Progress in Mathematical Physics Volume 37 Editors-in-Chief Anne Boutet de Monvel, Université Paris VII Denis Diderot Gerald Kaiser, The Virginia Center for Signals and Waves Editorial Board D. Bao, University of Houston C. Berenstein, University of Maryland, College Park P. Blanchard, Universität Bielefeld A.S. Fokas, Imperial College of Science, Technology and Medicine C. Tracy, University of California, Davis H. van den Berg, Wageningen University Alfredo Bermúdez de Castro Continuum Thermomechanics Birkhäuser Verlag Basel · Boston · Berlin Author: Alfredo Bermúdez de Castro Facultad de Matemáticas Universidade de Santiago de Compostela Campus Universitario Sur 15782 Santiago de Compostela Spain e-mail : [email protected] 2000 Mathematics Subject Classification 74A, 74J, 76A, 76N, 80A A CIP catalogue record for this book is available from the Library of Congress, Washington D.C., USA Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed biblio- graphic data is available in the Internet at <http://dnb.ddb.de>. ISBN 3-7643-7265-6 Birkhäuser Verlag, Basel – Boston – Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, broadcasting, repro- duction on microfilms or in other ways, and storage in data banks. For any kind of use whatsoever, permission from the copyright owner must be obtained. © 2005 Birkhäuser Verlag, P.O. Box 133, CH-4010 Basel, Switzerland Part of Springer Science+Business Media Printed on acid-free paper produced of chlorine-free pulp. TCF ∞ Printed in Germany ISBN-10: 3-7643-7265-6 ISBN-13: 978-3-7643-7265-1 9 8 7 6 5 4 3 2 1 www.birkhauser.ch To my wife, Ana Contents Preface xi 1 General Definitions, Conservation Laws 1 1.1 Motion of a Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Conservation of Mass. . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Balance of Linear and Angular Momentum . . . . . . . . . . . . . 5 1.4 Balance of Energy. First Principle of Thermodynamics . . . . . . . 7 1.5 Second Principle of Thermodynamics. The Clausius-Duhem Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Lagrangian Coordinates 13 2.1 The Piola-KirchhoffStress Tensors . . . . . . . . . . . . . . . . . . 13 2.2 The Conservation Equations in LagrangianCoordinates . . . . . . 14 3 Constitutive Laws 17 3.1 Thermodynamic Process. Material Body . . . . . . . . . . . . . . . 17 3.2 Coleman-Noll Materials . . . . . . . . . . . . . . . . . . . . . . . . 18 4 The Principle of Material Frame-Indifference 27 4.1 Change in the Observer.The Indifference Principle . . . . . . . . . 27 4.2 Consequences for Coleman-Noll Materials . . . . . . . . . . . . . . 28 5 Replacing Entropy with Temperature 33 5.1 The Conservation Equations in Terms of Temperature . . . . . . . 33 6 Isotropy 37 6.1 The Extended Symmetry Group . . . . . . . . . . . . . . . . . . . 37 6.2 Isotropic Bodies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7 Equations in Lagrangian Coordinates 43 viii Contents 8 Linearized Models 47 8.1 Linear Approximation of the Motion Equation . . . . . . . . . . . 47 8.2 Linear Approximation of the Energy Equation . . . . . . . . . . . 52 8.3 Isotropic Linear Thermoviscoelasticity . . . . . . . . . . . . . . . . 54 9 Quasi-static Thermoelasticity 57 9.1 Statement of the Equations . . . . . . . . . . . . . . . . . . . . . . 57 9.2 Time Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 57 9.3 A Particular Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 10 Fluids 61 10.1 The Concept of Fluid, First Properties . . . . . . . . . . . . . . . . 61 10.2 Motion Equation. Thermodynamic Pressure . . . . . . . . . . . . . 63 10.3 Energy Equation, Enthalpy . . . . . . . . . . . . . . . . . . . . . . 64 10.4 Thermodynamic Coefficients and Equalities . . . . . . . . . . . . . 66 10.5 Gibbs Free Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 10.6 Statics of Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 10.7 The Boussinesq Approximation, Natural Convection . . . . . . . . 78 11 Linearized Models for Fluids, Acoustics 81 11.1 General Equations, Dissipative Acoustics . . . . . . . . . . . . . . 81 11.2 The Isentropic Case, Non-Dissipative Acoustics . . . . . . . . . . . 85 11.3 Linearized Models under Gravity . . . . . . . . . . . . . . . . . . . 87 12 Perfect Gases 93 12.1 Definition, General Properties . . . . . . . . . . . . . . . . . . . . . 93 12.2 Entropy and Free Energy . . . . . . . . . . . . . . . . . . . . . . . 94 12.3 The Compressible Navier-Stokes Equations . . . . . . . . . . . . . 97 12.4 The Compressible Euler Equations . . . . . . . . . . . . . . . . . . 98 13 Incompressible Fluids 101 13.1 Isochoric Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 13.2 Newtonian Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 13.3 Ideal Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 14 Turbulent Flow of Incompressible Newtonian Fluids 105 14.1 Turbulence Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 14.2 The k−(cid:1) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 15 Mixtures of Coleman-Noll Fluids 109 15.1 General Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 15.2 Mixture of Perfect Gases . . . . . . . . . . . . . . . . . . . . . . . . 113 Contents ix 16 Chemical Reactions in a Stirred Tank 119 16.1 Chemical Kinetics. The Mass Action Law . . . . . . . . . . . . . . 119 16.2 Conservation of Chemical Elements . . . . . . . . . . . . . . . . . . 122 16.3 Reacting Mixture of Perfect Gases . . . . . . . . . . . . . . . . . . 123 17 Chemical Equilibrium of a Reacting Mixture of Perfect Gases in a Stirred Tank 125 17.1 The Least Action Principle for the Gibbs Free Energy . . . . . . . 125 17.2 Equilibrium for a Set of Reversible Reactions, Equilibrium Constants . . . . . . . . . . . . . . . . . . . . . . . . . 126 17.3 The Stoichiometric Method . . . . . . . . . . . . . . . . . . . . . . 