ebook img

Continuous-time autoregressive moving-average processes in Hilbert space PDF

0.15 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Continuous-time autoregressive moving-average processes in Hilbert space

Continuous-time autoregressive moving-average processes in Hilbert space FredEspenBenthandAndre´Su¨ss 7 1 0 2 n a J 7 1 AbstractWeintroducetheclassofcontinuous-timeautoregressivemoving-average (CARMA) processes in Hilbert spaces. As driving noises of these processes we ] R consider Le´vy processes in Hilbert space. We provide the basic definitions, show relevantpropertiesoftheseprocessesandestablishtheequivalentsofCARMApro- P . cessesontherealline.Finally,CARMAprocessesinHilbertspacearelinkedtothe h stochasticwaveequationandfunctionalautoregressiveprocesses. t a m [ 1 Introduction 1 v 8 Continuous-time autoregressive moving-averageprocesses, or CARMA for short, 1 playanimportantroleinmodellingthestochasticdynamicsofvariousphenomena 6 likewindspeed,temperaturevariationsandeconomicindices.Forexample,based 4 on such models, in [1] the author analyses fixed-incomemarkets while in [8] and 0 [13] the dynamics of weather factors at various locations in Europe and Asia are . 1 modelled. Finally, in [7], [4] and [17] continuous-time autoregressive models for 0 commoditymarketslikepowerandoilarestudied. 7 1 CARMA processes constitute the continuous-time version of autoregressive : moving-averagetimeseriesmodels.Inthispaperwegeneralizetheseprocessesto v a Hilbertspace context.The crucialingredientin the extensionis a ”multivariate” i X Ornstein-Uhlenbeck process with values in a Hilbert space. There already exists r ananalysisofinfinitedimensionalLe´vy-drivenOrnstein-Uhlenbeckprocesses,and a we refer the readerto the survey[3]. Moreover,matrix-valuedoperatorsand their FredEspenBenth University of Oslo, Department of Mathematics, POBox 1053 Blindern, N-0316 Oslo, Norway e-mail:[email protected] AndreSu¨ss Universitat de Barcelona, Facultat de Matematiques, Gran Via, 585, E-08007 Barcelona, Spain e-mail:[email protected] 1 2 FredEspenBenthandAndre´Su¨ss semigroups play an important role. In [12] a detailed semigroup theory for such operatorsisdeveloped.Wereviewsomeoftheresultsfrom[3]and[12]inthecon- textofHilbert-valuedCARMAprocesses,aswellasprovidingsomenewresultsfor theseprocesses. Letusrecallthedefinitionofareal-valuedCARMAprocess.Wefollow[11]and first introducethe multivariate Ornstein-Uhlenbeckprocess Z(t) with values t 0 inRp for p Nby { }≥ ∈ dZ(t)=C Z(t)dt+e dL(t), Z(0)=Z Rp. (1) p p 0 ∈ Here,Lisaone-dimensionalsquareintegrableLe´vyprocesswithzeromeandefined onacompleteprobabilityspace(W ,F,P)withfiltrationF = F ,satisfying t t 0 the usual hypotheses. Furthermore, e is the ith canonical unit{vec}to≥r in Rp, i= i 1,...,p.The p pmatrixC takestheparticularform p × 0 1 0 . .. 0 0 0 1 0.. 0   . . . . .. . C = , (2) p  . . . . .. .     0 . . . .. 