ebook img

Continuum study on QCD phase diagram through an OPE-modified gluon propagator PDF

0.6 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Continuum study on QCD phase diagram through an OPE-modified gluon propagator

Continuum study on QCD phase diagram through an OPE-modified gluon propagator Chao Shi1,2,4, Yi-Lun Du1, Shu-Sheng Xu2,4, Xiao-Jun Liu1,∗ and Hong-Shi Zong2,3,4† 1 Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China 2 Department of Physics, Nanjing University, Nanjing 210093, China 3 Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093, China and 4 State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing 100190, China WithintheDyson-Schwingerequations(DSEs)framework,agluonpropagatormodelincorporat- ing quark’s feedback through operator product expansion (OPE) is introduced to investigate the QCD phase diagram in the temperature–chemical-potential (T −µ) plane. Partial restoration of chiral symmetry at zero temperature and finite temperature are both studied, suggesting a first order phase transition point on the µ axis and a critical end point at (T ,µ )/T = (0.85,1.11), E E c whereT isthepseudo-criticaltemperature. Inaddition,wefindthepseudo-criticallinecanbewell c 6 parameterized with the curvature parameter κ and a consistent decrease in κ with more of gluon 1 propagator distributed to quark’s feedback. 0 2 Key-words: QCD phase diagram, Dyson-Schwinger equations, operator product expansion, critical n end point a J PACS Number(s): 25.75.Nq, 11.30.Rd, 11.10.Wx, 12.38.Lg 0 3 In this work, we will resort to DSEs, which is a con- ] tinuousnon-perturbativeapproachthatdescribesQCD’s h severalimportantfeatures,e.g.,dynamicalchiralsymme- p - I. INTRODUCTION try breaking (DCSB) and confinement [23]. It has been p employedinextensivestudyontheQCDphasediagram. e The universe went through a quark epoch approxi- For instance, chiral phase restoration was studied over h [ mately 10−12 seconds after the Big Bang. Nowadays, the T −µ space and generally speaking, the existence of the nucleus-nucleus collisions at RHIC and LHC with CEP is suggested, in consistent with most model predic- 1 high center of mass energy can reproduce such a state tions. It is further supplemented by the investigation of v known as the quark gluon plasma (QGP) [1, 2]. It con- certain phases, e.g., sQGP at high temperature [24, 25] 2 6 sists of unbound quarks/gluons and behaves as nearly andcolorsuperconductivityatlowtemperature[26]. The 0 perfect fluid [3, 4] with very small viscosity. While pro- effect of chiral imbalance on the QCD phase structure is 0 gresses are being made in studying the QGP concerning also studied, extending the phase diagram to T µ µ5 − − 0 thehightemperature(T)andlowchemicalpotential(µ) space [27, 28]. . 2 region in the QCD phase diagram, little is known about As an infinite tower of equations, DSEs always require 0 the territory with higher µ. Hence, RHIC is planning a truncationschemesinpractice. Forexample,thequark’s 6 beam energy scan program phase II (BES II) based on DSE, namely the quark gap equation, has two unknown 1 the BES I completed in 2014 [5, 6]. With statistical er- : ingredients: quark-gluon vertex and gluon propagator. v rors largely reduced, strong conclusions on QCD phase Forthequark-gluonvertex,commonlyusedare: i)Rain- i transitionboundaryandthecriticalendpoint(CEP)are X bow truncation, namely the bare vertex which had been hopefully to be drawn. widely used in combination with Ladder truncation in r Onthetheoreticalside,withfinerlatticesandphysical a boundstateproblems. ii)Ball-Chiu(BC)ansatz[29]and quarkmasses, latticesimulationsobservedtheanalytical its modified versions that concern the Abelian and non- crossover behavior at T =0,µ=0 and investigated var- Abelian dressing effects [30]. iii) Ball-Chiu ansatz plus a (cid:54) ious thermodynamic quantities of the QGP [7–9]. How- dressed-quark anomalous chromomagnetic moment term ever,itsextrapolationtoµ=0isayetunsolvedproblem [24]. In spite of that the latter two vertexes are more (cid:54) due to the notorious sign problem [10–12]. Therefore, refined, Rainbow truncation suffices to give qualitative alternative approaches to the QCD phase diagram like descriptions of the QCD phase diagram in almost all as- (P)NJLmodels[13,14],quark-mesonmodels[15–17]and pects. Therefore we will use it throughout this work for the Dyson-Schwinger equations (DSEs) method [18–21], simplicity. could provide valuable insight at present [22]. With the Rainbow truncation, our main focus in the work will be on the other ingredient of the quark self- energy, the gluon propagator. A popular choice is