ebook img

Continuum extrapolation of finite temperature meson correlation functions in quenched lattice QCD PDF

0.21 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Continuum extrapolation of finite temperature meson correlation functions in quenched lattice QCD

Continuum extrapolation of finite temperature 1 meson correlation functions in quenched lattice 1 0 QCD 2 n a J 8 2 ] AnthonyFrancis∗ t FakultätfürPhysik,UniversitätBielefeld,D-33615Bielefeld,Germany a l E-mail: [email protected] - p e Frithjof Karsch† h PhysicsDepartment,BrookhavenNationalLaboratory,Upton,NY11973,USA [ E-mail: [email protected] 1 v 1 We explore the continuumlimit a 0 of meson correlationfunctionsat finite temperature. In 7 → detail we analyze finite volume and lattice cut-off effects in view of possible consequencesfor 5 5 continuumphysics. Weperformcalculationsonquenchedgaugeconfigurationsusingtheclover 1. improvedWilsonfermionaction.WepresentanddiscusssimulationsonisotropicNs3 16lattices × 0 withNs =32,48,64,128and1283 Nt latticeswithNt =16,24,32,48correspondingtolattice × 1 spacingsintherangeof0.01fm<a<0.031fmatT 1.45T. Continuumlimitextrapolations c 1 ≃ ofvectormesonandpseudoscal∼ar co∼rrelatorsare performedandtheirlargedistanceexpansion : v in terms of thermal moments is introduced. We discuss consequences of this analysis for the i X calculationoftheelectricalconductivityoftheQGPatthistemperature. r a TheXXVIIIInternationalSymposiumonLatticeFieldTheory,Lattice2010 June14-19,2010 Villasimius,Italy Postercontribution. ∗ †Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ ContinuumextrapolationoffinitetemperaturequenchedlQCD A.Francis,F.Karsch 1. Introduction The heavy-ion experiments at RHIC and soon LHC are probing deeper and deeper into the high temperature region of QCD. As such more and more experimental results are presented that requireamorecompleteknowledgeoffinitetemperatureQCD.NaturallyoneturnstolatticeQCD togivesomeanswerstothequestions arising. Howeversomequestions ofinterest arenotoriously difficult to answer from a lattice perspective. This is in particular the case for the analysis of spectralpropertiesofhadroncorrelationfunctions. Althoughherethemaininterestisinextracting information on hadronic spectral functions at low frequencies, this cannot be achieved without good control over the large frequency region. Correlation functions thus need to be controlled at short as well as large distances. High accuracy data on large lattices at several values of the cut- off are needed to control finite volume and lattice cut-off effects. Only then a reliable continuum extrapolation becomespossible whichisaprerequisite forextracting dependable physicsresults. In this combined talk and poster contribution we present results from a lattice analysis of meson correlation functions at finite temperature [1]. We emphasize here our systematic analysis ofthefinitevolume and cut-off dependence ofthermal mesoncorrelation functions. Thisanalysis leadstotheconclusionthatweindeedcantakethecontinuumlimitforthevectorandpseudoscalar current correlation functions in a large Euclidean time interval. We also calculate several thermal moments of hadron spectral functions to better explore the spectral properties at low frequencies. Weclosewithadiscussion oftheconstraints arisingfromouranalysisforthedetermination ofthe electrical conductivity inthequarkgluonplasmaatfinitetemperature [2,3]. 