1   a p a p 1 . . .. a 1 − − − −    forconstantsa >0,i=1,...,p.1 i Wedefineacontinuous-timeautoregressiveprocessoforder pby X(t)=e Z(t), t 0, (3) ⊤1 ≥ where x means the transpose of x Rp. We say that X(t) is a CAR(p)- ⊤ t 0 process.Forq Nwith p>q,wedefi∈neaCARMA(p,q)-{proce}ss≥by ∈ X(t)=b Z(t), t 0, (4) ⊤ ≥ whereb Rpisthevectorb=(b ,b ,...,b ,1,0,..,0) Rp,whereb =1and 0 1 q 1 ⊤ q b =0,i∈=q+1,...,p 1. Note that b=e−yields a CAR∈(p)-process. Using the i 1 − Euler-Maryuamaapproximationscheme, the CARMA(p,q)-process X(t) on t 0 a discretized time grid can be related to an autoregressive moving{averag}e≥time series process of order p,q (see [8, Eq. (4.17)]). An explicit dynamics of the CARMA(p,q)-process X(t) is(seee.g.[9,Lemma10.1]) t 0 { }≥ t X(t)=b exp(tC )Z + b exp((t s)C )e dL(s), (5) ⊤ p 0 ⊤ p p 0 − Z whereexp(tC )isthematrixexponentialoftC ,thematrixC multipliedbytimet. p p p 1 Theoddlabellingoftheseconstants isexplained bytherelationship withautoregressive time series,wherea iisrelated(butnotone-to-one)totheregressionoflagi,i=1,...,p. Hilbert-valuedCARMAprocesses 3 IfC has only eigenvalueswith negativerealpart, then the process X admits a p limitingdistributionm withcharacteristicexponent(see[11]) X ¥ m (z):= limlogE eizX(t) = y b exp(sC )e z ds. X t ¥ 0 L ⊤ p p → h i Z (cid:16) (cid:17) Here,Y istbhelog-characteristicfunctionofL(1)(seee.g.[2])andlogthedistin- L guishedlogarithm(seee.g.[19,Lemma7.6]).Inparticular,ifL=s B withs >0 constantandBastandardBrownianmotion,wefind 1 ¥ m X(z)= z2s 2 (b⊤exp(sCp)ep)2ds, −2 0 Z and thus X has a Gabussian limiting distribution m X with zero mean and variance s 2 ¥ (b exp(sC )e )2ds. 0 ⊤ p p WhenX admitsalimitingdistribution,wehaveastationaryrepresentationofthe R processX suchthatX(t) m forallt R,namely, X ∼ ∈ t X(t)= b exp((t s)C )e dL(s), (6) ⊤ p p ¥ − Z− whereLisnowatwo-sidedLe´vyprocess.ThislinksCARMA(p,q)-processestothe moregeneralclassofLe´vysemistationary(LSS)processes,definedin[4]as t X(t):= g(t s)s (s)dL(s), (7) ¥ − Z− forg:R Rbeingameasurablefunctionands apredictableprocesssuchthat + s g(t s→)s (s)fors t isintegrablewithrespecttoL.Indeed,LSSprocessesare 7→ − ≤ againaspecialcaseofso-calledambitfields,whicharespatio-temporalstochastic processesoriginallydevelopedin[5]formodellingturbulence.Infact,theinfinite dimensionalCARMAprocessesthatwearegoingtodefineinthispaperwillforma subclassofambitfields,aswewillseeinSection4.WenotethatCARMAprocesses withvaluesinRnhavebeendefinedandanalysedby[16],[20]andrecentlyin[14]. 2 Definition ofCARMA processes inHilbertspace Given p N, and let H for i = 1,...,p be separable Hilbert spaces with inner i ∈ productsdenotedby , and associated norms . We define the productspace i i h· ·i |·| H :=H ... H , which is again a separable Hilbert space equipped with the 1 p inner pro×duct ×x,y :=(cid:229) p x,y and the induced norm denoted =(cid:229) n for x=(x ,...h,x )i,y=(iy=1,h..i.,yiii) H. The projectionoperator P|·|:H i=1H|·i|si 1 p 1 p i i definedas Px=x forx H,i=1∈,...,p. Itis straightforwardto see tha→tits ad- i i joint P :H H is give∈n by P x=(0,...,0,x,0,...,0) for x H, where the i∗ i → i∗ ∈ i x appearsin the ith coordinateof the vector consisting of p elements. IfU andV 4 FredEspenBenthandAndre´Su¨ss aretwoseparableHilbertspaces,wedenoteL(U,V)theBanachspaceofbounded linearoperatorsfromU toV,equippedwiththeoperatornorm .TheHilbert- op k·k SchmidtnormforoperatorsinL(U,V)isdenoted ,andL (U,V)denotesthe HS 2 k·k spaceofHilbert-Schmidtoperators.IfU =V,wesimplywriteL(U)forL(U,U). LetA :H H ,i=1,...,pbe p(unbounded)denselydefinedlinearoper- i p+1 i p ators,andI :H− → H ,i=2,...,pbeanother p 1(unbounded)densely i p+2 i p+1 i defined linear oper−ato→rs. Defi−ne the linear operator C :−H H represented as a p → p pmatrixofoperators × 0 I 0 . .. 