconvectioninrotationpre–SNprogeni- multi-dimensional hydrodynamic grid. Lastly, FLASH sim- torshasthreedistinctsteps. First,weevolvemodelsofastar ulation output at three different times is extracted and post- with ZAMS mass of 20 M , solar metallicity but different processedusingtheVSHmethod(Chatzopoulosetal.2014) (cid:12) rotationratesusingversion7503ofthestellarevolutioncode toobtainthepowerspectraoftheconvectivemotionsandthe Modules for Experiments in Stellar Astrophysics (MESA; energycascade. 2 SUBMITTEDTOAPJON2016JANUARY21 CHATZOPOULOSETAL. 2.1. MESApre–SNevolution. Our MESA models use initial rigid rotation rates of zero 1013 (T“hneo–inroitti”a)larontdat5io0n%porfofithleescrimitipcoalseKreipgliedr–iablovdaylureot(a“triootn–SwTh”e)n. 1-1 s] 11001121 nroot--rSoTt the model first lands on the ZAMS. The rotating model as- -g 10 sumesthetransportofangularmomentumandchemicalmix- g 10 r 9 ingviatheSpruit–Taylormechanism(ST;Spruit1999,2002). e 10 [ For MLT convection in MESA we adopt the Schwarzchild uc 108 criterion and αMLT = 1.6. We use an automatically ex- εn 107 tending nuclear reaction network starting from a basic 8– 6 10 isotope network and reaching a 21–isotope network by the end of the run. We note ≈ 100-150 isotopes are required to 0 10 accurately represent core neutronization and neutrino cool- ing (Arnett & Meakin 2011; Arnett et al. 2015). The 10-1 “Helmholtz”equationofstate(EOS;Timmes&Swesty2000) He -2 is used. Standard mass–loss prescriptions appropriate for Xi 10 C massive stars are adopted (Vink et al. 2001; Glebbeek et al. -3 N 10 O 2009). After performing a resolution study, we choose a Si spatialresolutionparameter(mesh delta coeffinMESA -4 10 terminology) equal to 0.5 and a temporal resolution factor (varcontrol target) of 10−3 where good convergence 10-5 ((cid:39) 10−2 level) in terms of final carbon-oxygen core mass and iron core mass is achieved. The chosen grid resolution resulted in final output models with 1200–1600 Lagrangian zones. Figure1showstheevolutionofironcoremass(M )and Fe 9 centraldensity(ρ ),temperature(T )andaveragechargeper 10 baryon (Y ) for bcoth the “no–rot” cand “rot–ST” models for K] Shell thelast50e,000secofevolutionandtheformationoftheiron T [ C & O-burning core. Theverticaldashedlinesshowthestagewhereweex- tractedtheMESAmodelscorrespondingtoSi–shellburning, at∼1.3hourspriortocore–collapse, whenthepeakof(cid:15) nuc profilereachedthemaximumvalue(3−4×1018ergg−1s−1). 108 Thebuild–upoftheFe–coreuptotheChandrasekharmassis 107 108 109 1010 smoother for the “rot–ST” model predominantly due to the r [cm] effectsofSTandrotationalmixing. Figures 2 and 3 show the distributions of nuclear energy Figure2. From top to bottom: radial profiles of nuclear energy genera- generationrate((cid:15) ), composition(X)andtemperaturefo- tion rate ((cid:15)nuc), composition, and temperature (T) for the “no-rot” (solid nuc i blackcurves)and“rot-ST”(solidredcurves)MESAmodelsattheC&Oshell cused in the convective, shell-burning regions. The MESA burningphasepriortomappingtoFLASH.Inthecompositionplotthe“no- modelswecalculatedonotexhibitaphaseofstronglyevident rot”modelisrepresentedbysolidcurvesandthe“rot-ST”modelbydashed shellNe–burning,incontrasttothethemoremassive(23M ) curves.Theverticaldashedlinesdenotetheradiallimits,Rin,shandRout,sh (cid:12) oftheconvectiveshellthatwasdecomposedwiththeVSHmethod. modelusedinArnett&Meakin(2011). Theverticaldashed linesindicatetheinnerandouterradialboundaries(R and in,sh R )thatwerechosenfortheconvectiveshellstobeana- out,sh shows the rotational velocity profiles for all models mapped lyzedwiththeVSHmethod(see§3fordetailsonhowtheir inFLASH. valuesweredetermined). Theeffectsofenhancedmixingin the“rot–ST”modelareclearlyillustratedinthecomposition 2.2. 