2. MesonCorrelationFunctions OurkeyobservableofinterestistheEuclideancorrelation functionofagivenparticlecurrent, Jn q¯(t ,~x)gn q(t ,~x), (2.1) ≡ where choosing the appropriate gamma matrix we obtain the vector particle channels for gn =gm where m =0,...,4andthepseudoscalarforgn =g5. In this work we analyze the Euclidean temporal two-point correlation function for the above channels atfixedmomentum, Gmn (t ,~p)=(cid:229) Gmn (t ,~x)ei~p·~x, (2.2) ~x where Gmn (t ,~x)= Jm (t ,~x)Jn†(0,~0) , (2.3) h i while we denote thermal expectation values with ... . In this work we will set the momentum to h i zero,~p=0,andsuppressthesecondargument inthehadronic correlation functions. Athightemperaturesthespectrumofmesonresonancesismoreandmorechangedbythermal effects; thewidth of resonances will broaden and the onset of thecontinuum in the spectrum may 2 ContinuumextrapolationoffinitetemperaturequenchedlQCD A.Francis,F.Karsch shift. Asaresulttheinterest intheanalysis oftheabovecurrent-current correlation function shifts totheirrepresentation intermsofaspectralfunction r mn [4]: ¥ dw cosh(w (t 1/2T)) Gmn (t ,T)=Z0 2p r mn (w ,T) sinh(w −/2T) . (2.4) Fromhereonwedenotewithmn iithesumoverthespace-likecomponentsofthevectorspectral ≡ function r , while the full vector spectral function is given by r r +r . We also use the ii V 00 ii ≡ notation PS for mn 55. Note that the correlation function G (t ,T) is connected to the net 00 ≡ number of quarks (q q¯) in a given flavor channel, i.e., n (t )= d3xJ (t ,~x). As the net quark 0 0 − number is conserved, it does not depend on time, n (t )=n . ThuRs the corresponding correlation 0 0 function isconstantinEuclideantimeandthespectral functionissimplygivenby, r (w )= 2pc wd (w ), (2.5) 00 q − withthequarknumbersusceptibility c = d3x J (t ,~x)J†(0,~0) . (2.6) q −Z h 0 0 i Consequently the time-like correlation function obeys the relation G (t ,T) c T, which im- 00 q ≡− mediately leadstoanexactrelation betweenG (t ,T)andG (t ,T): ii V G (t ,T)=c T+G (t ,T). (2.7) ii q V Inthefreefieldlimitthespectralfunctionsareseentoincreasequadraticallyforlargefrequen- ciesw . Oneobtains: 3 r (w ) = 2pc wd (w )+ w 2tanh(w /4T) (2.8) ii q 2p 3 r (w ) = r (w )+r (w )= w 2tanh(w /4T) (2.9) V 00 ii 2p 3 r (w ) = w 2tanh(w /4T) (2.10) PS 4p Atfinitetemperaturetheexactcancellationofthed -functionsinther (w )spectralfunctionisonly V approximate, asr (w )continuestobeproportionaltoad -functionduetotheconnectionwithnet 00 quark number, while the d -function in r (w ) is subject to thermal effects. As a consequence this ii contribution issmearedoutintoaBreit-Wigner shapedpeak[5]: w G /2 3 r (w ) r BW(w )=2c c +(1+k ) w 2tanh(w /4T), (2.11) ii → ii q BWw 2+(G /2)2 ·2p wherek parametrizescorrectionstothehighfrequencybehaviorofthefreefieldlimit. Thissmear- ing inthe low frequency region isdirectly related tothe appearance offinite transport coefficients inthethermalmedium,e.g. theelectrical conductivity, s C r (w ) em ii = lim , (2.12) T 6 w 0 w T → whereC isthesumoverthesquaredchargesofthecontributing quarkflavors. Thepseudoscalar em spectralfunctionontheotherhanddoesnotpersecontainanadditionallowfrequencycontribution; aconnection withtransportphenomena isnotexpected. 3 ContinuumextrapolationoffinitetemperaturequenchedlQCD A.Francis,F.Karsch 3. Thermal Moments ofthe CorrelationFunction A useful set of observables that helps to characterize the structure of spectral functions, is given by “thermal moments” of the spectral function at vanishing momentum. At a given order wedefinethesemomentsastheTaylorexpansioncoefficientsofthecorrelation functionexpanded around themidpoint oftheEuclideantimeinterval1,i.e.,aroundt T =1/2, 1 dG (t T) 1 ¥ dw w 2n r (w ) (2n) H H G = = (3.1) H (2n)! d(t T)2n (cid:12)(cid:12)tT=1/2 (2n)!Z0 2p (cid:16)T (cid:17) sinh(w /2T) (cid:12) and (cid:12) ¥ 2n G (t T)= (cid:229) G(2n) 1 t T . (3.2) H H (cid:18)2− (cid:19) n=0 The