to ∗ Email:[email protected] directlygeneralizemodelsdeterminedinhadronphysics, † Email:[email protected] e.g., separable model [31, 32], Maris-Tandy model [33], 2 Qin-Changmodel[34]andetc1,tothefinitetemperature setallrenormalizationconstantstoone,sincewewilluse case [18, 38]. However, flaws in these generalized mod- gluon models that are heavily suppressed in ultraviolet els are apparent. They receive no feedback from quarks region,renderingtheintegralinquarkself-energyconver- and don’t evolve with temperature or chemical poten- gent. In this sense, the g2 here is not a running coupling tial, therefore don’t meet the requirements of QCD in constant in the sense of the renormalization group but essence. Aspecificexampleisthefirstorderchiralphase ratheraneffectivecouplingandthereforehasnomedium transition at low temperature and high density. There dependence. WeuseLandaugaugehere, whichisafixed the gluon propagators in Nambu-Goldstone phase and point of the renormalization group and therefore widely in Wigner phase should be different and a discontinu- used in DSEs studies [42]. The quark propagator can ous change is expected. In face of this situation, authors further be decomposed as of [19, 39] incorporate quark’s feedback into the gluon G−1(p(cid:126),ω˜ ;T,µ)=i(cid:126)γ p(cid:126)A(p(cid:126)2,ω˜2;T,µ) propagator by considering contribution of quark loops n · n ingluon’sDSE.Nevertheless,thequenchedpartofgluon +iγ4ω˜nC(p(cid:126)2,ω˜n2;T,µ)+B(p(cid:126)2,ω˜n2;T,µ).(2) propagatorreliesonanalyzingandfittingthelatticedata. ForthefreequarkpropagatorG0(p(cid:126),ω˜ ),scalarfunctions In this paper, we will investigate an alternative treat- n A=1, B =m and C =1, where m is the current quark ment based on the operator product expansion (OPE), mass. Rainbow truncation has been popular in meson which provides an explicit form for quark’s feedback on study because its combination with Ladder truncation gluon self-energy in terms of local quark condensates preserves the axial-vector Ward-Takahashi identity [43]. [40, 41]. In this way, we derive a modified gluon propa- And in our case, as far as we know, no existing com- gator model and the consequent QCD phase diagram is plicated vertexes bring qualitative changes to the phase studied within DSEs framework. Since the extraction of diagram. So for simplicity, we will employ the rainbow quark’sfeedbackongluonremainsanopenquestion,our truncation through out this work, namely model study will hopefully help us gain useful insights. This paper is organized as follows. In Sec. II we intro- duce quark’s gap equation and the truncation scheme. λa Γa(p,q)= γ . (3) Then a gluon propagator model is derived from gluon ν 2 ν DSE with the help of OPE. With this model, we study In this way, we are left with the gluon propagator which the transition behavior of QCD on the T µ plane in − is undetermined. Generally, it can also be expressed remainingsections, wherethecaseofT =0,µ=0isdis- (cid:54) through two scalar functions D and D cussed in Sec. III and T =0,µ=0 is studied in Sec. IV. T L (cid:54) (cid:54) Finallywesummarizeourresultandgivetheconclusions in Sec. V. D ((cid:126)k,Ω )=PT ((cid:126)k,Ω )D ((cid:126)k2,Ω2) µν l µν l T l +PL((cid:126)k,Ω )D ((cid:126)k2,Ω2), (4) µν l L l II. QUARK GAP EQUATION AND GLUON PROPAGATOR MODEL with PL and PT beinglongitudinal andtransverse pro- µν µν jection operators respectively To study the QCD chiral phase transition, we employ k k the Dyson-Schwinger equations formalism, in which the PT (k)=(1 δ )(1 δ )(δ µ ν) (5) quark gap equation at finite temperature and chemical µν − µ4 − ν4 µν − (cid:126)k2 potential can be written as PL(k)=P (k) PT (k). (6) µν µν − µν Ω =2lπT is the boson Matsubara frequency. Normally, (cid:88)∞ (cid:90) d3q onle can now resort to the aforementioned models, e.g., [G(p(cid:126),ω˜ )]−1 =[G0(p(cid:126),ω˜ )]−1+T n n (2π)3 Qin-Chang model for D and D . However, since we T L l=−∞ are trying to incorporate quark’s feedback, further con- (cid:20) λa (cid:21) g2D (p(cid:126) (cid:126)q,ω˜ ω˜ ) γ G((cid:126)q,ω˜ )Γa ,(1) sideration is needed. Let’s start with the case at zero × µν − n− l 2 µ l ν temperature and density. As we mentioned in Sec. I, extracting quark’s feed- where the superscript 0 refers to free propagators. back from gluon propagator is tricky. Inspired by QCD ω˜ =(2n+1)πT+iµandthecolorindexingluonpropaga- n tor D has been contracted. λa are the Gell-Mann ma- sum rule [44], authors of [41] suggested a relatively sim- µν tricesandΓa isthefullquarkgluonvertex. Herewehave ple way as follows. As we know, in the OPE framework, ν thecurrent-currentcorrelationfunctioncanbeexpressed