0 p 0 0 I 0.. 0 p 1  −  . . . . .. . C = . (8) p  . . . . .. .     0 . . . .. I2    Ap Ap 1 . . .. A1  −    SincetheA’sandI’saredenselydefined,C hasdomain i i p Dom(C )=Dom(A ) (Dom(A ) Dom(I )) ... (Dom(A ) Dom(I )), p p p 1 p 1 2 × − ∩ × × ∩ which we suppose is dense in H. We note in passing that typically, H =H = 1 2 ...=H and I =Id, the identity operator on H, i=1,...,p. Then Dom(C )= p i i p Dom(A ) Dom(A ) ... Dom(A ),whichisdenseinH. p p 1 1 Onaco×mpletepro−bab×ility×space(W ,F,P)withfiltrationF = F satisfy- t t 0 ingthe usualhypotheses,denotebyL:= L(t) a zero-means{quar}e-≥integrable t 0 H -valuedLe´vyprocesswithcovarianceo{perato}r≥Q(i.e.,asymmetricnon-negative p definitetraceclassoperator),seee.g.[18,Sect.4.9].Considerthefollowingstochas- ticdifferentialequation.Fort 0, ≥ dZ(t)=C Z(t)dt+P dL(t), Z(0):=Z H. (9) p p∗ 0∈ ThenextpropositionstatesanexplicitexpressionforZ:= Z(t) : t 0 { }≥ Proposition1.Assume that C defined in (8) is the generator of aC -semigroup p 0 S (t) onH.ThentheH-valuedstochasticprocessZgivenby p t 0 { }≥ t Z(t)=S (t)Z + S (t s)P dL(s) p 0 0 p − p∗ Z istheuniquemildsolutionof (9). Proof. WehavethatS (t s)P L(H ,H),andmoreover,since P =1it p − p∗∈ p k p∗kop follows S (t s)P Q1/2 S (t s) P Q1/2 Kec(t s) Q1/2 k p − p∗ kHS≤k p − kopk p∗kopk kHS≤ − k kHS bythe generalexponentialgrowthboundon the operatornormofaC -semigroup 0 (seee.g.[12,Prop.I.5.5]).Thus,forallt 0, ≥ Hilbert-valuedCARMAprocesses 5 t K 0 kSp(t−s)Pp∗Q1/2k2HSds≤ 2ce2ctkQ1/2k2HS<¥ Z becauseQistraceclassbyassumption.ThestochasticintegralwithrespecttoLin thedefinitionofZisthereforewell-defined.Hence,theresultfollowsdirectlyfrom thedefinitionofmildsolutionsin[18,Def.9.5]. FromnowonwerestrictourattentiontooperatorsC in(8)whichadmitaC - p 0 semigroup S (t) .We remarkinpassingthatinthenextsectionwewillpro- p t 0 videarecur{sivede}fin≥itionofthesemigroup S (t) inaspecialsituationwhere p t 0 allinvolvedoperatorsareboundedexceptA{. }≥ 1 ACARMAprocesswithvaluesinaHilbertspaceisdefinednext: Definition1. Let U be a separable Hilbert space. For L L(H,U), define the U ∈ U-valuedstochasticprocessX := X(t) by t 0 { }≥ X(t):=L Z(t),t 0, U ≥ forZ(t)definedin(9).Wecall X(t) aCARMA(p,U,L )-process. t 0 U { }≥ Note thatwe do nothaveany q-parameterpresentin the definition,as in the real- valuedcase(recall(4)).Insteadwe introducea Hilbertspaceandalinearoperator as the ”second” parameters in the CARMA(p,U,L )-process. Indeed, the vector U binthereal-valuedCARMA(p,q)-processdefinedin(4)canbeviewedasalinear operator from Rp into R by the scalar product operation Rp z bz R, or, ′ bychoosingU =Hi=R,LRz=b′z. Thisalso demonstratest∋hata7→nyrea∈l-valued CARMA(p,q)-processisaCARMA(p,R,b )-processaccordingtoDefinition1. ′ · FromProposition1wefindthattheexplicitrepresentationof