infinite temperature, free field limit of the correlation function can be calculated analyti- cally. Formasslessquarksoneobtains[6]: 1+cos2(2pt T) cos(2pt T) Gfree(t T)=2Gfree(t T) = 6T3 p (1 2t T) +2 (3.3) V PS (cid:18) − sin3(2pt T) sin2(2pt T)(cid:19) Gfree(t T) = T3+Gfree(t T) (3.4) ii V Usingtheseresultsthefirstthreenon-vanishing momentsarethengivenby 2 G(0),free = 2G(0),free= G(0),free=2T3, (3.5) V PS 3 ii 28p 2 G(2),free = 2G(2),free= T3, (3.6) H PS 5 124p 4 G(4),free = =2G(4),free= T3 . (3.7) H PS 21 In our lattice simulation we will also analyze ratios of moments. In the free field limit they are givenby G(2),free 14p 2 R(2,0) = V =R(2,0) = 27.635 (3.8) V,free G(0),free PS,free 5 ≃ V 2 (2,0) (2,0) R = R 18.423 (3.9) ii,free 3 V,free≃ 155p 2 (4,2) R = 10.407 , (3.10) H,free 147 ≃ which can be obtained from the ratio of the mid-point subtracted correlation functions and the corresponding freefieldvalues: D (t T) G (t T) G(0) G(2) 1 H = H − H = H 1+(R(4,2) R(4,2) )( t T)2+... .(3.11) D free(t T) Gfree(t T) G(0),free G(2),free(cid:18) H − H,free 2− (cid:19) H H − H H Notethatthedistinction betweenH =iiorH =V isunnecessary whenevaluating D (t T),asdif- H ferences inhtecorrelators, whicharisefromcontributions ofd -functions inthespectral functions, areeliminated insubtracted correlators. 1Asthespectralfunctionsaswellastheintegrationkernelinthespectralrepresentationofthecorrelatorsareodd functionsofthefrequency,alloddmomentsvanish. 4 ContinuumextrapolationoffinitetemperaturequenchedlQCD A.Francis,F.Karsch Nt Ns #conf b a[fm] T/Tc cSW k mMS/T[m =2GeV] ZV ZPS 48 128 451 7.793 0.010 1.43 1.3104 0.13340 0.1117(2) 0.861 0.79 32 128 255 7.457 0.015 1.45 1.3389 0.13390 0.0989(4) 0.851 0.78 24 128 340 7.192 0.021 1.42 1.3673 0.13431 0.1062(2) 0.842 0.76 156 0.13440 0.02367(5) 16 128 191 6.872 0.031 1.46 1.4125 0.13495 0.02429(5) 0.829 0.74 64 191 48 229 32 251 Table1: SimulationparametersforthegenerationofgaugefieldconfigurationsonlatticesofsizeNs3 Nt. × 4. SimulationParameters and Results 4.1 ComputationalDetails Ournumerical results areobtained from quenched QCDgauge fieldconfigurations generated withthestandard SU(3)singleplaquette Wilsongaugeaction[7]. Usinganover-relaxed heatbath algorithm configurations were generated on lattices of size Ns3 Nt , where 32 <Ns < 128 and × Nt =16, 24, 32and 48, withaseparation of500 updates perconfiguration. Correlation functions andplaquetteexpectationvaluescalculatedontheseconfigurationshavebeencheckedandareseen tobeuncorrelated. Detailsonthestatistics collected aregiveninTab.1. Allcalculationspresentedherehavebeenperformedatasingletemperaturevalue,T 1.45T . c ≃ Thegaugecouplings havebeenadjusted accordingly forthedifferent temporallatticesizes. Todo so we extrapolate known results for the critical coupling b c(Nt ) and the square root of the string tension √s [8]. This is achieved by fitting T/√s using the ansatz suggested in [9] within the range of b [5.6,6.5] and extrapolating to our relevant region of b [6.8,7.8]. All simulation ∈ ∈ parameters aregiveninTab.1. In the fermion sector we employ the clover improved Wilson action with non-perturbatively chosen clover coefficient c [10] and determine the correlation functions using an even-odd de- SW composed CG-algorithm. The hopping parameter k is chosen to be close to its critical value [11] andtuned togiveapproximately constant quarkmassesforfouroftheexamined lattices. Herethe quarkmassesareestimatedusingtheaxialWardidentity(AWI)tocalculatetheAWIcurrentquark massm forthedifferentvaluesofcut-off. Wherebyweusethenon-perturbatively improvedax- AWI ialvectorcurrentwithcoefficientc notedin[12]. Inthenextstepwecalculatetherenormalization A groupinvariantmassm andrescaletothecommonlyquotedMS-schemeatthescalem =2GeV. RGI TheresultsarealsolistedinTab.1. 