through various local scalar operators’ vacuum expecta- tionvalues,namely,vacuumcondensates. Thesevacuum 1 Ourworkwillbebasedonthesebottom-up-schememodelswhich condensates characterizing the non-perturbative feature are determined by fitting hadron properties [35]. The other ofQCDaretreatedasparametersintheQCDsumrules, scheme, top-down scheme, which aims to perform an ab ini- tio computation of the gauge-sector DSEs can be tracked from while they can be calculated elsewhere [45], including [36,37]. DSEs [43, 46]. For the gluon propagator, the gluon 3 self-energy contains quark condensate, which is the low- est dimension vacuum condensate generated by quarks. The gluon vacuum polarization tensor involves the term = + [40, 41] Dµν Dµqν Dµ0ν (cid:90) (cid:90) d4q ΠQ (k)= g2 d4(y z) ei(p−q)·(y−z) µν − − (2π)4 FIG. 1. Gluon DSE with a vacuum polarization term which (cid:20) (cid:21) tr γ 1 γ ψ¯(y)ψ(z) contains local quark condensate, see Eq. (7) and Eq. (10). × µi/q+m ν(cid:104) (cid:105) =P (k)k2ΠQ(k2) µν To specify the function Dq(k2), we will employ the g2m(cid:10)ψ¯ψ(cid:11) Qin-Chang model as the full gluon propagator at zero = P (k) +... (7) − µν 3k2 temperature and density, where m(cid:10)ψ¯ψ(cid:11) = m ψ¯ψ +m ψ¯ψ and the ellipsis u u d d (cid:104) (cid:105) (cid:104) (cid:105) represents terms of higher orders in m2/k2 which are g2D (k2)= (k2)P (13) µν µν neglected. The superscript Q stands for Quark. Now, G we can extract from the full gluon propagator a quark- (k2)= 8π2De−ωk22, (14) unaffected part Dq, where q stands for quenched. Then G ω4 the full gluon propagator is divided into two parts, wheretheparametersD andω aredeterminedinhadron D (k)=P D(k2) (8) physics. D characterizes the interaction strength and µν µν ω controls the confinement length. In Rainbow-Ladder =P (Dq(k2)+DQ(k2)). (9) µν truncation, the ground state pseudoscalar and vector- Accordingly, withtheDSEforgluonpropagatorwehave mesonobservables,likemassandelectro-weakdecaycon- stant, are roughly constant while Dw = (0.8GeV)3 with Dµν(k)=Dµqν(k)+Dµ0ρ(k)ΠQρσ(k)Dσν(k), (10) ω [0.4,0.6]GeV. Thereforetheparametersarenotcom- ∈ pletelyconstrainedbyhadronphysics: achangeinDcan which is diagrammatically shown in Fig. 1. With becompensatedbyanalterationofω. Qin-Changmodel Eqs. (7,9,10), we have: qualitative agrees with modern DSEs and lattice studies Dq(k2) in gluon propagator’s infrared region, e.g., it gives typ- D(k2)= g2m ψ¯ψ ical value for the gluon screening mass [34].2 So with 1+ 3(cid:104)k4 (cid:105)0 Eqs. (8,11,13), we have Dq(k2) ≈ 1+ (cid:104)ψ¯ψ(cid:105)0, (11) Dq(k2)= G(gk22)(cid:18)1+ (cid:104)ψ¯Λψ3(cid:105)0(cid:19). (16) Λ3 where the subscript 0 refers to T = 0 and µ = 0. Here Substituting it into Eq. (12), we finally arrive at the we introduce the momentum scale Λ as in [41], which OPE-modified model absorbs constants m, g and the momentum k and serves as a parameter in our model. With such simplification, gluonpropagatorremainsfiniteintheinfraredregionand ψ¯ψ the ultraviolet region won’t be affected since Dq(k2) will g2D((cid:126)k2+Ω2)= ((cid:126)k2+Ω2) 1+ (cid:104) Λ3(cid:105)0 . (17) be heavily ultraviolet-suppressed. l G l ψ¯ψ Then we extend Eq. (11) to finite temperature and 1+ (cid:104) (cid:105)T,µ Λ3 chemical potential via k k = ((cid:126)k,Ω ) and ψ¯ψ l l 0 ψ¯ψ , so → (cid:104) (cid:105) → Apparently, the form of g2D((cid:126)k2 +Ω2) changes as ψ¯ψ (cid:104) (cid:105)T,µ l (cid:104) (cid:105) evolves through the T µ plane. At T = 0 and µ = 0 − it goes back to Qin-Chang model, therefore all hadron Dq((cid:126)k2+Ω2) D((cid:126)k2+Ω2)= l . (12) properties are preserved. l ψ¯ψ 1+ (cid:104) (cid:105)T,µ Λ3 Note that here is an implicit approximation D = D , L T which actually doesn’t hold at finite temperature as 2 Qin-Changmodelimprovesuponanalikemodel: Maris-Tandy model shown by lattice simulation [47, 48]. However, for a sketchy study of quark’s feedback on chiral phase dia- G(k2)= 4π2Dk2e−ωk22 (15) gram, we will continue to use this approximation follow- ω6 ing earlier studies [18, 38]. inthedeep-infraredregionofgluonpropagator. 