2DFLASHhydrodynamics. panels. Thesix1DMESAmodelsimportedintoFLASHarelisted To further isolate the effects of rotation, we impose an ar- in Table 1. The C & O–shell burning FLASH models are tificalrotationalvelocityprofileonthe“no–rot”models: run for 1000 sec (simulated time), and the Si–shell burning rΩ models for 500 sec. The dynamical effects of rotation and v (r)= , (1) rot 1+(r/A)2 angular momentum conservation are handled by the unsplit piecewise parabolic method (PPM) hydrodynamic solver in where r is the radial (spherical) coordinate, Ω is the angular FLASH(Leeetal.2009). Wenotethatthenewestimplemen- velocity and A the characteristic radius where the rotational tationoftheunsplitsolverinFLASHhandlesspeciesadvec- velocity peaks as in Chatzopoulos et al. (2013). We denote tion in a way that is nearly identical to consistent multifliud modelsthatusethisrotationlawas“rot–2”. Wecarefullyse- advection scheme methods (Plewa & Mu¨ller 1999). The 1D lectedthevaluesofAandΩinordertocaptureafewfullro- rotational velocity profiles were mapped on the 2D grid as- tations(4–8)fortheconvectiveshellmaterialwithinthesim- suming“shellular”rotationasvectorswithdirectionperpen- ulatedtimescalesinFLASHandassessthedynamicaleffects diculartotheR–zplaneofthesimulationandtherotationaxis ofthecentrifugalforce. ForC&O–shellburningwepicked coincidentwiththepolaraxis.Inthisapproximationtheangu- A=3.46×108cmandΩ=0.1s−1andforSi–shellburning lar velocity, Ω(r), is constant for a particular spherical shell A = 2.2×108 cm and Ω = 0.1 s−1 respectively. Figure 4 or on equipotential surfaces (Zahn 1992; Meynet & Maeder 3 SUBMITTEDTOAPJON2016JANUARY21 CHATZOPOULOSETAL. Table1 PropertiesofMESAmodelsmappedinFLASH. Model Rin,sh(108cm) Rout,sh(108cm) vrot,sh(kms−1) vconv(kms−1) τrot(s) t1(s) t2(s) t3(s) C&Oshellburning no–rot 3.46 36.94 0. 136 - 545 749 1000 rot–ST 3.46 36.94 5.5 368 3957 545 749 1000 rot–2 3.46 36.94 185.6 142 126 545 749 1000 Sishellburning no–rot 1.64 36.00 0. 445 - 300 400 500 rot–ST 1.64 36.00 7.1 362 1505 300 400 500 rot–2 1.64 36.00 110.0 449 138 300 400 500 Note. —“no-rot”: non-rotatingmodel. “rot-ST”:rotatingmodelthatincludesthemagneticfieldeffectsoftheSpruit-Taylor dynamo. “rot-2”: rotatingmodelproducedbyintroducingarotationalvelocityprofileto“no-rot”uponmappingtoFLASH.The rotationaltime-scale,τrot,correspondstotherotationalperiod(onefullrevolutionaroundtherotationaxis)forthegivenrotational speedsinthecenteroftheconvectiveshell. 18 10 ] no-rot 1 16 -1-g s 110014 rot-ST rrrooottt---SS2 TT(C ((CS &i )& O O)) erg 1012 100 rot-2 (Si) [ c 10 u10 n ε 108 -1m s] k v [rot 10 0 10 -1 10 He -2 Xi 10 C 1 N -3 10 O 107 108 109 1010 Si r [cm] -4 10 Fe -5 Figure4. Rotationalvelocityprofilesforthe“rot-ST”(solidcurves)andthe 10 “rot-2”(dashedcurves)models.BlackcurvesdenotetheC&Oshellburning phaseandredcurvestheSishellburningphase. Theformoftherotational profileforthe“rot-2”modelsisgivenbyEquation1. ] K 9 ployed (Couch et al. 2015) and the “Helmholtz” EOS was 10 T [ Shell used. The main inconsistency is the treatment of convec- Si-burning tion in transition from 1D to 2D: in 1D the convective en- ergy transport and cascade is treated via approximate MLT prescriptions, while in 2D and 3D convective flow naturally develops in the fluid within unstable regions. The mapping 8 10 from 1D to 2D triggers an initial dynamical transient that 107 108 109 1010 lasts for a ∼ 100–300 sec before a quasi-steady state is re– r [cm] established. For our VSH analysis presented in § 3 we use theFLASHoutput(“snapshots”)atthreedifferenttimes,well Figure3. SameasFigure2butfortheSishellburningphase. after(>300secforC&O–shellburningand>200secfor Si–shellburning)theinitialtransienthastransversedthecom- putational domain. Table 1 also details the properties of the 1997). Morespecifically,eachgridcellwasgivenarotational