4.2 NumericalResults Duetothesubtletyoftheeffectsinquestionitisnotveryilluminatingtoexaminethecorrelator directly. Toillustratethisweshowthecorrelationfunctionsofthevectorandpseudoscalarcurrents together with their analytically obtained free continuum and free discretized, lattice counterparts in Fig. 1. Clearly the exponential decay of the correlation function dominates and obscures all 5 ContinuumextrapolationoffinitetemperaturequenchedlQCD A.Francis,F.Karsch 111111111000000000000000000000000000000000000 111111111000000000000000000000000000000000000 GGGGGGGGGVVVVVVVVV(((((((((tttttttttTTTTTTTTT)))))))))/////////TTTTTTTTT333333333 11111 11111.....11111.....2222255555 GVfree,lat/GVfree GGGGGGGGGPPPPPPPPPSSSSSSSSS(((((((((tttttttttTTTTTTTTT)))))))))/////////TTTTTTTTT333333333 11111 .....1111111111.....5555522222 GPfreSe,lat/GPfreSe 111111111000000000000000000000000000 11111.....11111 111111111000000000000000000000000000 11111.....11111 11111.....0000055555 11111.....0000055555 111111111000000000000000000 11111 tT 111111111000000000000000000 11111 tT 00000 00000.....11111 00000.....22222 00000.....33333 00000.....44444 00000.....55555 00000 00000.....11111 00000.....22222 00000.....33333 00000.....44444 00000.....55555 111111111000000000 f111111111111111111111111re222222222222222222222222e888888888888888888888888 333333333333333333333333cxxxxxxxxxxxxxxxxxxxxxxxxo111111111222323234234234n666666666444242428428428t 111111111000000000 111111111111111111111111222222222222222222222222888888888888888888888888333333333333333333333333xxxxxxxxxxxxxxxxxxxxxxxx111111111222323234234234666666666444242428428428 free cont tttttttttTTTTTTTTT tttttttttTTTTTTTTT 111111111 111111111 000000000 000000000.........111111111 000000000.........222222222 000000000.........333333333 000000000.........444444444 000000000.........555555555 000000000 000000000.........111111111 000000000.........222222222 000000000.........333333333 000000000.........444444444 000000000.........555555555 Figure1:Thevector(left)andpseudoscalar(right)correlationfunctionstogetherwiththeirfreecontinuum (magentalines)andfreelattice(opensymbols)counterparts. (Blow-ups): Theratiooffreelatticeandfree continuumcorrelationfunctions. otherinteresting physicsfeatures. Tocircumventthiseffectitisusefultolookatcertainratiosthat largely canceltheexponential partoftheEuclideantimedependence ofthecorrelators. One of these ratios is that of the correlation function itself divided by the free correlation function giveninEq.3.3, G (t ,T) R (t ,T)= H . (4.1) H Gfree(t ,T) H The immediate advantage of a ratio as that given in Eq. 4.1 is that it gives a direct handle on the deviation of the correlation function calculated at finite and infinite temperature, respectively. As thecontinuumaswellaslatticefreecorrelationfunctionsareknownanalytically,thisalsoprovides insight into the importance of lattice cut-off effects as function of Euclidean time. The insertions in Fig. 1 show the ratio of the free lattice and the free continuum correlation functions. They, of course, show that cut-off effects are largest at small distances. Moreover, it becomes obvious that withincreasingcut-offvalues(largerNt )theonsetofcut-offeffectsisshiftedtosmallerdistances. Asweemploy thelocal current correlations introduced inEq.2.1allresults havetoberenor- malizedmultiplicatively, Jnlat =(2k ZH)q¯(t ,~x)gn q(t ,~x), (4.2) where the renormalization constants have been determined non-perturbatively for the vector [11] andperturbativelyuptotwo-looporderforthepseudoscalarchannel[13]. TheyarelistedinTab.1. Inthecaseofthevector correlation functions theabovestatement holds truealsoforthetime-like component G (t ,T) because the local lattice current is not conserved at non-zero lattice spac- 00 ing. Consequently the time-like correlation function G (t ,T) may not be strictly t -independent. 