4 In the following calculation, we will choose D = 0.9 1.0GeV2, ω = 0.6GeV and m = m = 0.005GeV in u d 0.8 Eq. (14) for demonstration in almost all figures. As for 0.7 the parameter Λ, from Eq. (17) we know that it char- V) 0.6 alacrtgeerrsΛthies,stthreenlgetshs qoufaqrkuacrokn’strifbeuedtebsa.ckWohnengΛluon:+the, µ)(Ge 0.5 Eq. (17) becomes: → ∞ ,i0 0.4 B,(0 0.3 0.2 Λ→+∞ 0.1 g2D((cid:126)k2+Ω2) === g2D ((cid:126)k2+Ω2)= ((cid:126)k2+Ω2). (18) l s l G l 0 0 0.1 0.2 0.3 0.4 0.5 µ(GeV) Here we add a subscript s for static to this special case for later use. To determine Λ, we try to infer its value FIG. 2. Solution of quark gap equation at zero tempera- by comparing with existing study. For example, under ture: B(p(cid:126)2,p ,iµ) with p(cid:126)2 =0, p =0. Two solutions corre- Rainbow truncation, [36] suggests about 20% increase 4 4 spondtotheNambu-Goldstonesolution(redsolidcurve)and in ψ¯ψ with the unquenching effect. In our case, u/d Wigner solution (blue dashed curve) respectively. we−h(cid:104)ave(cid:105)ψ¯ψ = (244MeV)3 obtained from D (k) u/d µν comparin(cid:104)g w(cid:105)ith ψ¯ψ−q = (227MeV)3 from Dq (k) (cid:104) (cid:105)u/d − µν 0.03 bysettingΛ=0.56GeV.3 Wewillshowtheresponsesof CEPlocationandpseudo-criticallinetotheseparameters 0.025 at the end of Sec. IV. 3V) 0.02 Ge ψ(i 0.015 III. PARTIAL RESTORATION OF CHIRAL ¯ψ−h 0.01 SYMMETRY AT T =0,µ(cid:54)=0 0.005 The research on QCD at zero temperature and fi- 0 nite density is abundant and causes a lot of interests 0 0.1 0.2 0.3 0.4 0.5 to researchers on cold QCD matter, e.g., compact stars µ(GeV) [51,52]. Forexample,theequationofstate(EOS)ofcold QCD matter plays an important role in calculating and FIG. 3. Quark condenstate in Nambu-Goldstone phase (red understanding the structure and evolution of these stars solid curve) and Wigner phase (blue dashed curve). [53–57]. There have also been studies suggesting a first order phase transition of chiral symmetry on the µ axis Wecanalsocalculatetherenormalizedquarkcondensate [58,59]. Itisthereforeinterestingtoseethepicturefrom with our model. T T→o0s,otlhveenthEeq.q(u1a)rkbegcoampeesquation, we take the limit (cid:104)ψ¯ψ(cid:105)=−(cid:90) (2dπp4)4Trf,c,d(cid:2)G(p(cid:126),p˜4;µ)−G0(p(cid:126),p˜4;µ)(cid:3) (cid:90) d4q (cid:90) dp4 B [G(p(cid:126),p˜4)]−1 =[G0(p(cid:126),p˜4)]−1+ (2π)4 =−4NcNf (2π)4A2p(cid:126)2+C2p˜42+B2, (21) (cid:20) λa (cid:21) g2D (p(cid:126) (cid:126)q,p˜ q˜ ) γ G((cid:126)q,q˜ )Γa ,(19) where the trace should be taken over flavor, color and × µν − 4− 4 2 µ 4 ν Dirac indices assuming the u,d quark symmetry. SubstituteEqs.(17,20,21)intoEq.(19),multiplyboth wherep˜4=p4+iµ,accordingly,thequarkpropagatorcan sidesofEq.(19)withi(cid:126)γ p(cid:126),iγ4p˜4 andI4 respectively,and be decomposed as, then take the trace, one· can obtain three coupled non- linearequationsofthefunctionsA,BandC.Thesenon- G−1(p(cid:126),p˜ ;µ)=i(cid:126)γ p(cid:126)A(p(cid:126)2,p˜ ;µ) 4 4 linear equations can be numerically solved with iterative · +iγ p˜ C(p(cid:126)2,p˜ ;µ)+B(p(cid:126)2,p˜ ;µ). (20) method. In this way, we can obtain the scalar functions 4 4 4 4 A,B, C and the corresponding quark condensate. Both Nambu-Goldstone solution and Wigner solution arefound,correspondingtoNambu-Goldstonephaseand 3 −(cid:104)ψ¯ψ(cid:105)u/d =(244MeV)3 satisfies −(mu+md)(cid:104)ψ¯ψ(cid:105)u/d ≈m2πfπ2 Wigner phase respectively. Fig. 2 shows the B(p(cid:126)2 = (GMOR relation [49]) within our parameter setting, although 0,p4 = 0,iµ) for both solutions and Fig. 3 displays the it is relatively small comparing with current lattice prediction quark condensates. Both quantities are indicators of −(cid:104)ψ¯ψ(cid:105)u/d≈(270MeV)3 [50]. DCSBandexhibitdiscontinuousdropatthesamechem- 5 ical potential. 0.045 OnecannoticefromFig.3thatthe ψ¯ψ intheNambu 0.04 (cid:104) (cid:105) phase basically remains unchanged. This indicates that 0.035 the partition function of QCD stays unchanged before µ reachesacriticalvalue(roughly1/3ofbaryonmass)[60]. 3V) 0.03 Here we’d like to point out this condition can be used as Ge 0.025 a rule in constraining gluon propagator models, which ψ(i 0.02 ¯ψ however was not satisfied at all times. For instance, in −h 0.015 Refs. [21, 61, 62], a chemical potential suppressed gluon 0.01 propagator model is employed to study the QCD phase diagram. While ψ¯ψ in that case actually varies with 0.005 chemicalpotentia(cid:104)land(cid:105) thereforebreaksthisruletoacer- 0 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 tain extent. In our model here, this condition is satisfied T/Tc because the whole quark’s feedback is incorporated into a term solely described by quark condensate, which was FIG. 4. Evolution of (cid:104)ψ¯ψ(cid:105) at T (cid:54)= 0 and µ = 0. (cid:104)ψ¯ψ(cid:105) already unchanged in the Nambu-Goldstone phase with (blacksolidcurve)fromourmodifiedmodelEq.(17)decreases static gluon models. faster than (cid:104)ψ¯ψ(cid:105) (blue dashed curve) from the static model s To study the possible phase transition between two Eq.