This is a repository copy of Control and management of harmful algal blooms. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/123767/ Version: Published Version Book Section: Barrington, DJ orcid.org/0000-0002-1486-9247, Xi, X, Coggins, LX et al. (1 more author) (2015) Control and management of harmful algal blooms. In: Botana, LM, Louzao, MC and Vilariño, N, (eds.) Climate Change and Marine and Freshwater Toxins. De Gruyter , Berlin, Germany , pp. 313-358. ISBN 978-3-11-033303-9 https://doi.org/10.1515/9783110333596-012 © 2015 Walter de Gruyter GmbH, Berlin/Boston. Reproduced in accordance with the publisher's self-archiving policy. Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ DaniJ.Barrington,XiXiao,LiahX.Coggins,andAnasGhadouani 10 Control and management of Harmful Algal Blooms 10.1 Introduction Everyonewouldagreethatthebestcureisprevention.Thisiscertainlyapplicablein thecaseofcyanobacterialbloomsandtheirtremendousandwidespreadimpacton humanandenvironmentalhealth,naturalandman-madeassets,aswellasoverall ecosystemservices.Therehaveevenbeensuggestionsandalsosomeevidencethat cyanobacteriabloomsmayhaveanegativeimpactonthehousingmarketsinsome partsoftheworld.Certainly,commonsensewoulddictatethatthelevelofapprecia- tionandthelivabilityofaneighborhoodmaybepositivelyinluencedbythepresence ofanicelake(naturalorartiicial);however,theoppositeistruewhenthatlakeis afectedbywaterqualityissuesincludingodorandtoxinsfromthedevelopmentof algalblooms.Preventionofcyanobacterialbloomshasbeenattheheartofthenutri- entmanagementstrategiesaroundtheworldandhasresultedinmanysuccessstories. However,bloomsstilloccurandtheyalsooccurinassetsthatthepublicarenotneces- sarilyexposedto,suchasdrinkingwaterreservoirs,wastewaterstabilizationponds and retention dams, in addition to natural systems such as lakes and rivers. When preventionfailsorlessthansatisfactoryresultsareachieved,weneedtotacklethe problemthroughdirectmitigationtechnologiesthataimatreducingoreliminating theriskgeneratedbythepresenceofcyanobacteriaandtheirtoxins.Inthischapter, wewilldiscussabroadrangeofmitigationapproachesthathavebeenappliedwith variousdegreesofsuccess,andwealsoexploretheopportunitiesforfuturedevelop- mentofinnovativesolutionsforthisimportantproblem. 10.2 Globalwatercrisis Humansutilizewaterinagriculture,industry,thehouseholdandforrecreation[1]. Wateralsoprovidesincidentalecosystemservicestohumansandotherorganisms, suchashabitats,climatecontrolandmediafornutrientcycling[2].Itisanaturalre- sourceessentialtolifeonearth,andadequatemanagementofwaterisrequiredto maintainthesevitalservicestotheglobalpopulationandtheenvironment. Waterresourcesaregenerallynotwellmanaged,andasaresult,waterquality remainsofsigniicantconcern.Waterwaysarecontinuallypollutedthroughtheaddi- tionofnutrientsandheavymetals,high-qualitywateriswastedonactivitieswhereit isnotsuitedtothepurpose,andwaterisnotequallydistributedbetweenpeopleofall nationsandsocialstatus.Theseanthropogenicimpactsonwaterqualityandquantity haveledtoacrisisthatisafectingtheentirebiosphereoftheearth[1,3,4].Thiscrisis Bereitgestellt von | De Gruyter / TCS Angemeldet Heruntergeladen am | 10.09.15 09:24 314 | DaniJ.Barrington,XiXiao,LiahX.Coggins,andAnasGhadouani isincreasingwiththeconcurrentriseinglobalpopulationandclimatechange[4,5]. Inordertocombatthis,waterresourcemanagementmustbeadaptive,lexibleand engagewithstakeholdersatmultiplelevels,fromthelocaltotheglobal. Oneofthemostsigniicantanthropogenicimpactsonwaterwaysiseutrophica- tion.Eutrophicationoccurswhenhighnutrientloadsenterawaterbody,oftenasa resultofagriculturalandindustrialprocesses.Thisincreaseinnutrients,particularly nitratesandphosphates,candetrimentallyafectecosystemsandreducethequality ofwaterforreusepurposes[6,7].Eutrophicationisoftenaprecursortotheoccurrence of harmful algal blooms, which commonly contain toxin-producing cyanobacterial speciesandareathreattohumanandenvironmentalhealth[8]. 