00 However,asallvectorcurrent-currentcorrelationfunctionsaresubjecttothesamerenormalization constants arescalingofthecorrelation functions G (t ,T)andG (t ,T)oreventheratioR (t ,T) V ii H byG (t ,T)yieldsaquantity independent ofrenormalization. 00 6 ContinuumextrapolationoffinitetemperaturequenchedlQCD A.Francis,F.Karsch Nt 16 24 32 48 ¥ c /T2 0.882(10) 0.895(16) 0.890(14) 0.895(8) 0.897(3) q Table2: Quarknumbersusceptibility(c q/T2)calculatedonlatticesofsize1283 Nt . Thequarknumber × susceptibilitieshavebeenrenormalizedusingtherenormalizationconstantslistedinTab.1.Thelastcolumn givestheresultofacontinuumextrapolationtakingintoaccountcut-offerrorsofO(a2). 1.2 1.2 -G00(tT)/T3 -G00(tT)/T3 1.15 1.15 1.1 1283x16 1.1 1283x16 643x16 1283x24 1.05 483x16 1.05 1283x32 323x16 1283x48 1 1 0.95 0.95 0.9 0.9 0.85 0.85 tT tT 0.8 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.2 0.4 0.6 0.8 1 Figure2: Thetime-likecomponentofthevectorspectralfunction,G (t T)/T3,calculatedatT 1.45T. 00 c ≃ ThelefthandpartofthefigureshowsthevolumedependenceofG00(t T)/T3 forNt =16and32 Ns ≤ ≤ 128. Therighthandfigureshowsthecut-offdependenceofG00(t T)/T3 forNs =128and16 Nt 48. ≤ ≤ 4.3 FiniteVolumeandLatticeEffects 4.3.1 QuarkNumberSusceptibility As mentioned above the time-like component of the vector correlation function, G (t T), 00 will be used for rescaling in the following, so it is the first channel to be tested for finite volume and cut-off effects. We find these effects to be small, as can be seen from Fig. 2, where we plot G (t T)/T3. The quark number susceptibility may then be extracted from the long distance 00 − behavior ofthecorrelator, c /T2= G (t T 0.5)/T3. q 00 − ≃ OntheleftofFig.2weshowtheresultsfortheNt =16latticewithfixedcut-offwhilevarying thespatialextent. ExceptforaspectratioNs /Nt =2allresultsagreewithinstatisticalerrorsatthe level of 1%. On the right the cut-off dependence at fixed spatial extent Ns =128 is shown. Here toosystematic effectsinthequarknumbersusceptibility areseentobesmall. Note even though we implement the non-conserved local current of the time-like vector cor- relation function, we obtain results that are t -independent to a very high degree. The deviations at small distances t T might be understood as lattice effects. The results for the quark number susceptibility aresummarizedinTab.2. 4.3.2 VectorandPseudoScalarCorrelation Functions Turning tothevector andpseudo scalar correlation functions westress thatthelarge rangeof available spatial lattice sizes at fixed cut-off, with aspect ratios ranging between 2 Ns /Nt 8, ≤ ≤ allowstoquantifyfinitevolumeeffects. Moreover,thelargetemporalextentofmaximumNt =48 7 ContinuumextrapolationoffinitetemperaturequenchedlQCD A.Francis,F.Karsch 1.35 GV(tT)/GVfree(tT) 2.6 GPS(tT)/GPfreSe(tT) 1283x16 1.3 643x16 2.4 483x16 1.25 1238233xx2146 2.2 1283x24-2 1283x32 2 1.2 1283x48 1.8 1624833xx1166 1.15 483x16 1.6 323x16 1283x24 1.1 1.4 1218238x32x43-22 1.05 1.2 1283x48 tT tT 1 1 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 Figure 3: The vector (left) and pseudo scalar (right) correlation functions, calculated on lattices of size Ns3 Nt atT 1.45Tc,where“1283 24 2“denotesthelowerquarkmassonthislattice. Theresultsare × ≃ × − normalizedusingthecorrespondingfreecorrelationfunctions.Shownaredatafort T >1/Nt only. on an isotropic (!) lattice reduces the