ebook img

Continuum Mechanical Investigatious on Microstructures PDF

146 Pages·1999·16.847 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Continuum Mechanical Investigatious on Microstructures

Diss. ETH No. 13265 ontinuurn Mechanical nvestigatious on Microstructures A dissertation submitted to the SWISS FEDERAL INSTITIJTE OF TECHNOLOGY -for the degree of Doctor of Techriicd Sciences presented by GILBERT SCHILTGES Dipl. Bau-Ing. ETH 2. 1968 bon1 25. citizen of Luxembourg Accepted on the recol~~t~~endatioonfl l Prof. Ih. .I. Dual, examine1 Prof. Dr. Il. ML-LIE, coexaminel Acknowledgements This work was carried out at the Institute of Mechanics at the ETH Ziirich, and I would like to thank all the people who contributed in one form or another to my work. In particular my thanks go to: Pro-f. Dr. J. Dual, who guided my research ancl contributed many helpful sugges- tions. The friendly atmosphere in his gl-OLIP ancl the academic freedom to try unconventional ideas provided excellent research conditions. Prof. Dr. D. Munz, who accepted without hesitation to review my thesis ancl act as coexaminer. Traude Junker and Dr. Stephan Kaufmann for provicling indispensable and excel- lent administrative and computational services. Fromme, Dani Gsell, Markus Hiigeli, Martin Kauer, Frank May, Dr. Paul Ecloardo Mazza, Dr. Renatus Wendel, Dirk Scl~l~m~sa ncl Dr. Johannes Vollmann for interesting and stimulating discussions ancl generally for having a good time together. My former roommates Claude Dieschbourg, Guy Glad, Steve Glad and Philippe Peters as well as Pol Schosseler for their support and some good biking and foot- ball moments. Corclon Art -for allowing me to reproduce M.C. Escher’s images. All M.C. Escher works 0 1999 Cordon Art B.V. - f-3aarn- Holland. All rights reserved. i Table of contentsc . . ..*~.........**.......*.......,*..~,*”.......~..*.*..................*.............~..“........ iv Abstract . .. . . .. . .. . . .. .~.....~...~..................................~.~.......................................“...... vi Zusammenfassung .. . .. .. .. . . .. . . . . .. . . . .. .. . . .. .. .*.........*.................................*.............. . . . List of symbols . .. .*...~..~..~~..................*..........~.*.*.*....*.*.*.....*..................*V..l.ll. ....~. ntroduction 1.1 Previous research ~...~........~..~...........~...~.~.~................................~...2.. ....~... 1.2 Scope and outline of the present work . .. .. .*...........................*.**...*.....5.. 2 Specimens 2.1 Single crystal silicon sample .,~,.~L,..*.*,.......‘*,~.~*...,.,..”........*...*..*..1~0.* .*.*. 2.2 LIGA sample . . . . .. . . .. .~.~.~....~....~~.~..~...~.......~~.~........~......~.........1..2.. ...........~ 2.3 Determination of dimensions of microstructures . . .. .. . . .. .. . . .. .. . . . ...*.... ‘13 9 3 Resonance experiments 3.1 Constitutive equations .........................................................................1 9 3.2 Governing differential equations .......................................................2 1 3.2.1 Neani bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..I.... 22 ‘73 3.2.3 Beam torsion .*....,,..t.............,,........,................,......................................~.*~.. i- 32.3 Plate vihtions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~... 23 3.3 Finite element simulations . ..~.....~......~...........~..~...~.~............~...~.2..4.~ ....~. 3.3.I Tlwxctical back~~~u~~l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..I... 24 --.3 3 .3d Numerical models used .*..~,..,...,..............,.,_.....,.I...*,..*.,............................... 26 3.4 Experiments . .. ..~.......~.~.~.~..................~.~~............~.....~.........‘.~...3..0.. ......~~. Co11fer1ts ii -. .-________- 3.4.1 Experimental setup .................................... ................................................... 30 3.4.2 Experimental results .................................................................................... 35 3.5 Mixed numerical experimental technique .t...*....*...........*.*..*........*..*. 37 3.5. I General information ..................................................................................... 37 3.5.2 Theoretical background ............................................................................... 38 3.5.3 Results .......................................................................................................... 41 48 3.6 Error calc~dus ,.................,.........*..*..................,*...........**.............**...... 