10.3 Cyanobacteriaandcyanotoxins Cyanobacteriaareprokaryoticphytoplanktonsthatoccurinfresh,brackishandsalt water systems throughout the world [9, 10]. Species of cyanobacteria difer in their morphologyandmayexistassinglecells,coloniesandilaments[11].Whencellsag- gregate,theyformdensecyanobacterialblooms,apotentialthreattohumananden- vironmentalhealth. Cyanobacteria generally dominate in reservoirs containing high nutrient loads and stagnant water, although cyanobacterial blooms do occasionally occur in olig- otrophicsystemsandfavorwatertemperaturesbetween15and30°C[8].Studiesinto thedynamicsofcyanobacterialbloomspredictthattheexpectedincreaseinglobal temperaturewillresultinincreasedsurfacewatertemperaturesandthermalstratii- cation,aswellaschangingmeteorologicalpatterns,possiblystimulatingincreased cyanobacterial growth rates [12–19]. It is likely that this will result in an increased frequencyofcyanobacterialbloomevents.Ofparticularconcerntowaterutilityman- agersarethosecyanobacterialspeciesthatformbloomsinfreshwaterreservoirsthat areusedfordrinking,recreationandirrigation. Cyanobacterial blooms have several detrimental environmental efects. Blooms oftenproliferateinthesurfacelayerofstratiiedreservoirs,shadingorganismsbelow, whichcanresultinthedeathofpelagicandbenthicorganisms[20–23].Whenblooms collapse,thereleaseoforganiccellmattertothewatercolumnincreasesthesystem’s oxygendemand.Theconcentrationofdissolvedoxygenisloweredduetoitsconsump- tioninreactionstodegradeorganicandinorganiccompounds;thisresultsinmass deathsofishandotheraquaticorganisms[10,24].Suchdeathsareoftenobservedby thegeneralpublicandreceiveconsiderablemediaattention. Manyspeciesofcyanobacteriaalsoproducetoxins.Cyanobacterialtoxins(cyano- toxins)varyintheirtoxicitytohumansandanimals,andincludehepatotoxins,der- matoxins,cytotoxins,neurotoxinsandlipopolysaccharides.Cyanotoxinscaninduce bothacuteandchronicefects,andcanposearisktobothhumansandecological systems[25–32]. Bereitgestellt von | De Gruyter / TCS Angemeldet Heruntergeladen am | 10.09.15 09:24 10 ControlandmanagementofHarmfulAlgalBlooms | 315 The most common routes of human contact with cyanotoxins are through the contaminationofdrinkingwater,therecreationaluseoflakesandriverscontaining cyanobacteriaandviatheingestionofblue-greenalgalsupplements[33–37].Organ- ismswithintheenvironmentareoftenharmedbydirectexposuretocyanotoxinsor through bioaccumulation [38–48]. Bioaccumulation can lead to the magniication of cyanotoxins throughout food webs, potentially altering growth patterns, grazing behavior and development, and leading to signiicant health risks for organisms, including humans, that predate species which have bio-accumulated cyanotoxins [29,41,49,50]. The shading of underlying organisms, reduction of dissolved oxygen and bio- accumulationofcyanotoxinscanleadtoshiftsinecologicalassemblagesandpoten- tiallyecosystemcollapse,aswellassigniicantthreatstohumanhealth.Assuch,itis imperativethattherisksofcyanobacterialbloomsinvariousfreshwaterbodiesareas- sessedandmitigatedsothattheycanbeappropriatelymanagedtoavoiddetrimental efects. 