convectiveshellsandsimulationoutput. velocityv = Ω(r)RwhereΩ(r) = v (r)/rwithv (r) All 2D FLASH simulations were run on the Texas Ad- rot rot rot beingMESA1Drotationalvelocityandrthesphericalradial vancedComputingCenterStampedesupercomputer.Thesize coordinate(r =(x2+y2)0.5). of all simulation domains was chosen to be 1010 cm includ- The transition from 1D MESA to 2D FLASH was smooth ingboththecoreandtheconvectiveshellsofallmodels. The in terms of the important physics involved; a hardcoded 21– maximumresolutionchosenwas9kmcorrespondingtocon- isotope’networkidenticaltotheoneusedinMESAwasem- vergenceintotalenergyandmassata∼ 10−7 leveloverthe 4 SUBMITTEDTOAPJON2016JANUARY21 CHATZOPOULOSETAL. Speed (x 106 cm/s) Speed (x 106 cm/s) Speed (x 106 cm/s) 13.4 36.9 14.5 7.2 4 15.3 4 7.6 4 3.9 6.4 3.9 2.1 2.6 2.1 1.1 2 1.1 2 1.1 2 m) m) m) 9Distance (x 10 c0 9Distance (x 10 c0 9Distance (x 10 c0 O16 -2 O16 -2 O16 -2 0.81 0.81 0.81 0.57 0.57 0.57 0.40 0.40 0.40 -4 -4 -4 0.28 0.28 0.28 0.20 0.20 0.20 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 Distance (x 109 cm) Distance (x 109 cm) Distance (x 109 cm) Figure5. Velocitymagnitudeand16Omassfractionforthe“no–rot”(leftpanel),“rot–ST”(rightpanel)and“rot–2”(rightpanel)C–&O–shellburningmodels attheendofthesimulation(t=t3). Speed (x 106 cm/s) Speed (x 106 cm/s) Speed (x 106 cm/s) 44.6 35.8 44.8 17.6 4 15.0 4 17.7 4 7.0 6.2 7.0 2.7 2.6 2.8 1.1 2 1.1 2 1.1 2 m) m) m) 9Distance (x 10 c0 9Distance (x 10 c0 9Distance (x 10 c0 Si28 -2 Si28 -2 Si28 -2 0.48 0.50 0.48 0.18 0.18 0.18 0.07 0.07 0.07 -4 -4 -4 0.03 0.03 0.03 0.01 0.01 0.01 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 Distance (x 109 cm) Distance (x 109 cm) Distance (x 109 cm) Figure6. Velocitymagnitudeand28Simassfractionforthe“no–rot”(leftpanel),“rot–ST”(rightpanel)and“rot–2”(rightpanel)Si–shellburningmodelsat theendofthesimulation(t=t3). course of the simulation. At that resolution we are able to smallerstructuresandhighvelocityvorticesinteractingwith resolve Eddy sizes covering a considerable range of the tur- eachother. Mildmixingisalsoseen,withinstabilitiesdevel- bulentenergycascade(from∼30,000kmdownto∼10km). oping at the interfaces of the convective shells. This mixing Weshouldcaution,however,thattheturbulentenergycascade can be due to the process of turbulent entrainment also seen in2Disinherentlyinverted(Porter&Woodward1994;Taki- byMeakin&Arnett(2007). Inallsimulations,convectiveel- waki et al. 2014; Couch & Ott 2015) and full 3D treatment ementsinteractwiththeinner(core)boundaryandbreakinto isrequiredtoaccuretlyreproduceit. Themorphologyofthe smallerstructuresthatthensubsequentlyreunitewhilerising flow changes significantly from 2D to 3D, and the velocity upwards. Artificalflowsareseenneartheaxisofthesimula- scale is moderately higher in 2D (Meakin & Arnett 2007). tion(∼6deg),acommonissueof2Dcylindricaltreatment. We consider our simulations as an initial, exploratory step. Eachsimulationwasrunon128coresandthewallclocktime 3. VSHDECOMPOSITIONOFCONVECTIVESHELLS rangedfrom14to22hoursforatotalof>12,000core–hours Output from the FLASH simulation is taken at three in- used. Figures5and6showtheO16orSi28massfractionand stances,t ,t andt (theendofthesimulation);allaregiven the2D(x and y)velocity magnitudeattheend ofeachsim- 1 2 3 in Table 1. A total of 18 snapshots for all 6 cases, are post– ulation. Theprevalenceofconvectionisapparentinallcases processed using the VSH analysis implemented in the code. withcharacteristicvelocitiesreaching∼150kms−1 forC& These time–scales are chosen to represent different evolu- O–shellburningand∼450kms−1forSi–shellburninginthe tion phases during shell convection, well after the initial dy- “no–rot”and“rot–2”cases.Itisnoteworthythatbytheendof namic transient and several convective turnover time–scales