3.7 Higher harmonic oscillations . .. .. . .. .. . . .. .. . .. .~~.~.~~...........~.~.......~....5..1~ ...... 3.7.1 General observations ............................................ ........................................ _5 1 3.7.2 Experiments ................................................................. ................................ _5 2 3.7.3 Thcorctical interpretation ............................................................................. 56 3.8 Conclusiou and outlook *....t.,.....................,...................................*...*. 61 63 4 Torsion of microstructures 4.1 Previous work .. .. .. .. . . .. . . . . .. . .. . ..~.~~.~~~.~~...~.~....~...................”......~6.3.~ ..~~~~..~. 4.2 Torque measurement principles . .. . .. . . .. .. ..‘......................................... 64 4.2.1 General remarks ........................................................................................... 64 4.2.2 Sensor based on differential force measurement ......................................... 65 4.2.3 DiffcwQial inductive sensor ........................................................................ 66 4.3 Torque-sensor ......................................................................................6 8 4.3. I Working principle and general setup ........................................................... 68 4.3.2 Calibration ......... ...................... . ..................................................... .............. 69 4.3.3 Sensor specifications .................................................................................... 71. 4.4 Experiments .........................................................................................7 3 4.4.1 Experimental setup ...................................................................................... 73 4.4.2 First tests ...................................................................................................... 77 4.4.3 Experiments on silicon ................................................................................. 80 4.4.4 Experiments on LICJA speci tnens ................................................................ 52 4.5 Mixed numerical experimental technique 86 l .... ,.t...*...........*..*.......*.* .... 4.5. I Determination of shear mocluli with MNE”T . . . . . ..*.................................*...... 86 4.5.2 1Jetertni nation of shear moduli \vith a mixed analytical, numerical and exper- imental techiiiqus ,*...*...............‘....~.I...,..,..................................................... 57 Coll~terzfs 111 4.6 Failure criteria .....................................................................................8 9 4.6. I Failure crit.erion for silicon .......................................................................... SC> 4.6.2 Plastic regime of metallic microstructur’es ................................................... 96 4.7 Conclusion and outlook ~..........~....~~~....~.~..~................................ .1..0..2~ .~ Appendix A Static torsion of an anisotropic rod with constant rectangular cross-section .. .. .. . . . . . .. . . .. .. . .. . . ..*.*.....................*.*.*........*.................................1..0 5 Appendix B Strain energy and work potential of a rectangular beam subject- ed to torsion ..,.......*...~...‘.**...........,,~,~~*,,................,*.,...*..................~.......1..0..9.. .. Appendix C relative sensitivity matrix . . . .. . ..*...............................................1 12 Appendix D Dimensionless form of the differential equation of motion of a damped spring-mass system and its solution S..............“.............................‘.1 13 Appendix E Solving non-linear differential ecluations .. . . . .. .. . .. .. .*..........*....1 15 Appendix F Quadratic differential equation of the second order . .. .. . . .. . . .. 117 Appendix G Differential equation for vibration of an orthotropic plate .. 119 Bibliography ...................................................................................................1 25 Curriculum vitae ............................................................................................1 35 iv RhSlKlCl The mechanical characterization of microstructures, i.e. structures whose charac- teristic dimensions are in the jMn-range, is the main topic of this thesis. To achieve this goal, an approach is chosen which might be called downscaling. This means that the microstructures al-et ested and analysed with the same techniques as known from classical material testing, but adapted to the specific problems and needs of small dimensions. The specimens ~rsedd uring this work consist o-f two different materials. The sili- con samples were produced by anisotropic wet etchin g. The metallic specimens3 either pure Ni or NiFe alloys, were made with the LlGA technique. One of the main problems with mechanical tests on microstructur‘es is the deter- mination of the geometrical dimensions. The accur~y of the results obtained in any structural analysis is mainly dependent on the accuracy in the dimension measurement. A possible way of how fairly accurate measurements can be achieved is shown, and an error analysis is made. Two main char-acterization techniques are used in the present war-k, static tou- sional tests and dynamic resonance tests. The clynan~c tests allow the determina- tion of the elastic constants by measut%~gt he resonance frequency. This is done for several modes, beam modes as well as plate modes. As some of the materials investigated have a non-isotropic behaviout-, an orthotropic model is used. Foul out of nine constants have an influence str-ong enough to allow their cletermina- tion. To solve the inverse problem, i.e. deduce the elastic constants when know- ing the resonance frequencies. an iterative least square procedure is used, involving numerical and experimental data, During the dynamic tests, higher harmonic excitations of the specimens are observed. This behaviour can be traced back to two different The excita- SOLU-ces. tion signal is not a purely sinusoiclal sigial, but also contains higher harmonics. This is however not sufficient to explain the behaviour of some modes. It is shown that a non-linear model is quantitatively in good agreement with the experimental results. Possible reasons for the non-linearity in the mechanical sys- tem ar.ed iscussed. The static test is performed using a specially designed torsional setup. The main difficulty consists in the measurement of the tiny torques occurring during the test. This problem is solved with a self-built differential torque-sensor, allowing measurements in the ,uNm-range, with an accuracy of 3% of the nominal value, and a resolution o-f less than 0.1 11Nm. The working principle of the sensor is based on the fact that the toque acting in the microsample induces a rotation of a rigid part of the sensor, which is connected to a spring. By measuring the dis- placement of the rigid part at two different points, the torque can be deduced. It is important to notice that no friction9 caused either by torque or longitudinal forces, in the sensor. The torsional setup leads to results in the form of occurs torque-rotation diagrams. By analysin g these structural responses, it is possible to calculate the dominating elastic constants, e.g. two shear moduli. This is done with the same mixed numerical experimental technique as applied during the res- onance tests. The results obtained by the two different tests are in good ngree- ment. The knowledge of the elastic constants is a necessary condition for the determi- nation of failure criteria. Due to stress concentrations in the silicon sample, fail- ure always occurs at one of the notches present due to the fabrication process. An energy criterion, based on surface energy considerations, is formulated with the help of numerical simulations. For metallic specimens? both von Mises’ and Tresca’s hypotheses are formulated. The critical equivalent stresses found at the beginning of yielding lie between the equivalent stresses of von Mises and Tresca. sa Die Bestimtnung der mechanischen Eigenschaften von Mikrostrukturen, ~1.11. Strukturen deren charakteristische Abmessungen im ,um-Bereich Jiegen, ist das Hauptthema dieser Arbeit, lJm dieses Ziel erreichen werden Verfahren ange- zu wendet, welche der klassischen Materialpriifun, (7 stammen. Diese Verfahren ~LIS werden allerdings clen klei nen Dimensionen und den damit spezifisch verbunde- nen Problemen angepallSt. Bei den benutzten Proben kommen im wesentlichen zwei verschiedene Materia- lien zum Einsatz. Die Silizium-Proben wurclen durch chemisches NafQitzen her- gestellt. Die metallischen Proben, welche entwecler purem Ni oder aus NiFe- BUS Legicrungen bestehen, verdanken ihre Existenz der LIGA-Technik. Eines der Hauptprobleme bei der Arbeit mit Mikrostru kturen ist die Bcstimmung der geo.tnetrischeu Abmessungen. Die Genauigkeit aller Strukturanalysen h2ingt im wesentlichen von der GenaLIigkeit der Messung der ab. Es wird ~Jeoinetrie gezeigt wie Messungen mit einer verniinftigen Genauigkeit und Aufliisung durchge-fiihrt werden kiinnen. Eine Fehleranalyse zeigt die problematischen Punkte noch einmal auf. In dieser Arbeit werden zwei IJntersL~chutlgsr~~ethodeenin gesetzt, statische Torsi- onsversuche sowie dynamische Resonanzversuche. Durch clas Messen der Reso- nanzfrequenzen erlauben die dynamischen Ver-suche die Bestimmung der Elastizit5tskonstanten. Es werden die Resorlanzf~.equel~zenv on mehreren Moden gemessen, welche sowohl Platten- als such Balkenmoclen sein kijnnen. Da einige der untersuchten Materialien nicht notwelldigerweise einem isotropen Material- gesetz gehorchen, wird ein orthotropes Materialgesetz zugrunde gelegt. Van clen ncun Konstanten k6nnen insgesamt vier bcstimmt werden. Das vorliegencle inverse Problem, d.h. das Bestimmen de-r Materialkonstatlten bei gegebenen Resonanzfrequet?zell, wird mi t ciner iterativen Methocle der kleinsten Fehler-qua- drate gelirist. Dieser Methode liegen sowohl experimentelle als such numerische SiiilLilationscfateil zugrunde. Verlau-fe cler dynamischen Versuche konnten hiiher hacmo~~ischeA nregungen Im der Mikroproben festgestellt we&en. Dieses Verhalten wird durch zwei verschie- dene Ursachen erkl&t. Einerseits hat das Anregungssignal bereits hijhere harmo- nische Komponenten ist damit nicht rein sinusfiirmig. LIies geniigt allerdings mcl nicht zur Beschreibung des PhL;inomensb ei verschiedenen Moden. Es wi rci gezeigt, da0 eine nichtlineare Analyse die experimentellen Resultate quantitativ gut wiedergibt. Die miiglichen Ursa&en des nichtlinearen Verhaltens des mecha- nischen Systems werden betrachtet. Die statischen Experimente weredena n einem speziell entworfenen Versuchsauf- bau durchgefiihrt. Die griiRte Schwierigkeit besteht in deu Messung der kleinen auftuetenden Torsionsmomente. Ein se1b st entworfener differentieller Torsions- sensor erlaubt Messungen im ,uNm-Bereich, mit einer Genauigkeit von 3% des Nennwertes und einer untcr 0.1 b~Nm.D ns Prinzip des Sensors beruht Aufliis~mg auf de1 Tatsache, daR das wirkende Moment eine Verduehung eines starren Teiles? wel.ches an einer Feder befestigt ist, hervot-l-uft. Die Messung der Verschiebung an zwei verschiedenen Pnnk ten dieses star-r-enT eiles eulaubt es, Riickschliisse au-f das angreifende Torsionsmoment ziehen. Es ist wichtig heuvorzuheben~d aR zu im Sensor keine Reibung, hervorgerufen clur~chT orsionsmomente oder L$ngs- krgfte, anftritt. Der Ver.suchsaufbaue rlaubt das Aufnehmen von TThrsionsr~orr~er7t- Winkelvel-drellungs Kurven. Die beiden maRgebenclen Schubmodulen ktinnen durch eine Untersuchung diesel- St rukturantwort ermittel t werden. Dazu wird clas gleiche Verfahren benutzt, welches such bei den Resonanzversuchen zum Einsatz kommt. Die Resultate der beiden Untersucl~ungsnrten, statisch dynamisch, ~mCl sind in guter ijbe~einstir~~~Lrrlg. Nachdem die Materialkonstanten bestimmt sind, ist es miiglich Versagenskrite- rien fiir die ver-schieclenenM aterialien aufzustellen. Spannungskonzentrationen in der Siliziumprobe fiihren dazu, da8 clas Versagen immer an einer, dul-ch clen Herstellungspl-ozeR bedingten, scharfen Kante eintri tt. Betrachtungen ii ber die bei RiRbildung entstehende Oberfl8chenenergie fiihren unter. Zuhilfenahme von numerischen Simulationen zu1 Formulierung eines Energiekriteriums. Fiir die metallischen Proben werclen sow0111e ine von Mises als a~~che ine Tresca Ver- gleichsspannung in l3etracht gezopen. Es zeigt sich, daISd ie kritische Vergleichs- spannung bei Pliel~beginn zwischen der von Mises und cler Tresca Flypothese liegt. is Matrix of relative sensitivity of resonance frecluencies with respect to u geometrical parameters Matrix o-f relative sensitivity of elastic mocluli with respect to resonance R frequencies Matrix o-f relative sensitivity of resonance frequencies with respect to s elastic mocluli Global load vector J3 K Stiffness matrix M Global consistent mass ma&ix Q Global clisplacement vector d Vector of relative dimensional errors In Relative resonance frequency error clue to erroneous dimensions r Total relative resonance fi-equency error vector LL Displacement vector w Relative resonance frequency error due to frequency measurements A Area and vibration amp1i tude Amplitude at resonance AR B Coefficient Dij Plate stiffnesses E’ Young’s modulus G Shear modulus Ii Area moment of inertia with respect to the xi axis Polar moment of inertia 1, M Moment per unit length N Normal force per unit length Q Quality factor or shear force per unit length R Rayleigh quotient or error function Surface roughness RI S Surface energy s* Surface energy per unit thickness SED Strain energy clensity r 7 I Torque or kinetic energy U Strain energy 01’a ppliecl voltage U:” Strain energy per unit thickness

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.