10.4 Cyanobacterialpreventionandmitigation Manytechniquesforcyanobacterialbloompreventionandmitigationhavebeeninves- tigated(Tab.10.1andTab.10.2).Somehavebeenapplieddirectlyinreservoirmanage- ment,whileothershavebeentrialedonlyunderlaboratoryconditions.Thesuccess ofpreventativeandmitigationtechniquesdependsupontheunderlyingconditions present,andthecharacteristicsofindividualwaterbodiesmustbeconsideredwhen determiningthemostappropriatemanagementstrategiestoapply. Prevention of cyanobacterial blooms has been achieved with varying success through techniques including nutrient reduction, artiicial destratiication, macro- phyte establishment, predation, the addition of allelopathic chemicals, ultraviolet radiation(UVR)andultrasonication(Tab.10.1).Nutrientreductionanddestratiica- tionhaveshownreasonablesuccessinlargereservoirs,thoughmostsuccesshasbeen wherenutrientinputscanbesigniicantlyreducedandreservoirsarerelativelydeep. Despitepreventativeattempts,oftencyanobacterialbloomsstilloccur.Itisthere- fore imperative that mitigation measures for controlling blooms are investigated. Manysuchmethodshavebeentrialedinboththelaboratoryandield,withvarying success(Tab.10.2). Itiscommonpracticetoremovecyanobacteriausingcoppersulfate,chlorineor coagulantsandlocculants[109],althoughthedynamicsoftheremovalofcyanobac- teriafromwastewaterbysuchmethodshasnotbeenthoroughlyinvestigated.These cyanobacterial removal techniques currently practiced on a large scale may be en- vironmentallydamagingandinefectivefortheremovalofcyanotoxins[93,109–112]. Severaloftheremovalmethodsusedindrinkingwatertreatmentarehighlysuccessful wherecyanobacterialandcyanotoxinconcentrationsarelowandthewaterwillnot Bereitgestellt von | De Gruyter / TCS Angemeldet Heruntergeladen am | 10.09.15 09:24 316 | DaniJ.Barrington,XiXiao,LiahX.Coggins,andAnasGhadouani bereleasedtotheenvironment,butareoftenprohibitivelyexpensiveforuseinhighly eutrophicsystemsandgenerallylessefectiveinreservoirscontaininghighconcen- trationsoforganicmatter[112,113](Tab.10.2). Tab.10.1:Commonlyusedpreventionstrategiesforcyanobacterialblooms. Speciiccommentsforuse References Allelopathic Chemicalsgenerallysecretedbydecayingorganicmatter. [51–64] chemicals AdditionoforganicmatterincreasesWSPsludgeproduction. Maybeunanticipatedefectsonnon-targetorganisms. Destratiication Canpromotegrowthofnon-buoyantphytoplankton [65–71] overcyanobacteria. Ofteninefectiveinshallowandhighlyeutrophic waterbodies. Generallyrequireselectricalconnectionon-site. Macrophytes InterferewithWSPprocesses. [72–81] Providebreedinggroundsformosquitosandother diseasevectors. Nutrient 50%ofphosphorusinwastewaterisfromhumanwaste [8,71,82–85] reduction andcannotbereduced. LikelythatWSPswillbehighinnutrientsregardlessof reductionmeasures. N:Pratiomaybemoreimportantthanactualphosphorus andnitrogenconcentrations. Predation MayalterWSPecology,particularlyifzooplanktonareadded [86–91] andpreferentiallyconsumenon-targetphytoplankton. Consumptionofcyanotoxinsmayresultinthedeath ofpredators. Ultrasonication Onlytestedatreducedscales.Maynotbeappropriate [92–103] forfull-scaleWSPs. Ultraviolet CellsinWSParelikelyadaptedtohighUVRdoses. [104–108] radiation Maybepracticalinassociationwithothertreatment methods. Canonlybeusedatpondinletsandoutlets. Bereitgestellt von | De Gruyter / TCS Angemeldet Heruntergeladen am | 10.09.15 09:24 Tab.10.2:Commonlyusedmitigationstrategiesforcyanobacterialblooms. Cyanobacterial Toxin Speciiccommentsforuse References removal removal Adsorption ✓ Occursnaturally,butmaybeinsuicientforcompletecyanotoxinremoval. [114–123] (naturallyoccurring Cyanotoxinvariantsadsorbdiferently. particles) AdsorptiondecreasesaspHincreases. Oftenbiodegradationisgreaterthanadsorptionwhenincontactwith particles. 