lattice spacing to 0.01fm at T 1.45T . The variation of c ≃ Nt by up to a factor of three allows to control lattice cut-off effects. In the following it will be shownthatfinitevolumeeffectsinthecorrelationfunctionsarewellundercontrolandacontrolled extrapolation tothecontinuumlimitisindeedpossibleinalargeEuclideantimeinterval. Notethat that our current analysis improves on systematic errors that were present in earlier calculations of thevectorspectralfunction performedbyemploying thesamediscretization scheme[14]. In Fig. 3 we show results for the vector and pseudo scalar correlation functions using the ratios introduced in Eq. 4.1. On the left hand side the ratio for H =V and on the right hand side for H =PS is shown for all available lattice sizes. Data sets with fixed spatial size at Ns =128 while varying the cut-off Nt shown in black. Data sets with fixed cut-off (Nt =16) and varying volume are shown in color. For one value of the cut-off (Nt =24) we performed calculations for twodifferent values ofthequark masses. Wefindthat finitequark masseffects aresmalland well within 2%. Fromthe fixedcut-off (colored) Nt =16results inboth plots finitevolume effects for t T 0.3areseentoremainwithinafewpercent evenforthelargest Euclideantimeseparation at ≥ t T =0.5. As a consequence these results show that finite volume effects are under control. For t T <0.3intheleftH =V plotitisimmediatelyapparent thatcut-offeffectsarelargeintheratio. In the pseudo scalar case the situation concerning cut-off effects is not immediately evident. The ratio shown in Fig. 3(right) shows large deviations from the free field behavior even at short distances. Atall distances the correlator thus seems to be controlled by large non-perturbative ef- fects. Moreover, theanalysis ofcut-off effectsisobscured bythefactthatdatahavebeenrescaled byusingrenormalizationconstants,whichareknownonlyperturbatively. Thisintroducesunknown uncertainties. Toeliminateatleasttheseuncertainties weshowinFig.4thepseudo scalarcorrela- tionfunctionnormalizedbythepseudoscalarcorrelationfunctionatt T =0.5. Aswefocusonthe cut-off dependence weonly show equal quark mass Ns =128 results. Theleft hand figure shows the pseudo scalar correlator normalized by free continuum correlator and in the right hand figure the free lattice correlation function has been used. From the left hand plot the cut-off dependence becomes immediately evident and we conclude that, similarly to the vector case, cut-off effects above t T =0.3 are small and increase withdecreasing t T. Eventhough their effect becomes ap- 8 ContinuumextrapolationoffinitetemperaturequenchedlQCD A.Francis,F.Karsch 1 GPS(tT)/[GPS(1/2)GPfreSe(tT)] 1 GPS(tT)/[GPS(1/2)GPfreSe,lat(tT)] 0.9 0.9 0.8 0.8 1283x16 1283x16 0.7 11228833xx2342 0.7 11228833xx2342 1283x48 1283x48 0.6 0.6 0.5 0.5 tT tT 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 Figure 4: The pseudo scalar correlationfunction normalizedby the free continuum(left) and free lattice (right)correlationfunctions,bothadditionallyrescaledbythecorrelatoratt T =1/2,G (t T =0.5). PS parent fort T 0.3, theydonotdominate thebehavior ofthecorrelation function asinthevector ≤ channel. ActuallytherighthandsideofFig.4indicatesthatthet -dependenceofthecut-offeffects issimilar tothatofthefreelattice correlation functions, asanycut-off effectishardly visible also fort T 0.3. ≤ 4.4 ContinuumExtrapolation Theresultsshownintheprevioussectionindicatethatthecontinuumlimitcanbetakenforthe vectorcorrelationfunctionsatleastfort T>0.25. TodosoweuseaquadraticansatzinaT =1/Nt to fit ratios of the vector correlator and th∼e corresponding free field values. We normalize these ratios