ebook img

Continuum Mechanics for Engineers, Third Edition PDF

550 Pages·2·17.536 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Continuum Mechanics for Engineers, Third Edition

CONTINUUM MECHANICS FOR ENGINEERS THEORY AND PROBLEMS Second Edition X. Oliver C. Agelet de Saracibar Xavier Oliver Carlos Agelet de Saracibar Continuum Mechanics for Engineers Theory and Problems TranslationbyEsterComellas X.OliverandC.AgeletdeSaracibar ContinuumMechanicsforEngineers.TheoryandProblems doi:10.13140/RG.2.2.25821.20961 ContinuumMechanicsforEngineers.TheoryandProblems Firstedition:September2016 Secondedition:March2017 Citeas: X. Oliver and C. Agelet de Saracibar, Continuum Mechanics for Engineers. Theory and Problems, 2nd edition, March 2017, doi:10.13140/RG.2.2.25821.20961. TranslationandLATEX compilationbyEsterComellas. © XavierOliverandCarlosAgeletdeSaracibar. OpenAccessThisbookisdistributedunderthetermsoftheCreativeCommons Attribution Non-Commercial No-Derivatives (CC-BY-NC-ND) License, which permits any noncommercial use, distribution, and reproduction in any medium of the unmodified original material, provided the original author(s) and source arecredited. X.OliverandC.AgeletdeSaracibar ContinuumMechanicsforEngineers.TheoryandProblems doi:10.13140/RG.2.2.25821.20961 Foreword This book was born with the vocation of being a tool for the training of engi- neersincontinuummechanics.Infact,itisthefruitoftheexperienceinteaching this discipline during many years at the Civil Engineering School of the Tech- nical University of Catalonia (UPC/BarcelonaTech), both in undergraduate de- grees(CivilEngineeringandGeologicalEngineering)andpostgraduatedegrees (Master and PhD courses). Unlike other introductory texts to the mechanics of continuous media, the work presented here is specifically aimed at engineering students. We try to maintain a proper balance between the rigor of the math- ematical formulation used and the clarity of the physical principles addressed, althoughalwaysputtingtheformerattheserviceofthelatter.Inthissense,the essential vector and tensor operations use simultaneously the indicial notation (moreusefulforrigorousmathematicalproof)andthecompactnotation(which allowsforabetterunderstandingofthephysicsoftheproblem).However,asthe textprogresses,thereisacleartrendtowardscompactnotationinanattemptto focusthereader’sattentiononthephysicalcomponentofcontinuummechanics. Thetextcontentisintentionallydividedintotwospecificparts,whicharepre- sentedsequentially.Thefirstpart(Chapters1-5)introducesfundamentalandde- scriptive aspects common to all continuous media (motion, deformation, stress and conservation-balance equations). In the second (Chapters 6 to 11), specific families of the continuous medium are studied, such as solids and fluids, in an approachthatstartswiththecorrespondingconstitutiveequationandendswith the classical formulations of solid mechanics (elastic-linear and elasto-plastic) and fluid mechanics (laminar regime). Finally, a brief incursion into the varia- tionalprinciples(principleofvirtualworkandminimizationofpotentialenergy) is attempted, to provide the initial ingredients needed to solve continuum me- chanicsproblemsusingnumericalmethods.Thisstructureallowstheuseofthis text for teaching purposes both in a single course of about 100 teaching hours orastwodifferentcourses:thefirstbasedonthefirstfivechaptersdedicatedto the introduction of the fundamentals of continuum mechanics and, the second, specificallydedicatedtosolidandfluidmechanics.Thetheoreticalpartinevery chapter is followed by a number of solved problems and proposed exercises so v vi astohelpthereaderintheunderstandingandconsolidationofthosetheoretical aspects. Finally,theauthorswishtothankDr.EsterComellasforhertranslationwork, frompreviousversionsofthetheoreticalpartofthebookinSpanishandCatalan languages, as well as for her compilation of the book’s problems and exercises fromtheauthors’collection. Barcelona,September2016 XavierOliver and CarlosAgeletdeSaracibar X.OliverandC.AgeletdeSaracibar ContinuumMechanicsforEngineers.TheoryandProblems doi:10.13140/RG.2.2.25821.20961 Contents Foreword....................................................... v 1 DescriptionofMotion........................................ 1 1.1 DefinitionoftheContinuousMedium ....................... 1 1.2 EquationsofMotion...................................... 1 1.3 DescriptionsofMotion.................................... 6 1.3.1 MaterialDescription ................................ 6 1.3.2 SpatialDescription ................................. 6 1.4 TimeDerivatives:Local,MaterialandConvective ............. 8 1.5 VelocityandAcceleration ................................. 11 1.6 Stationarity ............................................. 14 1.7 Trajectory............................................... 