1 0 Ifcyanotoxinsareilteredthroughnaturalsoilandadsorptionis C insuicient,thiscanendangeraquifers. o n Adsorption ✓ Otherorganiccompoundscompeteforadsorption-sites. [124–130] trol a (activatedcarbon) Mayincreasesludgeloading. n d m Biodegradation ✓ DetailedinTab.10.3. Tab.10.3 a Herunterg Bereitges Cccohhmllooprriionnuaentaedndsd ✓ ✓ PcInhhelyoftroeicnptaliavtneedkatcotonremcmpeololvsui,nnrdgastm.heicrrtohcaynstcinyasnaottpoHxin>s8,m. aypreferentiallyreactwith [93,106,131–142] nagement eladen am | 10.09.15 09:24Angemeldettellt von | De Gruyter / TCS Cflooaccguullaattiioonnand ✓ CdP(IGrMneeyreeu.cloaggenrsdnrea.etauoatsrcdrcatesiooeelhedlnxsdyas.islnbIdbsiofdsyloymfu-elempcodreshrcgatfolshnleyoodaoarwbluntiorenceeaaeatsrfdnsnte)eievo.dlnceidtargtaornc.mesnogemmemedmorepofvnrboueotrusdmaon,tnfdocceWsyehialSinulnnsPtmoe.smtgaoornolxiurstietynia,osqnsnuado.icctcchkyuleaymnetuonhltvaaointxreoitnnhinsmesayelrcuneadtnngoebt.e [111,143–150] ofHarmfulAlgalBlooms| Increasesconcentrationofaluminumintheenvironment. 3 1 7 3 1 8 | Tab.10.2(continued) D a n i Cyanobacterial Toxin Speciiccommentsforuse References J.B a removal removal rrin Coppersulfate ✓ TraditionalmethodofcyanobacterialremovalinWSPs. [110,151–156] gto Releasescyanotoxinstothedissolvedstate,butdoesnotsubsequently n, X degradethem. i X Increasescopperconcentrationintheenvironment. ia o , L Heru Bere Freilvterarstieonosamndosis ✓ ✓ IMmopsrtadcetigcraaldfoartiwonatienrscuocncteasinsifnuglshtiugdhiessusappepnedaersdtsoebdeimbeionltolgoiacdals,.except [157–163] iahX. ntergeladeAnitgestellt v Hydrogenperoxide ✓ ✓ wECfyhaeencrtoeitvnoeaxnnienosdiseltmgraraatyidobanetiioisnnucdsreeeadcsr.eeadsbeyspwrietsheinnccereoafsUinVgRpaHn.d/oriron. [116249–,117490],141,152, Coggins,a n am | 10.09.15 09:24gemeldeton | De Gruyter / TCS Ozone ✓ ✓ MOmMCCRyeofeaatalsetyyenthnaaropoesfftrdeloooeesuxohca.intfisnbdmecdieticienilcyvlgeuraeorflnaa–ceodrycmtasotottiraxviignoyieannspnosydrnitenceofstccehctrorheaeemeslaneipsdstseioiawossulfsilnwtyomhdilrtisviehnneaiundcicntectescrlwtlsresaeaiw.ttasehhseoieosnvntgthehnrepeorhHtooo.czruoogruansp/nedildceadocysoswe.mitrpheoqouutnhirdeesrd.. [11918330,,–111028692,,]111312–,140, ndAnasGhadouani Requireselectricityon-sitefortheproductionofozone. Tab.10.2(continued) Cyanobacterial Toxin Speciiccommentsforuse References removal removal Permanganate ✓ DoesnotseemtobesigniicantlyafectedbypH. [93,106,132,136, Likelyproducesharmfulby-products. 140,141,183,184] 1 0 Predationand ✓ ✓ MayalterWSPecology,particularlyifzooplanktonareaddedand [51–54,56,58– C o biomanipulation preferentiallyconsumenon-targetphytoplankton. 60,86–90,185] n Additionoforganicmatterincreasessludgeloading. tro l a n Titaniumdioxide Largeamountsofcatalystarerequired–uptomgperl–soimpracticalin [167,186–188] d m wastewater. a Heruntergeladen am | 10.09.15 09:24AngemeldetBereitgestellt von | De Gruyter / TCS UUllttrraasvioonliectartaiodniation ✓✓ ✓✓ OROmCiCIRnmuaeecnecpqqnrclltryuuruuheradriiteonrrsceiddeetntslnuisssygtca.ceaeeuptedlllusheeacraeccyayltdttocalrrrloniintyeccoce,odiiybttteuwyyaouncnhxootesiienncnudnra--r.sessseniitcctthtbaeeehrlel..eoelesucr.noegMhnmhacaopenyvhncanoetlrtodaoottbsfibeocyenoncalssoiipfuatopiprzrermleoidhnpsgirrgaiewahtat.sicetothfimooonrethfwWueliWrlt-hrsTeccPmaoolomeuvptWaloelSutPsn.sd.s [[1199792304–,,]111007524,],110861,,116859,– nagementofHarmfulAlgalBlooms| 3 1 9 320 | DaniJ.Barrington,XiXiao,LiahX.Coggins,andAnasGhadouani Efectivetechniquesforthemitigationofbothcyanobacteriaandcyanotoxinsmustbe determinedbyconsideringtheunderlyingpropertiesofthewatersysteminquestion, including depth, pH values, concentrations of suspended solids, and dissolved or- ganicandinorganiccompounds[195,196].Tobesuccessful,anymitigationapproach mustreducebothcyanobacteriaandcyanotoxinsandposenoornegligiblethreatto ecosystems. 