allsimulationsthevelocitiesinthe“rot–ST”casesweremuch afterthat((cid:39)10-100forC&O–shellburningand(cid:39)10-50for higherforC&O–shellburning(∼370kms−1)butslightly Si–shellburning). lowerforSi–shellburning(∼360kms−1). ThegoaloftheVSHanalysisistodecomposethemomen- The convective elements seen in the velocity magnitude tum density field within the selected shell into radial (A ) panels span a range of sizes, with dominant large–scale mo- nlm andsolenoidal(B andC )modesandthencalculatethe tions that cover more than half of the size of the convective nlm nlm powerspectrumforeachofthemodestodeterminetheglobal shells,aswellassmallerscalevorticeswhicharejustvisible propertiesof2Dor3Dfluidmotion. Inourcaseweanalyze (for example in the “rot–ST” C & O–burning shell). Con- a2Dmomentumdensityfield,thereforethesolenoidalB vection is established ∼ 200-300 sec after the start of each nlm modesareirrelevantbecausetheycanceloutandwillnotbe simulation, after the initial transient exits the computational discussed further. Also, because our simulations were con- domain. The evolution past 200 sec shows large scale con- ducted in a full domain possessing reflection symmetry, we vectivecurrentsthatcovertheentireshell, breakingdownto expectthepresenceofanodd-eveneffectinthepowerspec- 5 SUBMITTEDTOAPJON2016JANUARY21 CHATZOPOULOSETAL. tra, a feature inherent to the 2D treatment. The first step is addition of rotation in otherwise equal stellar structure has todeterminetheradiallimitsoftheconvectiveregionswhere little effect on the global properties of convection. A small VSHisapplied.Forthis,volume–weightedradialmomentum reduction of total power is apparent, possibly related to the densityprofilesarecalculated(Equation22ofChatzopoulos effectsofcentrifugalforcesandtheexistenceofanextrade- etal.2014). Locationswheretheradialcomponentreachesa gree of freedom (movement perpendicular to the simulation minimumareusedasourfinalchoiceforR andR ; domain). Ontheotherhand,thealgorithmforcalculatingthe in,sh out,sh thesearealsopresentedinTable1. effects of rotation during stellar evolution leads to a pre–SN The next step is to declare the maximum radial and angu- star with clearly stronger convection during the C&O–shell larresolutionfortheVSHcomponents,bothofwhichcanbe burning phase (“rot–ST” model, upper middle panel in Fig- expressed as a length scale, λ . The chosen resolution scale ure 9). Indeed, the final peak 2D-velocity magnitude in the r then determines the number of radial (n) and angular (l and “rot–ST” model is more than double those of the “no–rot” m)modesrequiredfortheexpansionintheVSHcomponents, and“rot–2”models. Wediscussthisinmoredetailin§4. whicharegivenbythefollowingformulae: 3.2. ShellSi–burning. n = 2(R2−R1), (2) The VSH power spectra for the cases of shell Si–burning max λ are shown in Figure 8. The evolution of the total power is r showninthebottomrowofFigure9. Thereducedspectrare- and vealthatlargescalesalsodominateoversmallerscalesduring π(R +R ) l = 1 2 , (3) shell Si–burning, with l peaking in the range 4–6 through- max 2λ r out the evolution. The corresponding angular length scales where the total number of modes in 2D momentum density rangefrom1.5×109 cmto2.0×109 cm. Theradialscales fielddecompositionis arealsointhesamerangeimplyingnearlycircularshapefor the convective elements, which are at about half the size of N =(n +1)(l +1). (4) total max max theconvectiveshell. Secondarypeaksoccuratsmallerscales For the C & O–shell burning models we choose λ = throughouttheVSHspectralevolution(∼109cm). Asinthe r 1.585×108cm,correspondingtol =40andn =42, caseofC&O–shellburning,thespectralslopesremainconsis- max max while for the Si–shell burning models we choose λ = tentovertimeandsolenoidalmodelsdominateradialmodels r 1.495×108 cm, l = 40 and n = 46. We choose to