15 1.7.1 DifferentialEquationoftheTrajectories ............... 16 1.8 Streamline .............................................. 18 1.8.1 DifferentialEquationoftheStreamlines................ 18 1.9 Streamtubes ............................................. 20 1.9.1 EquationoftheStreamtube .......................... 20 1.10 Streaklines .............................................. 21 1.10.1EquationoftheStreakline ........................... 22 1.11 MaterialSurface ......................................... 23 1.12 ControlSurface .......................................... 26 1.13 MaterialVolume ......................................... 26 1.14 ControlVolume.......................................... 27 ProblemsandExercises ................................... 29 2 Strain ...................................................... 41 2.1 Introduction ............................................. 41 2.2 DeformationGradientTensor .............................. 41 2.2.1 InverseDeformationGradientTensor.................. 43 2.3 Displacements ........................................... 45 2.3.1 MaterialandSpatialDisplacementGradientTensors ..... 46 vii viii Contents 2.4 StrainTensors ........................................... 47 2.4.1 MaterialStrainTensor(Green-LagrangeStrainTensor)... 48 2.4.2 SpatialStrainTensor(AlmansiStrainTensor)........... 49 2.4.3 StrainTensorsintermsoftheDisplacement(Gradients) .. 51 2.5 VariationofDistances:StretchandUnitElongation............ 51 2.5.1 Stretches,UnitElongationsandStrainTensors .......... 53 2.6 VariationofAngles....................................... 55 2.7 PhysicalInterpretationoftheStrainTensors .................. 57 2.7.1 MaterialStrainTensor .............................. 57 2.7.2 SpatialStrainTensor................................ 60 2.8 PolarDecomposition ..................................... 62 2.9 VolumeVariation ........................................ 64 2.10 AreaVariation ........................................... 66 2.11 InfinitesimalStrain ....................................... 67 2.11.1StrainTensors.InfinitesimalStrainTensor.............. 68 2.11.2Stretch.UnitElongation............................. 71 2.11.3PhysicalInterpretationoftheInfinitesimalStrains ....... 71 2.11.4EngineeringStrains.VectorofEngineeringStrains....... 73 2.11.5Variation of the Angle between Two Differential SegmentsinInfinitesimalStrain ...................... 74 2.11.6PolarDecomposition................................ 74 2.12 VolumetricStrain ........................................ 79 2.13 StrainRate .............................................. 80 2.13.1VelocityGradientTensor ............................ 81 2.13.2StrainRateandSpinTensors ......................... 82 2.13.3PhysicalInterpretationoftheStrainRateTensor......... 82 2.13.4PhysicalInterpretationoftheRotationRateTensor ...... 84 2.14 MaterialTimeDerivativesofStrainandOtherMagnitudeTensors 85 2.14.1DeformationGradientTensoranditsInverseTensor ..... 85 2.14.2MaterialandSpatialStrainTensors.................... 86 2.14.3VolumeandAreaDifferentials ....................... 87 2.15 MotionandStrainsinCylindricalandSphericalCoordinates .... 89 2.15.1CylindricalCoordinates ............................. 90 2.15.2SphericalCoordinates............................... 92 ProblemsandExercises ................................... 95 3 CompatibilityEquations .....................................109 3.1 Introduction .............................................109 3.2 Preliminary Example: CompatibilityEquations ofa Potential VectorField .............................................110 3.3 CompatibilityConditionsforInfinitesimalStrains .............112 3.4 IntegrationoftheInfinitesimalStrainField ...................116 3.4.1 PreliminaryEquations ..............................116 3.4.2 IntegrationoftheStrainField ........................118 3.5 CompatibilityEquationsandIntegrationoftheStrainRateField .121 X.OliverandC.AgeletdeSaracibar ContinuumMechanicsforEngineers.TheoryandProblems doi:10.13140/RG.2.2.25821.20961 Contents ix ProblemsandExercises ...................................123 4 Stress ......................................................127 4.1 ForcesActingonaContinuumBody ........................127 4.1.1 BodyForces.......................................127 4.1.2 SurfaceForces .....................................129 4.2 Cauchy’sPostulates ......................................130 4.3 StressTensor ............................................132 4.3.1 ApplicationofNewton’s2nd LawtoaContinuousMedium132 4.3.2 StressTensor ......................................133 4.3.3 GraphicalRepresentationoftheStressStateinaPoint ...138 4.4 PropertiesoftheStressTensor .............................141 4.4.1 CauchyEquation.InternalEquilibriumEquation ........141 