10.5 Cyanobacterialmanagement Themanagementofcyanobacteriainanyfreshwaterresourcemustconsidertheen- tirecycleofwaterthroughcatchments,waterreservoirs,treatmentplantsanddistri- butionsystems[71].Appropriatemanagementofcyanobacterialbloomsisimperative toreducingtheirnegativeimpactsonhumanandecologicalhealth,watertreatment processesandincome-generatingactivities,includingtourismandpropertydevelop- ment.Thisisnotsimplyaboutimplementingpreventionandmitigationstrategies.It isalsoimportanttoassessthepotentialrisksassociatedwithsuchblooms,sothat theycanbetreatedefectivelyandeicientlyatthesiteofinterest.Incorporatingrisk assessmentintomanagementwillallowplanstobedevelopedwhichminimizethe costs of bloom mitigation and the potentially undesirable environmental efects of manycyanobacterialremovalmethods.Suchplansshouldbedevelopedforallfresh- waterresourcesthatsuferfrompotentiallytoxicblooms.Thiswillreduceoreliminate theundesirableconsequencesofcyanobacteriaandcyanotoxinsonbothhumansand ecosystems.Amanagementplanshouldconsistofthefollowingactionsrequireddur- ingfourdistincttimeperiods(Fig.10.1): 1. Priortobloom; 2. Hazardousbloomsuspected; 3. Hazardousbloomidentiied; 4. Mitigationinefective. Barrington et al. [197] ofered a detailed approach for the appropriate monitoring regime to minimize the risk of undetected or undetectable incidents. Currently the authoritiesrelyonsomeformofeitherpublicreportingofanincidentorsomeform ofmonitoringwhichisusuallyaresponsetoavisualinspectionofthewatersystem (Fig.10.2). Thisformofriskassessmentassumesthathazardouseventswillalwaysbecor- rectlyidentiied.Althoughuseful,suchanapproachmayleadtooverlycautiousand cost-intensivebehaviorbyfollowingtheprecautionaryprinciple,wherebypotentially hazardouseventsareassumedtobedangerousregardlessoftheiractualcharacteris- tics[198,199].Ifamonitoringmethodologyisoverlyprecautionary,costsmaybein- curredbyimplementingunnecessarycontrolmeasurestotreat“falsepositive”results. Thistraditionalmethodofassessmentalsofailstoconsidertheassociatedriskshould Bereitgestellt von | De Gruyter / TCS Angemeldet Heruntergeladen am | 10.09.15 09:24 10 ControlandmanagementofHarmfulAlgalBlooms | 321 Risk of cyanobacterial bloom mitigated Bloom Prevention Treatment of isolation Cyanobacterial cyanobacterial bloom bloom Treatment of suspected required cyanobacterial Contingency Routine bloom Invocation monitoring Situation Bloom insuicient and bloom assessment mitigation identiication Cyanobacterial Assess the risk bloom does not of remaining require cyanobacterial Contingency treatment bloom Natural planning degradation Prior to Hazardous Hazardous Mitigation bloom bloom bloom inefective suspected identiied Fig.10.1:Managementframeworkfortheremovaloftoxiccyanobacteriafromwaterbodies. Tolerable risk for each Impact Potential Level 1.0 Low impact potential (HF = 1.00) Moderate impact potential (HF = 0.88) High impact potential (HF = 0.37) 0.8 0.6 k s e ri bl a er 0.4 ol T 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Monitoring frequency (week–1) Fig.10.2:Tolerated/tolerableriskaccordingtomonitoringfrequencyforeachimpactpotential level,forSwanCoastalPlainLakes.Thetoleratedriskindicatestheprobabilitythatacyanobacterial bloomatoraboveeachimpactpotentiallevelwillnotbedetectedgivenitisoccurring.HF=Hazard Frequency.Forfurtherdetailsonthemethodologyanddeinitions,pleasereferto[203]. Bereitgestellt von | De Gruyter / TCS Angemeldet Heruntergeladen am | 10.09.15 09:24
Description: