ebook img

Continuum Scale Simulation of Engineering Materials PDF

866 Pages·15.502 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Continuum Scale Simulation of Engineering Materials

Raabe_US_HC 25.05.2004 16:07 Uhr Seite 1 (FD Edited by Dierk Raabe, Franz Roters, Er déie sdr Frédéric Barlat, Long-Qing Chen .ék )r iR c a T Ba Continuum Scale his book presents our current knowledge ab and understanding of continuum-based con- re l, cepts behind computational methods used a tF for microstructure and process simulation of ,r Simulation of a L engineering materials above the atomic scale. n o nz Divided into three main parts, the volume gR Engineering Materials provides an excellent overview on the different -o Q t methods, comparing the different methods ie in terms of their respective particular weak- nr gs nesses and advantages. This trains readers to , identify appropriate approaches to the new C Fundamentals – Microstructures – h challenges that emerge every day in this e exciting domain. The first part is a basic n Process Applications overview covering fundamental key methods in the field of continuum scale materials simulation. The second one then goes on to look at applications of these methods to the oC prediction of microstructures, dealing with fo explicit simulation examples, while the third En part discusses example applications in the field nt i of process simulation. gn eu nu By presenting a spectrum of different comput- em ational approaches to materials, the book aims e r to initiate the development of corresponding iS n virtual laboratories in the industry in which gc a these methods are exploited. As such, it Mle addresses graduates and undergraduates, aS lecturers, materials scientists and engineers, ti physicists, biologists, chemists, em r mathematicians, and mechanical engineers. iu a l la s t i o n www.wiley-vch.de Professor Dierk Raabe Dr. Franz Roters Long-Qing Chen Dr. Frédéric Barlat received his studied Physics in is Professor of received a PhD Ph.D. (1992) and habilitation (1997) at RWTH Braunschweig, where he got his diploma degree Materials Science and Engineering at Penn in Mechanics from the “Institut National Aachen, Germany, in the fields of Physical in 1993. From 1994 to 1998 he was scientist at State. He received his B.S. in Ceramics from Polytechnique de Grenoble,” France, in 1984. Metallurgy and Metal Physics. He is currently the Institute for Metal Physics and Physical Zhejiang University in China in 1982, a M.S. in The same year, he joined Alcoa Technical Center; Director and Executive at the Max-Planck Institut Metallurgy at the RWTH Aachen. He got his Materials Science and Engineering from State Pittsburgh, Pennsylvania, USA, the research für Eisenforschung, Düsseldorf, Germany, after PhD. degree in 1999 in the field of constitutive University of New York at Stony Brook in 1985, facility of Alcoa Inc. (formerly the Aluminum working some time as researcher at Carnegie modelling of aluminium. From 1999 till 2000 he and a Ph.D. degree in Materials Science and Company of America). Dr. Barlat is currently a Mellon University, USA, the High Magnetic Field was researcher at the R&D centre of VAW (today Engineering from MIT in 1990. He worked with Technology Specialist in their Materials Science Laboratory in Tallahassee, USA, and serving as Hydro Aluminium Deutschland GmbH) in Bonn. Armen G. Khachaturyan as a postdoc at Rutgers Division. He is responsible for conceptualizing, Senior researcher and lecturer at the Institut für Since 2000 he is senior scientist at the Max- University from 1990 to 1992. Professor Chen importing and implementing mathematical Metallkunde und Metallphysik, RWTH Aachen, Planck-Institut für Eisenforschung in Düsseldorf, joined the Department of Materials Science models that predict the mechanical behavior of Germany. His research fields are Computer where he is the leader of the research group and Engineering at Penn State as an assistant materials for long-term development applica- simulation of Materials, Composites, Textures, “Theory and Simulation” in the department for professor in 1992 and was promoted to tions in the areas of metal plasticity, fracture and Micromechanics, in which he authored more Microstructure Physics and Metal Forming. Dr. associate professor in 1998. His main research material performance. His work is used for the than 100 papers in peer-reviewed magazines Roters published more than 30 papers in the interests include materials theory and computa- design of alloys and processes in support of and three books. He teaches various courses on field of constitutive modelling and simulation of tional materials science. Professor Chen Alcoa's major business units, including packa- computational materials science, materials forming. He is head of the Technical Committee received the Young Investigator Award from the ging, automotive and aerospace. Dr. Barlat is mechanics, history of metals, and textures at “Computersimulation” of the Deutsche Office of Naval Research (ONR) in 1995, the also an invited professor at the University of RWTH Aachen (Germany) and at Carnegie Gesellschaft für Materialkunde e.V. (DGM). research creativity award from the National Aveiro’s Center for Mechanical Technology and Mellon University Pittsburgh (USA). His work Science Foundation (NSF) in 1999, the Wilson Automation, Portugal, where he directs activities was already awarded with several prizes, among Award for Excellence in Research in the College on the fundamentals of plasticity and forming. them the Adolf-Martens Award, Masing Award, of Earth and Mineral Sciences in 2000, He has actively participated in the scientific Heisenberg Award, and the Leibniz Award. and the University Faculty Scholar Medal at committees of various international conferences, Penn State in 2003. has been a regular reviewer in a number of scientific journals and serves as a member of the Advisory Board of the International Journal of Plasticity. Dr. Barlat is published as an author or co-author in approximately 80 papers of peer- reviewed scientific journals and has delivered more than 60 technical presentations at con- ferences worldwide. In 1995, he was the honored The Editors recipient of the ASM Henry Marion Howe Medal of the Material Society for the best technical paper published in Metallurgical Transactions A. He holds three US patents with co-inventors from Alcoa Inc. and Kobe Steel, Ltd., Japan. Continuum Scale Simulation of Engineering Materials Fundamentals – Microstructures – Process Applications Dierk Raabe, Franz Roters, Frederic Barlat, Long-Qing Chen (Eds.) WILEY-VCH Verlag GmbH& Co. KGaA April5, 2004 Contents Preface XXI ListofContributors XXIII I FundamentalsandBasicMethods 1 1 ComputerSimulationofDiffusionControlledPhaseTransformations (A.SchneiderandG.Inden) 3 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 NumericalTreatmentofDiffusionControlledTransformations . . . . . . . 5 1.2.1 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 BoundaryConditions . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.3 CellSize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 TypicalApplications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.1 LE,LENPandPEinFe-Mn-C . . . . . . . . . . . . . . . . . . . . 15 1.3.2 LE,LENPandPEinFe-Si-C . . . . . . . . . . . . . . . . . . . . . 17 1.3.3 PEinFe-Ni-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.3.4 EffectofTracesontheGrowthofGrainBoundaryCementite . . . . 21 1.3.5 ContinuousCooling . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.6 CompetitiveGrowthofPhases: Multi-CellCalculations . . . . . . . 23 1.3.7 Gas-Metal-Reactions:Carburization . . . . . . . . . . . . . . . . . 26 1.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 IntroductiontoPhase-fieldMethodofMicrostructureEvolution (L.-Q.Chen) 37 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2 OriginoftheModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3 TheoreticalFundamentalsoftheMethod . . . . . . . . . . . . . . . . . . . 38 2.3.1 RepresentationofaMicrostructure . . . . . . . . . . . . . . . . . . 38 2.3.2 ThermodynamicsofMicrostructures . . . . . . . . . . . . . . . . . 40 2.3.3 TheEvolutionEquations . . . . . . . . . . . . . . . . . . . . . . . 46 2.4 AdvantagesandDisadvantagesoftheMethod . . . . . . . . . . . . . . . . 47 2.5 TypicalFieldsofApplicationsandExamples . . . . . . . . . . . . . . . . . 47 VI Contents 2.6 SummaryandOpportunities . . . . . . . . . . . . . . . . . . . . . . . . . . 48 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3 Cellular,LatticeGas,andBoltzmannAutomata (D.Raabe) 56 3.1 CellularAutomata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.1.2 FormalDescriptionandClassesofCellularAutomata . . . . . . . . 57 3.1.3 CellularAutomatainMaterialsScience . . . . . . . . . . . . . . . 59 3.1.4 RecrystallizationSimulationswithCellularAutomata . . . . . . . . 