X(t) is t 0 { }≥ t X(t)=L S (t)Z + L S (t s)P dL(s), (10) U p 0 0 U p − p∗ Z fort 0.Notethatbylinearityofthestochasticintegralwecanmovetheoperator L i≥nside.Furthermore,thestochasticintegraliswell-definedsinceL L(H,U) U U ∈ andthushasafiniteoperatornorm. Thecontinuous-timeautoregressive(CAR)processesconstituteaparticularlyin- terestingsubclassoftheCARMA(p,U,L )-processes: U Definition2. TheCARMA(p,H ,P )-process X(t) fromDefinition1iscalled 1 1 t 0 anH -valuedCAR(p)-process. { }≥ 1 TheexplicitdynamicsofanH -valuedCAR(p)-processbecomes 1 t X(t)=P1Sp(t)Z0+ 0 P1Sp(t−s)Pp∗dL(s), (11) Z for t 0. In this paper we will be particularly focused on H -valued CAR(p)- 1 ≥ processes. 6 FredEspenBenthandAndre´Su¨ss Remark that the process L:=P L defines an H-valued Le´vy process which p∗ hasmeanzeroandissquareintegrable.Itscovarianceoperatoriseasilyseentobe P QP . p∗ p ItisimmediatetoseethatanH -valuedCAR(1)processisanOrnstein-Uhlenbeck 1 processdefinedonH ,with 1 dX(t)=A X(t)dt+dL(t), 1 andthus t X(t)=S (t)Z + S (t s)dL(s), 1 0 1 0 − Z beingitsmildsolution. AnH -valuedCAR(p)processforp>1canbeviewedasahigher-order(indeed, 1 apthorder)stochasticdifferentialequation,aswenowdiscuss.Tothisend,suppose thatRan(A ) Dom(I )andRan(I ) Dom(I ),andassumethatthereexistp 1 q 2 q q+1 ⊂ ⊂ − linear(unbounded)operatorsB ,B ,...,B suchthat 1 2 p 1 − I I A =B I I I . (12) p 2 q q p p 1 q+1 ··· − ··· forq=1,...,p 1.WenotethatI I :H H andhenceI I A :H p 2 p 1 p 2 q p+1 q H . Moreover,−I I : H ··· H , a→nd therefore B : H··· H . We−su→p- 1 p q+1 p+1 q 1 q 1 1 posethatDom(B ·)·i·ssothatDo−m(B→I I I )=Dom(A ),a→ndwenotethat q q p p 1 q+1 q Dom(A )isthedomainoftheoperatorI − ·I··A .Forcompleteness,wedefinethe q p 2 q ··· operatorB :H H as p 1 1 → B :=I I A . (13) p p 2 p ··· Weseethatthisdefinitionisconsistentwiththeinductiverelationsin(12)(wesup- pose that B is a linear (possibly unbounded) operator with domain Dom(B )= p p Dom(A )). With this at hand, we introducethe operator-valued pth-orderpolyno- p mialQ (l )forl C, p ∈ Qp(l )=l p B1l p−1 B2l p−2 Bp 1l Bp. (14) − − −···− − − By definition, X(t)=P Z(t), which is the first coordinate in the vector Z(t)= 1 (Z (t),...,Z (t)) H.From(9)andthedefinitionoftheoperatormatrixC in(8), 1 p ⊤ p ∈ wefindthatZ (t)=I Z (t),Z (t)=I Z (t),...,Z (t)=I Z (t)andfinally 1′ p 2 2′ p 1 3 ′p 1 2 p − − Z (t)=A Z (t)+ A Z (t)+L˙(t). ′p p 1 ··· 1 1 Here, L˙(t) is the formal time derivative of L. By iteration, we find that Z(q)(t)= 1 I I I Z (t)forq=1,...,p 1.Thus, p p−1··· p−(q−1) q+1 − Hilbert-valuedCARMAprocesses 7 d (p) (p 1) Z1 = dtZ1 − =Ip···I2Z′p(t) =I I A Z (t)+I I A Z (t)+ +I I A Z (t)+I I L˙(t) p 2 p 1 p 2 p 1 2 p 2 1 p p 2 ··· ··· − ··· ··· ··· =BpZ1(t)+Bp−1Z1′(t)+Bp−2Z1(2)(t)+...+B1Z1(p−1)(t)+Ip···I2L˙(t). Inthelastequalitywemadeuseof(12)and(13).WefindthatanH -valuedCAR(p) 1 processX(t)=P Z(t)canbeviewedasasolutiontothe pth-orderstochasticdif- 1 ferentialequationformallyexpressedby d Q X(t)=I I L˙(t). (15) p p 2 dt ··· (cid:18) (cid:19) Re-expressingEq.15wefindthestochasticdifferentialequation p dX(p 1)(t)= (cid:229) B X(p q)(t) dt+I I dL(t). (16) − q − p 2 q=1 ! ··· IfH =...