byafactorof∼10,000forl<5. max max truncateradialn >20modesbecausewefindthattheircon- The evolution of the total power in the solenoidal (C) tributiontothetotalpowerisminimal(10−5−10−4level)and modesshowsthatconvectionduringSi–shellburningisabout we can thus reduce computation time. With these choices, a 10timesstrongerthanconvectionduringC&O–shellburning, totalof861modeswerecaclulatedforeachofthe18FLASH asexpectedfromthehigherratesoflocalenergygeneration. snapshots. For the purposes of our study, we calculate re- Thetotalpowerdoesnotseemtovarysignificantlyovertime duced VSH spectra by firstly summing over all the “phase” forallrotationrates. Asmallreductionoftotalpowerinthe (m)components. Then, wecalculatethereducedangular(l) C–modes is seen by the end of the simulations for the “rot– andradialnpowerspectrabysummingovereithernorl,re- ST”and“rot–2”cases. Formodelsinitiallyidentical,modulo spectively, for instance α(cid:48) ≡ (cid:80) α , α(cid:48) ≡ (cid:80) α , and theinclusionofrotation(“no–rot”versus“rot–2”),thiseffect l n nl n l nl similarly for the solenoidal modes. In our presentation of maybeduetothedynamicalimpactofcentrifugalforcesand VSH power spectra later, we will simply refer to the radial theextradegreeoffreedom,asarguedforthecaseofC&O– andsolenoidalmodesasAandC,respectively(fortheexact shellconvection. Wedo,howeverobserveaqualitativediffer- definitionsofAandCconsultEquations6-8ofChatzopoulos encebetweenthetwostagesofshellburning: duringSi–shell etal.2014). burning,the“rot–ST”modelexhibitsnearlyidenticaland,at latetimes,somewhatlowerconvectivepowerascomparedto 3.1. ShellO–andC–burning. the“no–rot”model,whiletheoppositebehaviorwasobserved Figure7showsthereducedVSHpowerspectraforallmod- forC&O–shellburning. Wereturntothisissueinthefollow- elsundergoingC&O–shellburning.Theevolutionofthetotal ingsection. power,summedoverallcomponents,isshowninthetoprow 4. DISCUSSIONANDCONCLUSIONS ofFigure9. Forallcasesthebulkofconvectivepoweriscon- centratedinlargescales(l<10,n<5),withthepeakvalues In this paper we explored the effects rotation on the con- implyingangularscalesof∼1.6−3.2×109 cmandradial vective properties of a 20 M pre–SN progenitor star, more (cid:12) scales of approximately the same range, revealing a nearly specifically during C&O–shell burning and Si–shell burning circularcharacteristicshapefortheconvectiveeddies. These inthehourstomonthspriortocore–collapse. Westudiedro- eddiescanbecomparableinsizetotheshellitself. Forsome tationbothbyincludingitself–consistentlyduringtheevolu- spectra,asecondarypeakofpowerisobservedatsmallerval- tionofthestarbutalsobyimposingittoanothewiseidentical, uesofl(∼15-20),indicatingthatasmallfractionofthetotal non–rotating model in order to better isolate its effects. We powerispossessedbysmallerscales(∼ 4.3×108 cm). The run 2D FLASH simulations with the rotational velocity field overallslopeofthespectraremainsnearlyfixedovertime.As mapped and pointing inwards perpendicular to plane of the expectedforaconvectivevelocityfieldconfinedinashell,the simulationdomain. Weemployedvectorsphericalharmonic power in the solenoidal modes is clearly dominant over that decompositionofthemomentumdensityfieldtocharacterize intheradialmodes. convectionatdifferenttimesduringthehydrodynamicsimu- Regardlessofthedegreeofrotation,thetotalpowerindom- lations.Ourinitialexplorationoftheinfluenceofrotationon inantsolenoidalmodesdeclinesoverthecourseofthesimu- thepropertiesofconvectiondeepinthecoreofamassivestar lations as the convective energy cascade settles. A compar- can(andshould)beimprovedbyusing3Dsimulations,where ison between the “no–rot” and “rot–2” case shows that the theturbulentcascadegoesfromlargescalestosmallscales. 