(18). Theother(cid:104)ψ¯ψ(cid:105)(graydot-dashedcurve)and(cid:104)ψ¯ψ(cid:105)s phases, one should calculate the effective potential and (red dotted curve) were obtained by setting the parameter obtain the pressure difference between them, whose zero D=1.4 and Λ=0.62, whose choice is explained in the text. Thedata(blackerrorbars)aretakenfromlatticecalculation pointatµ iswherethefirstorderphasetransitiontakes c [8]. place. However, the Cornwall-Jackiw-Tomboulis (CJT) effective potential action could only be used consistently with the rainbow truncation and a static gluon propaga- 3 tor model [63], thus is invalid here. Nevertheless, sug- χm,s χm gtheseteBdalbl-yCohtihuevresrttuedxi,esfirbsetyoorndderRpahinabseowtrtarnusnitciaotniosnh,oeu.lgd. 2.5 1100××χχT,Ts 2 take place within the coexistence region of two solutions 2V) [18,64]. Anintuitiveguessforthefirstorderphasetran- Ge 1.5 ( sition point is [64] m/T χ 1 µNG+µW µχ c c =0.4GeV, (22) 0.5 c ≈ 2 0 µNG is where Nambu-Goldstone solution disappears 0.11 0.12 0.13 0.14 0.15 0.16 0.17 c while µW is where Wigner solution turns up. We’d also T(GeV) c like to point out the µW from D(k2) is about 20 MeV c lowerthanthatfromD (k2), indicatingasmalldecrease FIG.5. Susceptibilitiesatfinitetemperatureandzerochemi- s calpotential. χ andχ aredefinedinEq.(24)andEq.(25) in µχ within our model. T m c with the subscript s for static. Finally, one could infer from Fig. 3 and Eq. (17) that our gluon propagator takes different forms in Nambu- Goldstone phase and Wigner phase, D (k2) = D (k2) NG s comparingwithD (k2) Dq(k2). Therefore,ourgluon condensate at finite temperature is W (cid:39) propagator has a clear distinction between the Nambu- GtioonldtsototnheepprhoabsleemanwdeWpriogpnoersepdhiansSe,ecw.hI.icIhntghiviseswaays,onluot- (cid:104)ψ¯ψ(cid:105)=−T (cid:88)+∞ (cid:90) (2dπp3)3Trf,c,d[G(p(cid:126),ω˜n;T,µ) only quark, but also gluon propagators take discontinu- n=−∞ ous changes while the system goes through a first order G0(p(cid:126),ω˜ ;T,µ)]. (23) n − phase transition. This gives a general picture about how the gluon propagator evolves at finite µ, through the in- TakingthelimitT 0inthisequationleadstoEq.(21). clusion of quark’s feedback. → Following similar steps as introduced in Sec. III (replace p˜ with ω˜ ), we can again obtain the dressing functions 4 4 and corresponding quark condensate. IV. PARTIAL RESTORATION OF CHIRAL Let’s first look at the results on the temperature axis, SYMMETRY AT T (cid:54)=0 namely µ = 0. As we can see from Fig. 4, introducing quark’sfeedbackdoesn’tchangethequalitativebehavior We now move on to the finite temperature case and of quark condensate on the T axis. ψ¯ψ is basically (cid:104) (cid:105) solve the gap equation at finite T and µ. The quark a monotonic decreasing function of T with an inflection 6 point. If we use the susceptibility 0.03 µ=0.08GeV ∂ ψ¯ψ µ=0.11GeV χ = (cid:104) (cid:105) (24) 0.025 µ=0.13GeV T ∂T as the criterion [65, 66], this inflection point is the so ) 0.02 3V calledpseudo-criticaltemperature. Anotherchoiceisthe e G chiral susceptibility χ ( 0.015 m i ψ ¯ψ ∂ ψ¯ψ −h 0.01 χ = (cid:104) (cid:105). (25) m − ∂m 0.005 The maxima of χ and χ , namely the pseudo-critical T m temperatures—T ’s, don’t necessarily coincide with each c 0 other[67],althoughwithinourmodeltheyarecloser(see 0.09 0.095 0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135 Fig. 5). Nevertheless, all these susceptibilities exhibit T(GeV) smooth change hence it is crossover in this area. However,somequantitativechangesarenoticeable. In FIG. 6. (cid:104)ψ¯ψ(cid:105) at finite µ and T. Fig.5,T ’sfromtwogluonpropagatormodelsarenotthe c same: D(k2) gives a relatively low T . This can be un- c derstoodwiththehelpofFig.4: whenT goesup, ψ¯ψ 12 dropscontinuously,soD(k2)getssmallerandleads−t(cid:104)othe(cid:105) χm(µ=0.08GeV) χ (µ=0.08GeV) weakening of interaction between quarks. This then in T 10 χ (µ=0.11GeV) m turn accelerates the dropping of quark condensate, pro- χ (µ=0.11GeV) T ducingrelativelylowTc’s. Comparingwiththatofstatic 8 χχm((µµ==00..1133GGeeVV)) gluonmodel,this“quicker”transitionbroughtbyquark’s T feedback is closer to lattice result concerning the slopes m of ψ¯ψ curves near Tc. We notice the ψ¯ψ and Tc’s we χT/ 6 (cid:104) (cid:105) (cid:104) (cid:105) give are relatively low comparing to lattice predictions T 160 MeV and ψ¯ψ 280 MeV given in [8]. 