131 18 Flow of a Mixture of Reacting Perfect Gases 135 18.1 Mass Conservation Equations . . . . . . . . . . . . . . . . . . . . . 135 18.2 Motion Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 18.3 Energy Conservation Equation . . . . . . . . . . . . . . . . . . . . 137 18.4 Conservation of Elements . . . . . . . . . . . . . . . . . . . . . . . 140 18.5 Equilibrium Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . 141 18.6 The Case of Low Mach Number . . . . . . . . . . . . . . . . . . . . 142 19 The Method of Mixture Fractions 145 19.1 General Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 19.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 19.3 The Adiabatic Case . . . . . . . . . . . . . . . . . . . . . . . . . . 149 19.4 The Case of Equilibrium Chemistry . . . . . . . . . . . . . . . . . 149 20 Turbulent Flow of Reacting Mixtures of Perfect Gases, The PDF Method 153 20.1 Elements of Probability . . . . . . . . . . . . . . . . . . . . . . . . 153 20.2 The Mixture Fraction/PDF Method . . . . . . . . . . . . . . . . . 155 A Vector and Tensor Algebra 161 A.1 Vector Space. Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 A.2 Inner Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 A.3 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 A.4 The Affine Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 B Vector and Tensor Analysis 173 B.1 Differential Operators . . . . . . . . . . . . . . . . . . . . . . . . . 173 B.2 Curves and Curvilinear Integrals . . . . . . . . . . . . . . . . . . . 175 B.3 Gauss’ and Green’s Formulas. Stokes’ Theorem . . . . . . . . . . . 177 B.4 Change of Variable in Integrals . . . . . . . . . . . . . . . . . . . . 178 B.5 Transport Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 178 B.6 Localization Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 179 x Contents B.7 Differential Operators in Coordinates . . . . . . . . . . . . . . . . . 179 B.7.1 Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . 179 B.7.2 Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . 182 B.7.3 Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . 184 C Some Equations of Continuum Mechanics in Curvilinear Coordinates 189 C.1 Mass Conservation Equation . . . . . . . . . . . . . . . . . . . . . 189 C.2 Motion Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 C.3 Constitutive Law for Newtonian Viscous Fluids in Cooordinates . 191 D Arbitrary Lagrangian-Eulerian (ALE) Formulations of the Conservation Equations 195 D.1 ALE Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 D.2 Conservative ALE Form of Conservation Equations . . . . . . . . . 197 D.2.1 Mixed Conservative ALE Form of the Conservation Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 D.3 Mixed Nonconservative Form of ALE Conservation Equations . . . 200 Bibliography 203 Index 205 Preface This book is intended to be an extensionof Gurtin’s book on continuum mechan- ics [5] by including the laws of thermodynamics and thus making it possible to studythe mechanicalbehaviourofmaterialbodies,the responseofwhichinvolves variablessuch as entropy or temperature. In order to do that our departure point is Coleman and Noll’s article [3] on the thermodynamics of elastic materials with heat conduction and viscosity which has been extended for the purpose at hand to the case of nonhomogeneous materials. The present book has been used for many years as a textbook for gradu- ate and undergraduate mathematics students at the University of Santiago de Compostela. The first Chapter revisits the conservation principles of continuum thermo- mechanics,thatis,theconservationofmass,linearandangularmomentumbalance and the first two principles of thermodynamics: namely, energy conservation and entropy inequality. All principles are introduced in integral form and in Eulerian coordinates. Local forms consisting of partial differential equations are then ob- tained. Writing these local equations in Lagrangian coordinates is the subject of Chapter 2. Chapter 3 deals with the constitutive laws of continuum thermomechanics. Firstthe notionofamaterialbody characterisedbyits constitutive classis given. Then we introduce a general material body defined by Coleman and Noll in the above referenced article. By imposing the second principle of thermodynamics, we prove some relations to be satisfied by the response functions of such a mate- rial.Then,in Chapter4,the principle ofmaterialframe-indifferenceis introduced andits consequencesforthe responsefunctions ofthe Coleman-Nollmaterialsare established. In Chapter 5, the partial differential equations governing a thermo- dynamic process are written replacing entropy with temperature. Chapter 6 is devoted to isotropy. By using the representation theorems for isotropic tensor and vector-valued functions, we obtain simple forms for the re- sponse functions of Coleman-Noll materials. In Chapter 7, the equations satisfied by each thermodynamic process of these materials are written in Lagrangian co- ordinates. We also show that inviscid Coleman-Noll materials are hyperelastic. The linear approximations of these equations about a static reference state arededucedinChapter8,assumingthatthegradientofthe displacementandthe difference of temperature with respect to a reference state are both small. This is rigorously done through careful computation of the derivatives of the response functions.Isotropicmaterialsarespecificallyconsidered.Thus,weobtainthe par- tial differential system for linear thermoviscoelasticity; its numerical solution by incremental methods, in the inviscid quasi-static case, is addressed in Chapter 9. Fluids are the subject of Chapter 10 where they are introduced as partic- ular Coleman-Noll materials when the extended symmetry group is the unimod- ular group. We define the classical thermodynamic variables like specific heat, soundspeed, volumetric thermal expansion,and write the conservationequations