6 SUBMITTEDTOAPJON2016JANUARY21 CHATZOPOULOSETAL. C & O burning (no-rot) t t t 1 2 3 1050 -2s]1049 -1m 1048 c1047 2er [g 11004465 AC ow1044 P 1043 5 10 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 25 30 35 l l l 2]1050 -s -1m 1049 2 c1048 g er [1047 w Po1046 5 10 15 5 10 15 5 10 15 n n n C & O burning (rot-ST) t t t 1 2 3 2] -s -1m 1050 c 2 g er [1049 w o P 1048 5 10 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 25 30 35 l l l 2] -s 1 -m c 2 er [g1050 w o P 5 10 15 5 10 15 5 10 15 n n n C & O burning (rot-2) t t t 1 2 3 2] 1- s1050 -m c 2g 1049 er [ ow1048 P 5 10 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 25 30 35 l l l 2] 1- s1050 -m c 2 g er [1049 w o P 5 10 15 5 10 15 5 10 15 n n n Figure7. EvolutionofreducedVSHpowerspectrainlandnforthe“no–rot”(upperpanel),“rot–ST”(middlepanel)and“rot–2”(lowerpanel)C&O–shell burningmodels.A(irrotational)andC(solenoidal)modesareshownwithblac7kandredcurvesrespectively.SincetheA<<Calways,weshowthepowerin theirrotationalmodesonlyforthe“no–rot”case.Thecyancurvesshowtime–averagedCspectraforthethreesnapshots. SUBMITTEDTOAPJON2016JANUARY21 CHATZOPOULOSETAL. Si burning (no-rot) t t t 1 2 3 -2s]11005501 -1m 1049 c1048 2g 1047 wer [11004465 AC o1044 P 1043 5 10 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 25 30 35 l l l 2] 1051 1- s1050 -m 2 c1049 g er [1048 w o1047 P 5 10 15 5 10 15 5 10 15 n n n Si burning (rot-ST) t t t 1 2 3 -2s] 1051 -1m 1050 c 2 1049 g er [1048 w o1047 P 5 10 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 25 30 35 l l l 2] -s 1 -m 1051 c 2 g wer [1050 o P 5 10 15 5 10 15 5 10 15 n n n Si burning (rot-2) t t t 1 2 3 1052 2] 1- s 1051 -cm1050 2g 1049 wer [1048 Po1047 5 10 15 20 25 30 35 5 10 15 20 25 30 35 5 10 15 20 25 30 35 l l l 2] -s 1 -m c 1051 2 g er [ w Po1050 5 10 15 5 10 15 5 10 15 n n n Figure8. SameasFigure7butfortheSi–shellburningmodels. 8 SUBMITTEDTOAPJON2016JANUARY21 CHATZOPOULOSETAL. no-rot rot-ST rot-2 2] 1052 1052 1052 A -s C -1m 1051 1051 1051 ning 2[g c 1050 1050 1050 O bur er 1049 1049 1049 & w C o 1048 1048 1048 P 600 700 800 9001000 600 700 800 9001000 600 700 800 9001000 ] 52 52 52 2 10 10 10 -s -1m 1051 1051 1051 ng c ni 2 1050 1050 1050 ur g b er [ 1049 1049 1049 Si w o 1048 1048 1048 P 300 350 400 450 500 300 350 400 450 500 300 350 400 450 500 t [s] t [s] t [s] Figure9. EvolutionoftotalVSHpowerinirrotationalmodes(A;blackcurves)andsolenoidalmodes(C;redcurves)foralltheprogenitormodelsofTable1. TheC&OshellburningmodelsareshownintheupperpanelsandtheSishellburningmodelsinthelowerpanels. Wefindthat,regardlessofthedegreeofrotation,thechar- whichmayhaveasmallimpactonthesusceptibilitytoasuc- acteristic size of the convective elements is somewhat larger cessfulSNexplosionfollowingironcorecollapse(Couch& duringtheC&O–shellburningphasecomparedtotheSi–shell Ott2013). burning phase, while the characteristic convective velocities We emphasize that, to answer the question of whether the aremorethantwiceaslargeduringSi–shellburningascom- inclusionofrotationsignificantlychangestheICstothecore– pared to C&O–shell burning. The dominant scales implied collapseSNmechanism,self–consistentevolutionwiththeef- by the resulting VSH power spectra span more than 50% of fectsofrotationincludedistheproperapproachtotake.Inour thesizeoftheconvectiveshells,withsecondarytypicalscales analysiswehavefollowedtheevolutionofa20M SNpro- (cid:12) as small as 0.5−1×109 cm. The slope of the VSH power genitor with both the effects of rotation and magnetic fields spectra stays consistent over time regardless of the presence includedinthetransportofangularmomentumandchemical or absence of rotation. In all cases we find nearly circular mixingusingtheMESAcode(“rot–ST”models).Wefinddif- shapesforthecharacteristicconvectiveelements. Intermsof ferences in the sign of the effect depending on the nature of the 2D convective flow properties, our results are in agree- convectiveshell–burning: duringC&O–shellburningthereis mentwiththoseofMeakin&Arnett(2007)(seealsoMeakin more power stored in the solenoidal components than in the (2015); Cristinietal.