=H andC isaboundedoperator,thenB =I I A in(12)whenever 1 p p q q 2 q ··· I I A commutes with I I . In this sense the condition (12) is a specific q 2 q p q+1 ··· ··· commutationrelationship on A and the operatorsI ,...,I . In the particular case q 2 p I =Idfori=2,...,p,thenwetriviallyhaveA =B forq=1,...,p. i q q Weendthissectionwithshowingthatthestochasticwaveequationcanbeviewed asanexampleofaHilbert-valuedCAR(2)-process.Tothisend,letH :=L2(0,1), 2 the space of square-integrable functions on the unit interval, and consider the stochasticpartialdifferentialequation ¶ 2Y(t,x) ¶ 2Y(t,x) ¶ L(t,x) = + , (17) ¶ t2 ¶ x2 ¶ t witht 0andx (0,1).Wecanrephrasethiswaveequationas ≥ ∈ Y(t,x) 0 Id Y(t,x) 0 d ¶Y(t,x) = D 0 ¶Y(t,x) dt+ dL(t,x) , (18) (cid:20) ¶ t (cid:21) (cid:20) (cid:21)(cid:20) ¶ t (cid:21) (cid:20) (cid:21) withD =¶ 2/¶ x2beingtheLaplaceoperator.Theeigenvectorse (x):=√2sin(p nx), n n N,forD formanorthonormalbasisofL2(0,1).IntroducetheHilbertspaceH 1 as∈thesubspaceofL2(0,1)forwhich f 2:=p 2(cid:229) ¥ n2 f,e 2<¥ .FollowingEx- | |1 n=1 h ni2 ampleB.13in[18], 0 Id C = 2 D 0 (cid:20) (cid:21) generatesaC -semigroupS (t)onH:=H H .TheLaplaceoperatorD isaself- 0 2 1 2 adjointnegativedefinite operatoronH . The×semigroupS (t) canbe represented 1 2 as cos(( D )1/2t) ( D ) 1/2sin(( D )1/2t) S2(t)= ( D )1/2−sin(( D )1/2t) − c−os(( D )1−/2t) . (19) (cid:20)− − − − (cid:21) 8 FredEspenBenthandAndre´Su¨ss In the previousequality,we definefor a real-valuedfunctiong the linear operator g(D ) using functional calculus, i.e., g(D )f =(cid:229) ¥ g( p 2n2) f,e e whenever n=1 − h ni2 n thissumconverges.Theseconsiderationsshowthatthewaveequationisaspecific exampleofaCAR(2)-process. 3 AnalysisofCARMA processes In this section we derive some fundamental properties of CARMA processes in Hilbertspaces. 3.1 Distributionalproperties We state the conditionalcharacteristic functionalof a CARMA(p,U,L )-process U inthenextproposition. Proposition2.AssumeX isaCARMA(p,U,L )-process.Then,forx U, U ∈ t s E eiX(t),xU F =exp i L S (t)Z ,x + − y P S (u)L x du h i | s h U p 0 iU 0 L p p∗ U∗ h i (cid:18) s Z (cid:0) (cid:1) (cid:19) exp i L S (t u)P dL(u),x , × h 0 U p − p∗ iU (cid:18) Z (cid:19) for0 s t.Here,y isthecharacteristicexponentoftheLe´vyprocessL. L ≤ ≤ Proof. From(10)itholdsfor0 s t, ≤ ≤ s t X(t)=L S (t)Z + L S (t u)P dL(u)+ L S (t u)P dL(u). U p 0 0 U p − p∗ s U p − p∗ Z Z The Le´vy process has independent increments, and F -measurability of the first s stochasticintegralthusyields s E eihX(t),xiU|Fs =exp ihLUSp(t)Z0,xiU+ih 0 LUSp(t−u)Pp∗dL(u),xiU h i (cid:18) Z (cid:19) t E exp i L S (t u)P dL(u),x . × h s U p − p∗ iU (cid:20) (cid:18) Z (cid:19)(cid:21) Theresultfollowsfrom[18,Chapter4]. Suppose now that L=W, an H -valued Wiener process. Then the characteristic p exponentis 1 y (h)= Qh,h , W p −2h i Hilbert-valuedCARMAprocesses 9 forh H .Hence,fromProp.2itfollowsthat, p ∈ s E eiX(t),xU F =exp i L S (t)Z ,x +i L S (t u)P dW(u),x h i | s h U p 0 iU h 0 U p − p∗ iU h i (cid:18) Z (cid:19) 1 t s exp − L S (u)P QP S (u)L x,x du × −2 0 h U p p∗ p p∗ U∗ iU (cid:18) Z (cid:19) WefindthatX(t)F fors t isaGaussianprocessinH ,withmean s 1 | ≤ s