60 3.2 CellularAutomataforFluidDynamics . . . . . . . . . . . . . . . . . . . . 66 3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.2.2 TheHPPandFHPLatticeGasCellularAutomata . . . . . . . . . . 66 3.2.3 TheLatticeBoltzmannAutomaton . . . . . . . . . . . . . . . . . . 69 3.3 ConclusionsandOutlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4 TheMonteCarloMethod (A.D.RollettandP.Manohar) 76 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.2 HistoryoftheMonteCarloMethod . . . . . . . . . . . . . . . . . . . . . . 76 4.2.1 IsingandPottsModels . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2.2 MetropolisAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2.3 n-foldWayAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3 DescriptionoftheMonteCarloMethodforGrainGrowth&Recrystallization 84 4.3.1 DiscretizationofMicrostructure . . . . . . . . . . . . . . . . . . . 84 4.3.2 EvolutionoftheMicrostructure . . . . . . . . . . . . . . . . . . . . 85 4.3.3 InertParticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.3.4 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.3.5 BoundaryConditions . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.3.6 ParallelizationoftheMonteCarloAlgorithm . . . . . . . . . . . . 88 4.4 NucleationinRecrystallization . . . . . . . . . . . . . . . . . . . . . . . . 91 4.5 InitializationofMCSimulations . . . . . . . . . . . . . . . . . . . . . . . 92 4.6 VerificationoftheMonteCarloModel . . . . . . . . . . . . . . . . . . . . 93 4.7 ScalingofSimulatedGrainSizetoPhysicalGrainSize . . . . . . . . . . . 96 4.8 RecrystallizationKineticsintheMonteCarlomodel . . . . . . . . . . . . . 97 4.9 ResultsofSimulationofRecrystallizationbyMonteCarloMethod . . . . . 98 4.9.1 AbnormalGrainGrowth . . . . . . . . . . . . . . . . . . . . . . . 98 4.9.2 StaticRecrystallization . . . . . . . . . . . . . . . . . . . . . . . . 98 4.9.3 GrainGrowthinthePresenceofParticles . . . . . . . . . . . . . . 100 4.9.4 RecrystallizationinthePresenceofParticles . . . . . . . . . . . . . 100 4.9.5 TextureDevelopment . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.9.6 Texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.9.7 DynamicRecrystallization . . . . . . . . . . . . . . . . . . . . . . 108 4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Contents VII 5 CrystalPlasticity (P.R.Dawson) 114 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.2 TheoreticalBackground . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.2.1 MechanicalResponseofSingleCrystals . . . . . . . . . . . . . . . 114 5.2.2 LatticeOrientationDistributionsforPolycrystals . . . . . . . . . . 119 5.2.3 MechanicalResponseofPolycrystals. . . . . . . . . . . . . . . . . 121 5.3 MacroscopicCriteriaforAnisotropicStrength . . . . . . . . . . . . . . . . 123 5.3.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.3.2 YieldSurfacesDefinedbyExpansions . . . . . . . . . . . . . . . . 125 5.3.3 YieldSurfacesDefinedbyHyperplanes . . . . . . . . . . . . . . . 126 5.3.4 IsoparametricFlowSurface . . . . . . . . . . . . . . . . . . . . . 128 5.3.5 DirectPolycrystalPlasticityImplementation . . . . . . . . . . . . . 130 5.4 NumericalImplementations . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.4.1 BalanceLaws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.4.2 FiniteElementFormulations . . . . . . . . . . . . . . . . . . . . . 131 5.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.5.1 ApplicationtoExplosiveForming . . . . . . . . . . . . . . . . . . 133 5.5.2 ApplicationtotheLimitingDomeHeightTest . . . . . . . . . . . . 134 5.5.3 BendingofaCurvedComponent . . . . . . . . . . . . . . . . . . . 138 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6 YieldSurfacePlasticityandAnisotropy (F.Barlat,O.Cazacu,M.Z˙yczkowski,D.Banabic,andJ.W.Yoon) 143 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2 ClassicalPlasticityTheory . . . . . . . . . . . . . . . . . . . . . . . . . . 144 6.2.1 IsotropicYieldConditionsforPerfectPlasticity . . . . . . . . . . . 144 6.2.2 FlowRules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.2.3 SubsequentYieldSurfacesduringPlasticHardening. . . . . . . . . 148 6.2.4 AnisotropicPlasticity . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.2.5 DirectGeneralizationsofIsotropicYieldConditions. . . . . . . . . 151 6.3 MaterialStructureandPlasticAnisotropy. . . . . . . . . . . . . . . . . . . 152 6.3.1 Texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.3.2 Dislocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.3.3 PorosityandSecondPhases . . . . . . . . . . . . . . . . . . . . . . 