4 c u/d ≈ (cid:104) (cid:105) ≈ Thisisduetooursimplifiedtruncationschemeandgluon 2 model. Inordertoperformadirectcomparisonwithlat- ticeresult,weprimitivelyraisetheinteractionstrengthto 0 D =1.4andΛ=0.62(thechoiceofΛisexplainedinthe 0.1 0.104 0.108 0.112 0.116 0.12 caption of Table. I), which produce ψ¯ψ =277 MeV. The ψ¯ψ still agrees with lattice(cid:104)dat(cid:105)au/bdetter than a T(GeV) T (cid:104) (cid:105) static model, as shown in Fig. 4. Therefore we conclude FIG. 7. Crossover and first order phase transition character- that our modified model persists to give more realistic izedbysusceptibilities. Thepeaksgotoinfinityapproaching descriptions of transition behavior at finite temperature the critical end point. T (cid:54)T . c Itisworthnotingthat, incontrastwiththatonµaxis whereD(k2)takesasuddenchange,hereD(k2)decreases MeV.Thispointisthenthesecondorderphasetransition continuously. Such a behavior is naturally generated in point, namely, the CEP. our model and qualitatively agrees with lattice result on D (k2) [68]. We therefore determine the pseudo-critical lines in T With the results on µ axis and T axis, we are led to Fig. 8 by taking the maxima of χT. For comparison, believe transition behavi−ors like cross−over and first order again we also add the result of Ds(k2). It shows, with phase transition will remain on T µ plane, while the quark’sfeedbackongluonpropagator,thepseudo-critical transition lines will somehow vary−. Consequently, the line gets flattened. This can be seen more clearly with CEP,whichistheendpointoffirstorderphasetransition the parameterization formula [12, 69]: line, may shift. ψ¯ψ at T = 0 and µ = 0 are shown in Fig. 6, where ψ¯(cid:104)ψ u(cid:105)ndergo(cid:54)es continuo(cid:54)us change with low µ while ex- (cid:104)hibit(cid:105)s discontinuous transition with larger µ. Fig. 7 T (µ)=T (0)(1 κµ2/T2(0)+O(µ4/T4)), (26) c c − c c shows that the corresponding susceptibilities display dif- ferent behaviors, e.g., at µ=110 MeV and µ=80 MeV they are continuous while at µ = 130 MeV not. One where T (µ) parameterizes the pseudo-transition line. c could also see there is a tendency for the susceptibili- We extract κ by least-squares fit and plot the functions ties to diverge at some point when µ is larger than 110 T (µ)’sinFig.8. Theroot-mean-squaredeviationinthis c 7 fitting, shown respectively. As explained in the end of [18], if we consider r =1/ω as a confinement length scale, then (cid:118) (cid:117)(cid:117) 1 (cid:88)N (cid:18) (cid:19)2 whenr goestozero,whichrepresentsaNJLtypemodel, RMSD=(cid:116) T (µ ) Ti (27) theCEPwouldrotatetowardthechemicalpotentialaxis. N c i − c i=1 Therefore the CEP rotates toward the temperature axis from row-2 to row-4. In Row-5, the interaction strength is RMSD<0.2 MeV for all curves. D is raised to produce a larger ψ¯ψ (280MeV)3, u/d −(cid:104) (cid:105) ≈ whichcorrespondstothegraydot-dashedcurveinSec. 4. CEP in this case also rotates toward the temperature 0.14 axis. Sogenerallyspeaking,reducingωwouldmakeCEP rotate toward the temperature axis under constraint of 0.13 Dω (0.8GeV)3. ≈ 0.12 ) V e G ( 0.11 T V. DISCUSSION AND SUMMARY 0.1 To summarize, we incorporate quark’s feedback into 0.09 the gluon propagator based on the idea of OPE and de- 0.08 rive a gluon propagator that evolves through the T µ 0 0.05 0.1 0.15 0.2 plane. It is characterized and determined by quark c−on- µ(GeV) densate at finite temperature and density. The QCD phase diagram is then studied with this gluon model FIG. 8. From top to bottom, pseudo-transition points ob- within DSEs framework. tainedfromΛ=+∞ (blue dotted curve),Λ=0.56(blackdot- At zero temperature and finite chemical potential, dashedline)andΛ=0.5(reddashedcurve)respectively,are the coexistence region of Nambu-Goldstone solution and all well fitted by Eq. (26). The area between the gray solid Wigner solution is found, indicating a first order phase curves is the metastable region of Nambu-Goldstone phase transition point. Moreover, we have shown that our and Wigner phase. model preserves two important features of QCD, e.g., QCDremainsvacuumatlowchemicalpotentialanddis- continuous change in gluon propagator at the first or- D ω Λ (GeV) T (GeV) (T ,µ )/T κ c E E c der phase transition. Then we move on to T = 0 case 1.0 0.6 0.5 0.125 (0.89,1.01) 0.116 and find that quark’s feedback accelerates the(cid:54)decrease 1.0 0.6 0.56 0.131 (0.85,1.11) 0.126 of quark condensate, leading to a quicker crossover on 1.0 0.6 +∞ 0.141 (0.82,1.13) 0.143 the temperature axis. Such a picture agrees with lattice 1.0 0.5 0.52 0.156 (0.93,0.41) 0.333 simulation at finite temperature. We further studied the crossover region and CEP location. It shows consistent 1.4 0.6 0.62 0.176 (0.93,0.46) 0.323 decreaseincurvatureparameterκandincreaseinT /T E c with more of gluon propagator distributed to quark’s TABLE I. Parameter dependence of the CEP location and curvature parameter κ defined in Eq. (26). In row-4 and feedback. For example, it brings a CEP location from row-5, Λ is determined by the same criterion as in row-2: (TE,µE)/Tc = (0.82,1.13) to (TE,µE)/Tc = (0.85,1.11) (cid:104)ψ¯ψ(cid:105)q/(cid:104)ψ¯ψ(cid:105) =0.8 . and κ from 0.143 to 0.126, both closer to lattice estima- 0 0 tion. We therefore believe our scheme could provide a means for improvements in model studies which haven’t The first three rows in Table. I show κ’s from dif- considered quark’s feedback. ferent Λ’s, along with the T ’s and CEP locations in c Fig. 8. we can see there is consistent decrease in κ Finally, it is worth noting that this work is a supple- and increase in T /T as Λ decreases. Same conclu- ment to existing investigation with refined quark-gluon E c sion can be drawn when we employ the Maris-Tandy vertexes beyond Rainbow truncation. Authors of [18] model, namely Eq. (15), for which the calculation will have shown that with the Ball-Chiu vertex, QCD phase not be detailed here. Note that lattice QCD suggests diagramisimprovedinseveralaspects, e.g., significantly κ 0.05 0.06 [11, 12, 69] and estimates (T ,µ )/T narrower metastable region and more reasonable CEP E E c ≈ − ≈ (0.9 0.95,1.0 1.4) [70] . Given that in general, model location. Since the dressing effect in Ball-Chiu vertex − − studiestendtogiverelativelylargeκandlowT /T [71], is also expressed in terms of quark’s dressing functions E c our model therefore provides a means for improvements and therefore consists of quark’s feedback, it’s evident in these cases. that the incorporation of quark’s feedback within DSEs In the last two rows of Table. I, the response of the framework could produce QCD phase diagram that is CEP’s location to varying the parameters D and ω is more realistic. 8 ACKNOWLEDGMENTS China (under Grant No. 2012CB921504), the Jiangsu Planned Projects for Postdoctoral Research Funds (un- WebenefitfromdiscussionwithFeiGaoandthankhim der Grant No. 1402006C), the National Natural Science for providing valuable insights. This work is supported Foundation of Jiangsu Province of China (under Grant in part by the National Natural Science Foundation of No. BK20130078), and Guizhou province outstanding China(underGrantNos. 11275097,11475085,11265017, youth science and technology talent cultivation object and 11247219), the National Basic Research Program of special funds (under Grant No. QKHRZ(2013)28). [1] J. Adams et al. (STAR), Nucl. Phys. A757, 102 (2005), [25] F. Gao, J. Chen, Y.-X. Liu, S.-X. Qin, C. D. Roberts, arXiv:nucl-ex/0501009 [nucl-ex]. and S. M. Schmidt, (2015), arXiv:1507.00875 [nucl-th]. [2] E. Shuryak, Prog. Part. Nucl. Phys. 62, 48 (2009), [26] D. Mller, M. Buballa, and J. Wambach, Eur. Phys. J. arXiv:0807.3033 [hep-ph]. A49, 96 (2013), arXiv:1303.2693 [hep-ph]. [3] E. Shuryak, Prog.Part.Nucl.Phys. 53, 273 (2004), [27] S.-S. Xu, Z.-F. Cui, B. Wang, Y.-M. Shi, Y.-C. arXiv:hep-ph/0312227 [hep-ph]. Yang, and H.-S. Zong, Phys. Rev. D91, 056003 (2015), [4] W. Zajc, Nucl.Phys. A805, 283 (2008), arXiv:0802.3552 arXiv:1505.00316 [hep-ph]. [nucl-ex]. [28] B.Wang,Y.-L.Wang,Z.-F.Cui, andH.-S.Zong,Phys. [5] G. Odyniec, EPJ Web Conf. 95, 03027 (2015). Rev. D91, 034017 (2015). [6] D.McDonald(STAR),EPJWebConf.95,01009(2015). [29] J.S.BallandT.-W.Chiu,Phys.Rev.D22,2542(1980). [7] A. Bazavov, T. Bhattacharya, M. Cheng, C. De- [30] C. S. Fischer, Phys.Rev.Lett. 103, 052003 (2009), Tar, H. Ding, et al., Phys.Rev. D85, 054503 (2012), arXiv:0904.2700 [hep-ph]. arXiv:1111.1710 [hep-lat]. [31] C. Burden, L. Qian, C. D. Roberts, P. Tandy, and [8] S.Borsanyi,Z.Fodor,C.Hoelbling,S.D.Katz,S.Krieg, M.J.Thomson,Phys.Rev.C55,2649(1997),arXiv:nucl- C.Ratti, andK.K.Szabo(Wuppertal-Budapest),JHEP th/9605027 [nucl-th]. 09, 073 (2010), arXiv:1005.3508 [hep-lat]. [32] D. Blaschke, G. Burau, Y. Kalinovsky, P. Maris, and [9] A. Bazavov et al. (HotQCD), Phys.Rev. D90, 094503 P.Tandy,Int.J.Mod.Phys.A16,2267(2001),arXiv:nucl- (2014), arXiv:1407.6387 [hep-lat]. th/0002024 [nucl-th]. [10] M. Troyer and U.-J. Wiese, Phys.Rev.Lett. 94, 170201 [33] P.MarisandP.C.Tandy,Phys.Rev.C60,055214(1999), (2005), arXiv:cond-mat/0408370 [cond-mat]. arXiv:nucl-th/9905056 [nucl-th]. [11] P. de Forcrand and O. Philipsen, Phys.Rev.Lett. 105, [34] S.-x.Qin,L.Chang,Y.-x.Liu,C.D.Roberts, andD.J. 152001 (2010), arXiv:1004.3144 [hep-lat]. Wilson,Phys.Rev.C84,042202(2011),arXiv:1108.0603 [12] G. Endrodi, Z. Fodor, S. Katz, and K. Szabo, JHEP [nucl-th]. 1104, 001 (2011), arXiv:1102.1356 [hep-lat]. [35] D.Binosi,L.Chang,J.Papavassiliou, andC.D.Roberts, [13] P. Costa, M. Ruivo, and C. de Sousa, Phys.Rev. D77, Phys.Lett.B742,183(2015),arXiv:1412.4782[nucl-th]. 