4.4.2 EquilibriumEquationattheBoundary .................142 4.4.3 SymmetryoftheCauchyStressTensor ................142 4.4.4 Diagonalization.PrincipalStressesandDirections .......144 4.4.5 MeanStressandMeanPressure ......................146 4.4.6 Decomposition of the Stress Tensor into its Spherical andDeviatoricParts ................................147 4.4.7 TensorInvariants ...................................148 4.5 StressTensorinCurvilinearOrthogonalCoordinates...........149 4.5.1 CylindricalCoordinates .............................149 4.5.2 SphericalCoordinates...............................150 4.6 Mohr’sCirclein3Dimensions .............................151 4.6.1 GraphicalInterpretationoftheStressStates ............151 4.6.2 DeterminationoftheMohr’sCircles...................153 4.7 Mohr’sCirclein2Dimensions .............................157 4.7.1 StressStateonaGivenPlane.........................159 4.7.2 DirectProblem:DiagonalizationoftheStressTensor.....161 4.7.3 InverseProblem....................................162 4.7.4 Mohr’sCircleforPlaneStates(in2Dimensions) ........162 4.7.5 PropertiesoftheMohr’sCircle .......................164 4.7.6 ThePoleofMohr’sCircle ...........................166 4.7.7 Mohr’sCirclewiththeSoilMechanicsSignCriterion ....171 4.8 Mohr’sCircleforParticularCases ..........................172 4.8.1 HydrostaticStressState .............................172 4.8.2 Mohr’sCirclesforaTensoranditsDeviator ............173 4.8.3 Mohr’sCirclesforaPlanePureShearStressState .......173 ProblemsandExercises ...................................175 5 BalancePrinciples ...........................................193 5.1 Introduction .............................................193 5.2 MassTransportorConvectiveFlux .........................193 5.3 LocalandMaterialDerivativesofaVolumeIntegral ...........198 5.3.1 LocalDerivative ...................................198 X.OliverandC.AgeletdeSaracibar ContinuumMechanicsforEngineers.TheoryandProblems doi:10.13140/RG.2.2.25821.20961 x Contents 5.3.2 MaterialDerivative .................................200 5.4 ConservationofMass.MasscontinuityEquation ..............203 5.4.1 SpatialFormofthePrincipleofConservationofMass. MassContinuityEquation ...........................203 5.4.2 MaterialFormofthePrincipleofConservationofMass ..205 5.5 BalanceEquation.ReynoldsTransportTheorem ..............206 5.5.1 Reynolds’Lemma..................................206 5.5.2 Reynolds’Theorem.................................206 5.6 GeneralExpressionoftheBalanceEquations .................208 5.7 BalanceofLinearMomentum..............................212 5.7.1 GlobalFormoftheBalanceofLinearMomentum .......213 5.7.2 LocalFormoftheBalanceofLinearMomentum ........214 5.8 BalanceofAngularMomentum ............................215 5.8.1 GlobalFormoftheBalanceofAngularMomentum......216 5.8.2 LocalSpatialFormoftheBalanceofAngularMomentum 217 5.9 Power ..................................................219 5.9.1 MechanicalPower.BalanceofMechanicalEnergy.......220 5.9.2 ThermalPower ....................................222 5.10 EnergyBalance ..........................................225 5.10.1ThermodynamicConcepts ...........................225 5.10.2FirstLawofThermodynamics........................228 5.11 ReversibleandIrreversibleProcesses........................231 5.12 SecondLawofThermodynamics.Entropy ...................233 5.12.1SecondLawofThermodynamics.Globalform..........233 5.12.2Physical Interpretation of the Second Law of Thermodynamics...................................234 5.12.3ReformulationoftheSecondLawofThermodynamics ...236 5.12.4Local Form of the Second Law of Thermodynamics. Clausius-PlanckEquation............................238 5.12.5AlternativeFormsoftheSecondLawofThermodynamics 240 5.13 ContinuumMechanicsEquations.ConstitutiveEquations.......242 5.13.1UncoupledThermo-MechanicalProblem...............245 ProblemsandExercises ...................................247 6 LinearElasticity.............................................263 6.1 HypothesisoftheLinearTheoryofElasticity .................263 6.2 LinearElasticConstitutiveEquation.GeneralizedHooke’sLaw .265 6.2.1 ElasticPotential....................................266 6.3 Isotropy.Lame´’sConstants.Hooke’sLawforIsotropicLinear Elasticity ...............................................269 6.3.1 InversionofHooke’sLaw.Young’sModulus.Poisson’s Ratio .............................................270 6.4 Hooke’sLawinSphericalandDeviatoricComponents .........272 6.5 LimitsintheValuesoftheElasticProperties .................274 6.6 TheLinearElasticProblem ................................277 X.OliverandC.AgeletdeSaracibar ContinuumMechanicsforEngineers.TheoryandProblems doi:10.13140/RG.2.2.25821.20961

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.