GeophysicalResearchAbstracts Vol.14,EGU2012-7345,2012 EGUGeneralAssembly2012 ©Author(s)2012 Contribution of Stern layer and membrane polarization to spectral induced polarization of variably saturated sandy soils A.Brovelli(1)andG.Cassiani(2) (1)EcologicalEngineeringLaboratory,Institutd’ingénieriedel’environnement,EcolepolytechniquefédéraledeLausanne (EPFL),1015Lausanne,Switzerland,http://ecol.epfl.ch.(alessandro.brovelli@epfl.ch),(2)UniversitàdiPadova, DipartimentodiGeoscienze,Padova,Italy([email protected]) Spectral induced polarization is receiving increasing attention as a tool to map subsurface properties in a non-invasivemanner.Althoughempiricalcorrelationshavebeendevisedtolinkmeasurementstoporousmedium properties,suchasthetimeconstantoftheCole-Colemodeltograinsizedistributionandhydraulicconductivity,a comprehensiveprocess-basedmodelisstillmissing.Twofundamentallydifferentmechanismshavebeenproposed sofar,(i)electricaldoublelayerpolarization,inparticularoftheSternlayerand(ii)membranepolarization.This lattermechanismisduetotheaccumulationofionsattheoppositesidesofnarrowpore-throats,whicheffectively act as ion-selective channels and lead to the formation of a membrane potential. Both mechanisms have so far shown the ability to explain to some degree experimental observations, although not in a completely convincing manner. The goal of this work was to test whether the two process concur to the observed polarization of the porous mediumorratheraremutuallyexclusive.TheHashin-ShtrickmanAverage(HSA)modelofBrovelliandCassiani (2010, 2011) was extended to compute the complex bulk conductivity of variably saturated porous media. Complex surface conductance was computed from EDL polarization theory, whereas membrane polarization affectspore-waterconductivity. Thefrequency-dependentHSAmodelwascomparedwiththemeasuredspectralinducedpolarizationofvariably- saturatedsandysoils.Asatisfactorycomparisonwasfoundformostsamples,inparticularwithwatersaturation above0.8.Itwasobservedthatthetwopolarizationmechanismsleadtoseparatephasepeaks,whicharerelated tothecharacteristicdiffusionlengthandtortuosityofgrainsandpore-throats.Whensaturationisdecreased,Stern layerpolarizationbecomesthedominantmechanism,asthewaterphaseisprogressivelylessabundantandmore disconnected. In addition, the measured polarization becomes more difficult to explain with the model, perhaps becauseadditionalmechanisms–suchasthepolarizationoftheair-waterinterface–comeintoplay. Contribution of Stern layer and membrane polarization to spectral induced polarization of variably saturated sandy soils Alessandro Brovelli(1)and Giorgio Cassiani(2) Abstract EGU2012-7345 (1) EcologicalEngineeringLaboratory,EnvironmentalEngineeringInstitute,EcolePolytechniqueFédéraledeLausanne,Lausanne,Switzerland,http://ecol.epfl.ch.Emails:[email protected]. (2) DipartimentodiGeoscienze,UniversitàdiPadova,Padova,Italy,http://www.geoscienze.unipd.it.Email:[email protected]. 1. Introduction and motivations 2. Methodology 3. Polarization mechanisms • Mostexistingprocess-basedmodelsofinducedpolarization(IP)considereither • The (frequency-dependendent) bulk conductivity in variably saturated • Membrane polarization is modelled using a modified form the SNP model (Titov et membrane (e.g. Titov et al., 2002) or grain (EDL) polarization (e.g. Revil and conditions is computed using the Hashin-Shtrikman Average (HSA) model of al., 2002), with a convolution integral over the pore-throat distribution fp(L,a) • FElxopresrcihm,e2n0t1s0)h,abvuetnhootwbeovtehrmsheocwhannitshmasttboogtehthtehre.grainsizedistributionandthe σBb*r(oωve)l=liHanSdA(Cσaw*ss(ωia)n,iσ(2s*(0ω10),,φ2,0s1w,1m),(nth)e=*d3e−2nφoteφsmco−1mσp*eHxSvUar+iaφble2−s)3,φm−1σ*HSL, σw*(ω)=σw01−∞∫0∞∫0fp(L,a)η0(L,a)1−1−ex2p(−iω2τpiω(Lτ)p(L))dLda−1 characteristics of the pore space influence SIP (spectral induced polarization) rpeoslparoinzasteionofplagyraanurloalre.materials. Possibly this suggests that both types of σH*SU(σ*p,σs*,φ)=σs*+(σ*−σ1*−)φ−1+ φ σH*SL(σ*p,σs*,φ)=σ*p+(σ*−σ*φ)−1+1−φ Chargeabilityη0=2π(a2+4aα2L)(2L∆−t1±+ξ−1L−1) ,and time constant τp p s 3σ* s p 3σ* 1 2 1 2 2 • Furthermore, theoretical and experimental works on micro/nanofluidic devices • σ and σ are the upper and lowser H-S bounds, σ is the conductivity of thep • Stern layer polarization is modelled following Revil and Florsch, (2010), demonstratedthatmembranepolarizationoccursinrealsystems(seeforexample HSU HSU p Manietal.,2009). aproer