(2015)). Inparticular,wefindahighly case of no rotation while during Si–shell burning the effects intermittentflowandmixingduetoturbulententrainment. are very small with hints of even reduction of the solenoidal Intermsoftheeffectsofrotationonthestrengthandprop- modepowerbytheendofthesimulation.Weattributethisef- ertiesofconvectionalonewefindour2Dsimulationssuggest fecttodifferencesintheinitialMESAmodelsforthetwodis- minimalimpact,andgenerallyleadtoanoverallsmallreduc- tinctshell–burningstages. Acarefullookintheupperpanel tionofthetotalconvectivepowerstoredinsolenoidalmotions ofFigure2showsthatthe“rot–ST”(cid:15) profileduringC&O– nuc (“no–rot” versus “rot–2” models) regardless of the nature of shellburninghasasecondarypeak(duetoO–burning)thatis convectiveburning(C,O,orSishell). Wesuggestthisisdue nearly an order of magnitude greater than the corresponding to the effects of the centrifugal forces mildly expanding the oneforthe“no–rot”model. Onthecontrary, inFigure3we star, andthuschangingthelocationsoftheconvectiveshells see that during Si–shell burning the peaks in the (cid:15) pro- nuc overtime,subjectingtheshellmaterialtolowertemperatures file for the “no–rot” model in the region 4 − 6 × 108 cm that, in turn, trigger lower nuclear burning rates and weaker aregreaterthanthecorrespondingonesfor“rot–ST”.Thisis convection. Thatalonemay leadtoinitial velocityperturba- due to the enhanced chemical mixing by the ST mechanism tions of smaller amplitude than in the case of zero rotation duringtheC&O–shellburningphasethateffectivelyrecycles 9 SUBMITTEDTOAPJON2016JANUARY21 CHATZOPOULOSETAL. fresh fuel from outer layers to deeper and hotter regions en- Baza´n,G.,&Arnett,D.1998,ApJ,496,316,astro-ph/9702239 ablingfasterspecificnuclearenergygenerationrates. Incon- Bo¨hm-Vitense,E.1958,ZAp,46,108 Brott,I.etal.2011a,A&A,530,A115,1102.0530 trast, during the later and more short–lived Si–shell burning ——.2011b,A&A,530,A116,1102.0766 phasetheSTmechanismdoesnothavethesameradialextent Brun,A.S.,&Palacios,A.2009,ApJ,702,1078 and efficiency to instigate similar effects. This result illus- Chatzopoulos,E.,Graziani,C.,&Couch,S.M.2014,ApJ,795,92 Chatzopoulos,E.,Wheeler,J.C.,&Couch,S.M.2013,ApJ,776,129, tratesthatthepresenceofefficientmixingmechanismsneed 1308.4660 to be studied self–consistently and in more detail since they Clayton,D.D.1984,Principlesofstellarevolutionandnucleosynthesis. (TheUniversityofChicagoPress) can alter the convective properties and structure of massive Couch,S.M.,Chatzopoulos,E.,Arnett,W.D.,&Timmes,F.X.2015, starspriortoCCSNequantitatively. ApJL,808,L21,1503.02199 IftheSpruit-Taylormechanismisevenroughlycorrect,our Couch,S.M.,&Ott,C.D.2013,ApJL,778,L7,1309.2632 ——.2015,ApJ,799,5,1408.1399 simulationssuggestthatthecoresofmostmassivestarsdonot Cristini,A.,Hirschi,R.,Georgy,C.,Meakin,C.,Arnett,D.,&Viallet,M. rotaterapidlyenoughforrotationtobedynamicallyrelevant 2015,inIAUSymposium,Vol.307,IAUSymposium,ed.G.Meynet, to the CCSN mechanism (see also Heger et al. 2005; Gilkis C.Georgy,J.Groh,&P.Stee,98–99,1410.7672 et al. 2015). The inclusion of rotation and attendant angu- Dubey,A.,Daley,C.,ZuHone,J.,Ricker,P.M.,Weide,K.,&Graziani,C. 2012,ApJS,201,27 lar momentum-transporting instabilities in the stellar evolu- Dufton,P.L.etal.2011,ApJL,743,L22,1111.0157 tion calculation, however, does significantly impact the na- Ekstro¨m,S.etal.2012,A&A,537,A146,1110.5049 Ferna´ndez,R.,Mu¨ller,B.,Foglizzo,T.,&Janka,H.-T.2014,MNRAS,440, tureoftheconvectionsurroundingthepre-collapseironcore. 2763,1310.0469 ThiscouldhaveimportantimplicationsfortheCCSNmech- Fryxell,B.etal.2000,ApJS,131,273 anism itself following core collapse. Recently, Mo¨sta et al. Gilkis,A.,&Soker,N.2015,ArXive-prints,1505.05756 Gilkis,A.,Soker,N.,&Papish,O.2015,ArXive-prints,1511.01471 (2015)suggestedthataboveacertainrotationalthershold,the Glebbeek,E.,Gaburov,E.,deMink,S.E.,Pols,O.R.,&PortegiesZwart, magneto-rotationalinstability(MRI)candriveaninversecas- S.F.2009,A&A,497,255,0902.1753 cade of the magnetic energy generating a large–scale mag- Heger,A.,Woosley,S.E.,&Spruit,H.C.2005,ApJ,626,350, astro-ph/0409422 netic field that can provide the conditions for Gamma-Ray Hunter,I.etal.2008,ApJL,676,L29,0711.2267 Burst jets and explain the origins of Type Ib/c SNe as well Lee,D.,Deane,A.E.,&Federrath,C.2009,inAstronomicalSocietyofthe PacificConferenceSeries,Vol.406,NumericalModelingofSpace as some superluminous supernovae (SLSN) powered by the PlasmaFlows:ASTRONUM-2008,ed.N.V.Pogorelov,E.Audit, spin–downofnewly–bornmagnetars. Inthelimitofslowand P.Colella,&G.P.Zank,243 typical rotation rates explored here we do not expect MRI– Maeder,A.,&Meynet,G.2012,ReviewsofModernPhysics,84,25 Meakin,C.A.2006,PhDthesis,TheUniversityofArizona,Arizona,USA induced turbulence to have an important effect on the pro- Meakin,C.A.2015,inIAUSymposium,Vol.307,IAUSymposium,ed. genitorpropertiesforsingle–starevolution. Binaryevolution G.Meynet,C.Georgy,J.Groh,&P.Stee,20–24 seems to offer an alternative channel, with the possibility of Meakin,C.A.,&Arnett,D.2007,ApJ,667,448,astro-ph/0611315 Meynet,G.,&Maeder,A.1997,A&A,321,465 rapidlyrotatingcorecollapseinwhichtheMRImaybeeffec- Mo¨sta,P.,Ott,C.D.,Radice,D.,Roberts,L.F.,Schnetter,E.,&Haas,R. tiveasanexplosiveandjet–formingmechanism. 2015,ArXive-prints,1512.00838 Mu¨ller,B.,&Janka,H.-T.2015,MNRAS,448,2141,1409.4783 Paxton,B.,Bildsten,L.,Dotter,A.,Herwig,F.,Lesaffre,P.,&Timmes,F. 2011,ApJS,192,3,1009.1622 We thank J. Craig Wheeler for useful conversations. EC Paxton,B.etal.2013,ApJS,208,4,1301.0319 thanks the Enrico Fermi Institute for its support via the En- ——.2015,ApJS,220,15,1506.03146 rico Fermi Fellowship. The authors acknowledge the Texas Plewa,T.,&Mu¨ller,E.1999,A&A,342,179,astro-ph/9807241 Porter,D.H.,&Woodward,P.R.1994,ApJS,93,309 Advanced Computing Center (TACC) at The University of Quataert,E.,&Shiode,J.2012,MNRAS,423,L92,1202.5036 Texas at Austin for providing HPC, visualization, and stor- Shiode,J.H.,&Quataert,E.2014,ApJ,780,96,1308.5978 Smith,N.,&Arnett,W.D.2014,ApJ,785,82,1307.5035 ageresourcesthathavecontributedtotheresearchresultsre- Spruit,H.C.1999,A&A,349,189,astro-ph/9907138 ported within this paper. An award of computer time was ——.2002,A&A,381,923,astro-ph/0108207 providedbytheInnovativeandNovelComputationalImpact Sukhbold,T.,&Woosley,S.E.2014,ApJ,783,10,1311.6546 Takiwaki,T.,Kotake,K.,&Suwa,Y.2014,ApJ,786,83,1308.5755 onTheoryandExperiment(INCITE)program. Thisresearch Timmes,F.X.,&Swesty,F.D.2000,ApJS,126,501 used resources of the Argonne Leadership Computing Facil- Ugliano,M.,Janka,H.-T.,Marek,A.,&Arcones,A.2012,ApJ,757,69, ity,whichisaDOEOfficeofScienceUserFacilitysupported 1205.3657 Viallet,M.,Meakin,C.,Arnett,D.,&Moca´k,M.2013,ApJ,769,1, underContractDE-AC02-06CH11357. 1212.6365 Vink,J.S.,Brott,I.,Gra¨fener,G.,Langer,N.,deKoter,A.,&Lennon,D.J. REFERENCES 2010,A&A,512,L7,1003.1280 Vink,J.S.,deKoter,A.,&Lamers,H.J.G.L.M.2001,A&A,369,574, astro-ph/0101509 Almeida,L.A.etal.2015,ArXive-prints,1509.08940 Woosley,S.E.,Heger,A.,&Weaver,T.A.2002,ReviewsofModern Arnett,D.,Meakin,C.,&Young,P.A.2009,ApJ,690,1715,0809.1625 Physics,74,1015 Arnett,W.D.,&Meakin,C.2011,ApJ,733,78,1101.5646 Zahn,J.-P.1992,A&A,265,115 Arnett,W.D.,Meakin,C.,&Viallet,M.2014,AIPAdvances,4,041010, 1312.3279 Arnett,W.D.,Meakin,C.,Viallet,M.,Campbell,S.W.,Lattanzio,J.C.,& Moca´k,M.2015,ApJ,809,30,1503.00342 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.