158 6.4 YieldFunctionsforMetalsandAlloys . . . . . . . . . . . . . . . . . . . . 159 6.4.1 QuadraticYieldFunctions . . . . . . . . . . . . . . . . . . . . . . 159 6.4.2 Non-QuadraticYieldFunctions . . . . . . . . . . . . . . . . . . . . 160 6.4.3 YieldFunctionsinPolarCoordinates . . . . . . . . . . . . . . . . . 163 6.4.4 OtherAnisotropicYieldFunctions . . . . . . . . . . . . . . . . . . 163 6.4.5 BBC2000YieldCriterion . . . . . . . . . . . . . . . . . . . . . . . 163 6.4.6 Yld2000-2dYieldCriterion . . . . . . . . . . . . . . . . . . . . . 165 6.4.7 CB2001YieldCriterion . . . . . . . . . . . . . . . . . . . . . . . . 165 6.4.8 StrainRatePotentials . . . . . . . . . . . . . . . . . . . . . . . . . 167 VIII Contents 6.5 ApplicationtoSheetFormingandFormability . . . . . . . . . . . . . . . . 167 6.5.1 Mechanicaltesting . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6.5.2 AnalysisandTreatmentoftheTestResults . . . . . . . . . . . . . . 170 6.5.3 Applicationto3103-OAluminumAlloySheetSample . . . . . . . 172 6.5.4 PlasticFlowLocalization . . . . . . . . . . . . . . . . . . . . . . . 172 6.5.5 CupDrawingSimulation . . . . . . . . . . . . . . . . . . . . . . . 173 6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 7 ArtificialNeuralNetworks (E.BroeseandH.-U.Löffler) 182 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 7.2 BasicTerms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 7.3 FieldsofApplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 7.3.1 PatternRecognition/Classification . . . . . . . . . . . . . . . . . . 183 7.3.2 EmpiricalModeling . . . . . . . . . . . . . . . . . . . . . . . . . . 183 7.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 7.4.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 7.4.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7.5 TypesofArtificialNeuralNetworks. . . . . . . . . . . . . . . . . . . . . . 185 7.5.1 MultilayerPerceptron . . . . . . . . . . . . . . . . . . . . . . . . . 185 7.5.2 RadialBasisFunctionNetworks . . . . . . . . . . . . . . . . . . . 188 7.5.3 MoreNetworkTypes . . . . . . . . . . . . . . . . . . . . . . . . . 190 7.6 KindsofLearning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 7.6.1 UnsupervisedLearning . . . . . . . . . . . . . . . . . . . . . . . . 191 7.6.2 SupervisedLearning . . . . . . . . . . . . . . . . . . . . . . . . . 191 7.6.3 ReinforcementLearning . . . . . . . . . . . . . . . . . . . . . . . 191 7.6.4 BayesianLearning . . . . . . . . . . . . . . . . . . . . . . . . . . 192 7.7 ApplicationDetails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 7.7.1 NetworkTypeSelectionandConfiguration . . . . . . . . . . . . . . 192 7.7.2 InputSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 7.7.3 DataPreprocessingandInputScaling . . . . . . . . . . . . . . . . 193 7.7.4 PreventionofOverfitting . . . . . . . . . . . . . . . . . . . . . . . 193 7.7.5 OptimizationofTrainingParameters . . . . . . . . . . . . . . . . . 194 7.7.6 DiagnosticsoftheInternalState . . . . . . . . . . . . . . . . . . . 194 7.8 FutureProspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 8 MultiscaleDiscreteDislocationDynamicsPlasticity (H.M.Zbib,M.Hiratani,andM.Shehadeh) 197 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 8.2 TheoreticalFundamentalsoftheMethod . . . . . . . . . . . . . . . . . . . 199 8.2.1 KinematicsandGeometricAspects . . . . . . . . . . . . . . . . . . 199 8.2.2 KineticsandInteractionForces . . . . . . . . . . . . . . . . . . . . 199 8.2.3 DislocationEquationofMotion . . . . . . . . . . . . . . . . . . . 200 Contents IX 8.2.4 TheDislocationStressandForceFields . . . . . . . . . . . . . . . 204 8.2.5 TheStochasticForceandCross-slip . . . . . . . . . . . . . . . . . 206 8.2.6 Modifications for Long-Range Interactions: The Super-Dislocation Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 8.2.7 EvaluationofPlasticStrains . . . . . . . . . . . . . . . . . . . . . 209 8.2.8 TheDDNumericalSolution: AnImplicit-ExplicitIntegrationScheme209 8.3 IntegrationofDDandContinuumPlasticity . . . . . . . . . . . . . . . . . 210 8.3.1 ContinuumElasto-Viscoplasticity . . . . . . . . . . . . . . . . . . 210 8.3.2 ModificationsforFiniteDomains . . . . . . . . . . . . . . . . . . . 211 8.4 TypicalFieldsofApplicationsandExamples . . . . . . . . . . . . . . . . . 213 8.4.1 EvolutionofDislocationStructureduringMonotonicLoading . . . 