096001 (2008), arXiv:0801.3417 [hep-ph]. [36] C. S. Fischer and R. Alkofer, Phys.Rev. D67, 094020 [14] P.Costa,C.deSousa,M.Ruivo, andH.Hansen,Euro- (2003), arXiv:hep-ph/0301094 [hep-ph]. phys.Lett. 86, 31001 (2009), arXiv:0801.3616 [hep-ph]. [37] A. C. Aguilar, D. Binosi, and J. Papavassiliou, Phys. [15] D. Nickel, Phys.Rev. D80, 074025 (2009), Rev. D78, 025010 (2008), arXiv:0802.1870 [hep-ph]. arXiv:0906.5295 [hep-ph]. [38] M. He, F. Hu, W.-M. Sun, and H.-S. Zong, Phys.Lett. [16] V. Skokov, B. Friman, and K. Redlich, Phys.Rev. C83, B675, 32 (2009), arXiv:0904.0059 [hep-ph]. 054904 (2011), arXiv:1008.4570 [hep-ph]. [39] C. S. Fischer, J. Luecker, and J. A. Mueller, Phys.Lett. [17] A. Ayala, A. Bashir, J. Cobos-Martinez, S. Hernandez- B702, 438 (2011), arXiv:1104.1564 [hep-ph]. Ortiz, and A. Raya, Nucl.Phys. B897, 77 (2015), [40] T. G. Steele, Z.Phys. C42, 499 (1989). arXiv:1411.4953 [hep-ph]. [41] Y. Jiang, H. Gong, W.-m. Sun, and H.-s. Zong, [18] S.-x. Qin, L. Chang, H. Chen, Y.-x. Liu, and Phys.Rev. D85, 034031 (2012), arXiv:1107.5111 [hep- C. D. Roberts, Phys.Rev.Lett. 106, 172301 (2011), ph]. arXiv:1011.2876 [nucl-th]. [42] C.D.RobertsandS.M.Schmidt,Prog.Part.Nucl.Phys. [19] C. S. Fischer and J. Luecker, Phys.Lett. B718, 1036 45, S1 (2000), arXiv:nucl-th/0005064 [nucl-th]. (2013), arXiv:1206.5191 [hep-ph]. [43] P.MarisandC.D.Roberts,Phys.Rev.C56,3369(1997), [20] X.-y. Xin, S.-x. Qin, and Y.-x. Liu, Phys.Rev. D90, arXiv:nucl-th/9708029 [nucl-th]. 076006 (2014). [44] M. A. Shifman, Prog.Theor.Phys.Suppl. 131, 1 (1998), [21] C.Shi,Y.-L.Wang,Y.Jiang,Z.-F.Cui, andH.-S.Zong, arXiv:hep-ph/9802214 [hep-ph]. JHEP 1407, 014 (2014), arXiv:1403.3797 [hep-ph]. [45] C. McNeile, A. Bazavov, C. Davies, R. Dowdall, [22] W. Weise, Prog.Part.Nucl.Phys. 67, 299 (2012), K. Hornbostel, et al., Phys.Rev. D87, 034503 (2013), arXiv:1201.0950 [nucl-th]. arXiv:1211.6577 [hep-lat]. [23] A. Bashir, L. Chang, I. C. Cloet, B. El-Bennich, Y.- [46] H.-s.Zong,J.-l.Ping,H.-t.Yang,X.-f.Lu, andF.Wang, X. Liu, et al., Commun.Theor.Phys. 58, 79 (2012), Phys. Rev. D67, 074004 (2003), arXiv:nucl-th/0201001 arXiv:1201.3366 [nucl-th]. [nucl-th]. [24] F. Gao, S.-X. Qin, Y.-X. Liu, C. D. Roberts, and [47] A.Cucchieri,A.Maas, andT.Mendes,Phys.Rev.D75, S. M. Schmidt, Phys. Rev. D89, 076009 (2014), 076003 (2007), arXiv:hep-lat/0702022 [hep-lat]. arXiv:1401.2406 [nucl-th]. 9 [48] P.J.Silva,O.Oliveira,P.Bicudo, andN.Cardoso,Phys. arXiv:hep-ph/9804290 [hep-ph]. Rev. D89, 074503 (2014), arXiv:1310.5629 [hep-lat]. [61] H. Chen, M. Baldo, G. F. Burgio, and H. J. Schulze, [49] M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. Phys. Rev. D84, 105023 (2011), arXiv:1107.2497 [nucl- 175, 2195 (1968). th]. [50] S. Aoki et al., Eur. Phys. J. C74, 2890 (2014), [62] Y. Jiang, H. Chen, W.-M. Sun, and H.-S. Zong, JHEP arXiv:1310.8555 [hep-lat]. 04, 014 (2013). [51] M.Alford,D.Blaschke,A.Drago,T.Klahn,G.Pagliara, [63] J.M.Cornwall,R.Jackiw, andE.Tomboulis,Phys.Rev. et al., Nature 445, E7 (2007), arXiv:astro-ph/0606524 D10, 2428 (1974). [astro-ph]. [64] H.Chen,W.Yuan,L.Chang,Y.-X.Liu,T.Klahn,etal., [52] S. Weissenborn, I. Sagert, G. Pagliara, M. Hempel, Phys.Rev. D78, 116015 (2008), arXiv:0807.2755 [nucl- and J. Schaffner-Bielich, Astrophys.J. 740, L14 (2011), th]. arXiv:1102.2869 [astro-ph.HE]. [65] K. Morita, V. Skokov, B. Friman, and K. Redlich, [53] M. Buballa, Phys.Rept. 407, 205 (2005), arXiv:hep- Phys.Rev. D84, 074020 (2011), arXiv:1108.0735 [hep- ph/0402234 [hep-ph]. ph]. [54] J. O. Andersen and M. Strickland, Phys.Rev. D66, [66] V. Skokov, Phys.Rev. D85, 034026 (2012), 105001 (2002), arXiv:hep-ph/0206196 [hep-ph]. arXiv:1112.5137 [hep-ph]. [55] H. Chen, M. Baldo, G. Burgio, and H.-J. Schulze, [67] Y.-l.Du,Z.-f.Cui,Y.-h.Xia, andH.-s.Zong,Phys.Rev. Phys.Rev. D86, 045006 (2012), arXiv:1203.0158 [nucl- D88, 114019 (2013), arXiv:1312.1796 [hep-ph]. th]. [68] C. S. Fischer, A. Maas, and J. A. Muller, Eur.Phys.J. [56] H. Li, X.-L. Luo, and H.-S. Zong, Phys.Rev. D82, C68, 165 (2010), arXiv:1003.1960 [hep-ph]. 065017 (2010), arXiv:1008.5019 [astro-ph.SR]. [69] O. Kaczmarek, F. Karsch, E. Laermann, C. Miao, [57] T. Zhao, S.-S. Xu, Y. Yan, X.-L. Luo, X.-J. Liu, S. Mukherjee, et al., Phys.Rev. D83, 014504 (2011), and H.-S. Zong, Phys. Rev. D92, 054012 (2015), arXiv:1011.3130 [hep-lat]. arXiv:1509.03377 [hep-ph]. [70] S.Sharma,Adv.HighEnergyPhys.2013,452978(2013), [58] M. Asakawa and K. Yazaki, Nucl.Phys. A504, 668 arXiv:1403.2102 [hep-lat]. (1989). [71] M. Stephanov, PoS LAT2006, 024 (2006), arXiv:hep- [59] T. Hell, K. Kashiwa, and W. Weise, Phys.Rev. D83, lat/0701002 [hep-lat]. 114008 (2011), arXiv:1104.0572 [hep-ph]. [60] A. M. Halasz, A. Jackson, R. Shrock, M. A. Stephanov, and J. Verbaarschot, Phys.Rev. D58, 096007 (1998),

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.