E[X(t) F ]=L S (t)Z + W S (t u)P dL(u) | s U p 0 0 U p − p∗ Z andcovarianceoperator t s Var(X(t)F )= − L S (u)P QP S (u)L du, | s 0 U p p∗ p p∗ U∗ Z wheretheintegralisinterpretedintheBochnersense.IfthesemigroupS (u)isex- p ponentiallystable,thenX(t)F admitsaGaussianlimitingdistributionwithmean s | zeroandcovarianceoperator ¥ tlim¥ Var(X(t)|Fs)= 0 LUSp(u)Pp∗QPpSp∗(u)LU∗du. → Z This is the invariantmeasure of X. We remark in passing that measures on H are definedonitsBorels -algebra. In[3]thereisananalysisofinvariantmeasuresofLe´vy-drivenOrnstein-Uhlenbeck processes. We discuss this here in the context of the Ornstein-Uhlenbeck process Z(t) defined in (9). Assume m is the invariant measure of Z(t) , and t 0 Z t 0 {recall}th≥edefinitionofitscharacteristicexponentm (x), { }≥ Z m Z(x)=logE eihx,Z(bt)i . (20) h i Here, x H and log is the dbistinguished logarithm(see e.g. [19, Lemma 7.6]). If Z m ∈,then,indistribution,Z =Z(t)forallt 0anditfollowsthatthecharac- 0 Z 0 teri∼sticexponentofm satisfies, ≥ Z t m (x)=m (S (t)x)+ y (P S (u)x)du (21) Z Z p∗ L p p∗ 0 Z foranyx H andbt 0.Folblowing[3],m Zbecomesanoperatorself-decomposable ∈ ≥ distributionsince, m =S (t)m ⋆m . (22) Z p Z t Here, m is the distribution of tS (u)P dL(u), ⋆ is the convolution product of t 0 p p∗ measuresandS (t)m :=m S (t) 1isaprobabilitydistributiononH,givenby p Z Z◦R p − 10 FredEspenBenthandAndre´Su¨ss f(x)(S (t)m )(dx)= f(S (t) x)m (dx), p Z p ∗ Z H H Z Z foranyboundedmeasurablefunction f :H R.IfZ(t) m ,thensince Z → ∼ logE eihLUZ(t),xiU =logE ehZ(t),LU∗xi =m Z(LU∗x), h i h i itfollowsthat X(t) t 0isstationarywithdistributionm Xbhavingcharacteristicex- ponentm (x)={ m (}L≥x)forx U. WenoXticethatZC iUs∗abound∈edoperatoronH ifandonlyifA,i=1,...,pand p i Ij,j=2b,...,p arbe boundedoperators.In the case of Cp being bounded,we know from Thm.I.3.14in [12] that the semigroup S (t) is exponentiallystable if p t 0 and only if Re(l )<0 for all l s (C ), w{here s (}C≥) denotes the spectrum of p p theboundedoperatorC .Recallfr∈omSection1thatareal-valuedCARMAprocess p admitsalimitingdistributionifandonlyifalltheeigenvaluesofC inEq.2have p negativerealpart.Ingeneral,byThm.V.1.11in[12],thesemigroup S (t) is p t 0 exponentiallystableifandonlyif l C Re(l )>0 isasubsetof{theres}ol≥vent sCetrfo(rClp)orf(CCp a)n.dsupRe(l )>0kR({l ,∈Cp)k|<¥ .Here},R(l ,Cp)istheresolventof p p ∈ 3.2 Semimartingalerepresentation Letusstudya semimartingalerepresentationof the CAR(p) process.We havethe followingproposition: Proposition3.For p Nwith p>1,assumethatC definedin(8)isthegenera- p torofaC -semigroup∈S (t) .ThentheH -valuedCAR(p)processX givenin 0 p t 0 1 Definition2hastherep{resenta}ti≥on t u X(t)=P S (t)Z +P C S (u s)P dL(s)du, 1 p 0 1 p 0 0 p − p∗ Z Z forallt 0. ≥ Proof. From[12,Ch.II,Lemma1.3],wehavethat t S (t)=Id+C S (s)ds. p p p 0 Z Butforanyx H,itissimpletoseethatP IdP x=0when p>1.Thereforeit ∈ 1 p∗ holds t P S (t)P =P C S (s)P ds. 1 p p∗ 1 p p p∗ 0 Z Theintegralontheright-handsideisinBochnersenseasanintegralofoperators. AfterappealingtothestochasticFubinitheorem,itfollowsfromtheexplicitexpres- sionofX(t)in(11)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.