214 8.4.2 DislocationCrackInteraction: HeterogeneousDeformation . . . . . 216 8.4.3 DislocationsInteractionwithShockWaves. . . . . . . . . . . . . . 219 8.5 SummaryandConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . 221 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 9 PhysicallyBasedModelsforIndustrialMaterials: WhatFor? (Y.Brechet) 226 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 9.2 RecentTrendsinModellingMaterialsBehavior . . . . . . . . . . . . . . . 226 9.2.1 AnalyticalModels . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 9.2.2 ComputerSimulations . . . . . . . . . . . . . . . . . . . . . . . . 228 9.2.3 MaterialsModellingandMaterialsDesign: SomeExamples . . . . 230 9.2.4 SophisticatedStatisticalAnalysis . . . . . . . . . . . . . . . . . . . 231 9.3 SomeExamplesofPhysicallyBasedModelsforIndustrialMaterials . . . . 232 9.3.1 RecoveryofAluminumAlloys . . . . . . . . . . . . . . . . . . . . 232 9.3.2 CompetitionBetweenRecrystallizationandPrecipitation . . . . . . 235 9.3.3 OptimizingCastingProcessinPrecipitationHardenableAlloys . . . 238 9.4 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 II Application to Engineering Microstructures 245 10 ModelingofDendriticGrainFormationDuringSolidificationattheLevel ofMacro-andMicrostructures (M.Rappaz,A.Jacot,andC.A.Gandin) 247 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 10.2 Pseudo-FrontTrackingModel . . . . . . . . . . . . . . . . . . . . . . . . . 250 10.2.1 PrimaryPhaseFormation . . . . . . . . . . . . . . . . . . . . . . . 250 10.2.2 SecondaryPhasesFormation . . . . . . . . . . . . . . . . . . . . . 252 10.3 CouplingwithThermodynamicDatabases . . . . . . . . . . . . . . . . . . 253 10.3.1 PrimaryPhaseFormation . . . . . . . . . . . . . . . . . . . . . . . 253 10.3.2 SecondaryPhasesFormation . . . . . . . . . . . . . . . . . . . . . 254 X Contents 10.4 CellularAutomaton–FiniteElementModel . . . . . . . . . . . . . . . . . 254 10.4.1 NucleationLaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 10.4.2 GrowthLaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 10.4.3 CouplingofCAandFEMethods . . . . . . . . . . . . . . . . . . . 256 10.5 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 10.5.1 PFTModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 10.5.2 CAFEModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 10.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 11 Phase-FieldMethodAppliedtoStrain-dominatedMicrostructureEvolution duringSolid-StatePhaseTransformations (L.-Q.ChenandS.Y.Hu) 266 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 11.2 PhenomenologicalDescriptionofSolidStatePhaseTransformations . . . . 267 11.3 Phase-FieldModelofSolidStatePhaseTransformations. . . . . . . . . . . 269 11.4 ElasticEnergyofaMicrostructure . . . . . . . . . . . . . . . . . . . . . . 271 11.5 BulkMicrostructureswithPeriodicBoundaryConditions . . . . . . . . . . 271 11.6 ASingleCrystalFilmwithSurfaceandSubstrateConstraint . . . . . . . . 273 11.7 ElasticCouplingofStructuralDefectsandPhaseTransformations . . . . . . 274 11.8 Phase-FieldModelAppliedtoSolidStatePhaseTransformations . . . . . . 275 11.9 IsostructuralPhaseSeparation . . . . . . . . . . . . . . . . . . . . . . . . . 275 11.10 PrecipitationofCubicIntermetallicPrecipitatesinaCubicMatrix. . . . . . 277 11.11 StructuralTransformationsResultinginaPointGroupSymmetryReduction 279 11.12 FerroelectricPhaseTransformations . . . . . . . . . . . . . . . . . . . . . 281 11.13 PhaseTransformationinaReducedDimensions: ThinFilmsandSurfaces . 283 11.14 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 12 IrregularCellularAutomataModelingofGrainGrowth (K.Janssens) 292 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 12.2 IrregularCellularAutomata . . . . . . . . . . . . . . . . . . . . . . . . . . 292 12.2.1 TheConcept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 12.2.2 ShapelessorPointCellularAutomata . . . . . . . . . . . . . . . . 293 12.3 IrregularShapelessCellularAutomataforGrainGrowth . . . . . . . . . . . 293 12.3.1 CurvatureDrivenGrainGrowth . . . . . . . . . . . . . . . . . . . 294 12.3.2 InthePresenceofAdditionalDrivingForces. . . . . . . . . . . . . 297 12.4 AQualitativeExample: StaticAnnealingofaColdRolledSteel . . . . . . . 299 12.4.1 TheDeformationModel . . . . . . . . . . . . . . . . . . . . . . . 299 12.4.2 TheAnnealingModel . . . . . . . . . . . . . . . . . . . . . . . . . 300 12.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.