using the quark number susceptibility c /T2 and perform fits at fixed temporal extent t T. q Ascut-off effects are large on the Nt =16 lattice wewillonly use data from the Nt =24, 32, 48 lattices, forreference wewillhoweverincludetheformerinourfigures. InFig.5weshowresultsofthisextrapolationin1/Nt2fort T =1/2, 7/16, 3/8, 5/16and1/4 whereweusedthefreecontinuumaswellasthefreelatticecorrelationfunctionsfornormalization. Notethatweperformedextrapolations forallEuclidean timest T available ontheNt =48lattice. Whereverthesmallerlatticesfailtohaveacorresponding pointint T weinterpolate usingaspline construction. SubsequentlytheerrorsarethencalculatedusingaJackknife-method. InFig.5thisis thecasefort T =7/16and5/16. Thefigurerevealsthatthecontinuum limitcanbecleanlytaken andconsistent resultsareobtained byusingthefreecontinuum andthefreelatticenormalizations, respectively. In the left hand part of Fig. 6 we show the results of the extrapolation in the vector channel as described above. Note that the largest deviation from the free correlation function occurs at t T =1/2. Infact,theestablished bendingofthevectorcorrelationfunctioniscrucialforaquanti- tativedescription ofthelowfrequency regionofthevectorspectral function intermsoftheansatz suggested in Eq. 2.11. The short distance part of the correlation function obviously can be well describedbythefreespectralfunctionincludingthecorrectionfactor(1+k )asalsohasbeendone inEq.2.11. IntherighthandpartofFig.6thecorresponding resultforthepseudoscalarcorrelation func- tion is shown. Here it is not possible to suppress the renormalization effects using suitable ratios 9 ContinuumextrapolationoffinitetemperaturequenchedlQCD A.Francis,F.Karsch 1.7 T2GV(tT)/[c qGVfree(tT)] 1.6 1.5 1.4 1.3 1.2 1/Nt2 1.1 0 0.001 0.002 0.003 0.004 Figure 5: The ratio R (t T) normalized by the quark number susceptibility using the free continuum V (full symbols) and lattice (open symbols) correlation functions over 1/Nt2. Shown are the results of t T = 1/2,7/16,3/8,5/16 and 1/4, for legibility the results have been offset by 0.1 respectively. For t T =7/16and5/16splineinterpolationswereusedtoestimate thecorrespondingresultsonthe Nt =24 lattice. 2.8 1.45 T2GV(tT)/[c qGVfree(tT)] 1283x16 2.6 GPS(tT)/GPfreSe(tT) 1.4 11228833xx2342 1283x48 2.4 1.35 Extrapolation Fit 2.2 1.3 2 1.25 1.8 1283x16 1283x24 1.2 1.6 11228833xx3428 Extrapolation 1.15 1.4 tT tT 1.1 1.2 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 Figure6: (left): TheratioR (t T)normalizedbythequarknumbersusceptibilityusingthefreecontinuum V correlation functions over t T and its corresponding continuum extrapolation. (right): The unnormalized R (t T) including its continuum extrapolation. In both cases the extrapolation was done as described, PS fillinginsplineinterpolationswhennecessary.Thesolidcurveinthelefthandfigureshowsthefitdiscussed insection5. of correlation functions. Theextrapolation necessarily also includes this ambiguity. Asthe corre- lator normalized by its value at the midpoint was found to be almost cut-off independent and as finitevolumeeffectswereseentobesmallrenormalization effectsdominatetheuncertainty ofthe extrapolation. 4.5 CurvatureoftheVectorandPseudoScalarCorrelation Functions As discussed in section 3, thermal moments give additional insight into the spectral repre- sentation of hadronic correlation functions. Theyare especially interesting asthey are obtained at the largest Euclidean timeseparation wherethecorrelation functions aremostsensitive tothelow frequency region of the spectral function. In particular, the lower orders of the thermal moments 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.