et-hsep aecleec (tari cfuanl cctoiondnu ocft iwviatiteesr oefle tchter icwaal tceorn adnudc tsiovliitdy pahnads seast.u ration), σwand σs σ*S(ω)=4E (Σs'+iΣs'') Σs'(ω)=ΣS1−∞∫ g(τ) dτ Σs''(ω)=ΣS∞∫g(τ)ωτdτ • TheaimofthisworkistodevelopamechanisticmodelforSIPthatincorporates s h 01+ω2τ2 01+ω2τ2 • mis Archie’s cementation exponent, φis porosity and S water saturation. both grain and membrane polarization and uses a non-linear mixing rule to w • Σis the surface conductance of the Stern layer , g(τ)is the distribution of describeeffectofthepore-spaceconfigurationofthesolidandfluidphases. • Maxwell-Wagner polarization and high frequency noise are considered using a relaxation times, which is computed from the grain size distribution, E is related h Cole-Cole model to the first moment of the grain size distribution. 4. Model application and preliminary results 5. Discussion • The model fits reasonably well measurements at high water saturation (Sw>0.5), • Experiments from Binley et al., (2005) and Cassiani et al., whereas in drier conditions the comparison is less satisfactory. ((22000099)) wweerree uusseedd ttoo tteesstt tthhee mmooddeell.. SSww==11..00 SSw==00..8833 • The ability of the model to reproduce the patterns observed in the experimental • Available data on the grain-and pore-size distributions data suggests that the observed SIP results from a combination of grain and were used to constrain model parameters. membrane polarization. • Archie’s cementation and saturation exponents were • Frequently, however, Maxwell-Wagner polarization and noise at high frequency calibrated on the data in the DC limit (ω>100Hz) hide the contribution of membrane polarization. Sample VEC 7-5, • In our model, the relaxation time is controlled by the characteristic length of the Binley et al., (2005) pores (membrane polarization) and of the grains, the diffusion coefficient and a tortuosity factor computed from Archie’s cementation factor and water Sample VEC 7-5, saturation. Sw=0.42 Binley et al., (2005) • As the grain diameters are normally greater than the characteristic length of Sw=0.58 pore-throats, Stern (grain) polarization occurs at lower frequencies than S=0.58 S=0.42 w w membrane polarization. Sw=0.83 • According to our model, as water saturation decreases, the contribution of surface conductivity (i.e of Stern layer polarization) increases and becomes Sw=1.0 dominant, while membrane polarization remains constant. 6. References and acknowledgements Sw=1.0 Sw=1.0 • Binley,A.M.,L.D.Slater,M.Fukes,andG.Cassiani(2005),Therelationshipbetweenfrequencydependentelectricalresistivityand hydraulicpropertiesofsaturatedandunsaturatedsandstone.WaterResour.Res.,41(12),W12417.Doi:10.1029/2005WR004202. • Brovelli,A.andG.Cassiani(2011)Combinedestimationofeffectiveelectricalconductivityandpermittivityforsoilmonitoring.Water Resour.Res.47,W08510.Doi:10.1029/2011WR010487. • Brovelli,A.andG.Cassiani(2010).AcombinationoftheHashin-Shtrikmanboundsaimedatmodellingelectricalconductivityand permittivityofvariablysaturatedporousmedia.GeophysicalJ.Intern.180(1):225:237.Doi:10.1111/j.1365-246X.2009.04415.x. • Cassiani,G.,A.Kemna,A.VillaandE.Zimmermann(2009).Spectralinducedpolarizationforthecharacterizationoffree-phase hydrocarboncontaminationofsedimentswithlowclaycontent.NearSurf.Geophys.,7(5-6):547-562.doi:10.3997/1873-0604.2009028. Parameter Binleyet al., (2005) Cassianiet al., (2009) • Mani,A.,T.A.ZangleandJ.G.Santiago(2009)Onthepropagationofconcentrationpolarizationfrommicrochannel-nanochannel interfaces.PartI:Analyticalmodelandcharacteristicanalysis.Langmuir,25:3898-3908. Archie’s mand n 1.5;1.6 1.75; 2.24 • Revil,A.andN.Florsch(2010).Determinationofpermeabilityfromspectralinducedpolarizationingranularmedia.GeophysicalJ.Intern. 181:1480-1498. Grain size distribution 1.5x10-4 1.4x10-5 m 1.45x10-4 1.0x10-5 m • Titov,K.,K.Komarov,V.TarasovandA.Levitski(2002).Theoreticalandexperimentalstudyoftimedomain-inducedpolarizationinwater- saturatedsands.J.Appl.Geophysics50:417-433. Cell #4 of Cassiani et al., (2009) Cell #5 of Cassiani et al., (2009) Pore-throatdistribution 7x10-7 1.25x10-7 m 6.9x10-7 1.25x10-7 m This work was supported by the EU FP7 collaborative project iSOIL“Interactions between soil related sciences –Linking geophysics, soil science and digital soil mapping”. We thank A. Surface conductance (ω=0Hz) 3.6x10-8 S 2.1x10-8 S Binley(Lancaster University, UK) for providing us the experimental data.