Continuous Mode High Efficiency Power Amplifier Design for X Band A thesis submitted to Cardiff University In candidature for the degree of Doctor of Philosophy Author: Tim Canning Date: March 2014 I Summary Thisthesisisfocusedontheinvestigationandimplementationofnoveltechniquesforthe designofXband(8 12GHz)poweramplifiers. − Oneofthemaintopicsistheexpansionandnovelimplementationofcontinuousmode theory, with the intention of improving the bandwidth and efficiency of X band power amplifiers. This work builds upon the Class B/J continuous mode theory to incorporate cases where [Z ] = R , not described by the original Class B/J theory, with a tool F0 L (cid:60) (cid:54) calledthe“clippingcontour”. The clipping contour tool shows a graphical representation on the Smith chart of the boundary between impedances generating a voltage waveform which will modulate or “clip” the current waveform, and a voltage waveform which will leave the current waveform unaltered. This non-clipping space is shown, with measured load pull and amplifierdata,torepresentthemaximumefficiencycaseforagivenZ ,thustheclipping F0 contour tool thus gives designers the ability to predict the areas of highest efficiency and powergivenanyZ ,withouttheneedtousecostly,timeconsumingmultiharmonicload F0 pulltechniques. Push pull amplifiers using quarter wave coupled line baluns are proposed as an ideal matching topology to exploit this new tool. Various balun topologies are studied using a novel extended transmission line model. This model is shown to predict accurately and explain the “trace separation” effect seen in planar baluns and not their 3D coaxial cable equivalents. It also forms the basis of analysis which results in a powerful new equation capable of guaranteeing the elimination of trace separation completely, without compromising performance. This equation is used to design an optimal balun which possesses the largest fractional bandwidth (130%) of any balun ever published on single layerthinfilmAlumina,whilstsimultaneouslyeliminatingtraceseparation. The optimised Alumina baluns are used to construct push pull output demonstrator circuitswhichshowefficienciesof40%overgreaterthananoctavebandwidth,asignificant advancementofanyothercomparablepublishedwork. Thesetechniquesdemonstratethe potential to exceed double octave bandwidths with efficiencies greater than 40% once optimised. Initial investigations on MMIC and 2.5D processes show the potential to replicatetheAluminaperformanceoveroctaveanddecadebandwidthsrespectively. III Acknowledgements This thesis and the past 3 years would not have been possible without the help, support and inspiration of many. Many thanks to my friends and family, for their support, prayer andpatience,especiallywhenItryandexplainmythesissubjecttothem. Thanks also to my industrial sponsor SELEX ES, my industrial supervisor Dr Angus McLachlan and the team at SELEX Edinburgh for their technical and financial support, andtheirpatienceinenduringmyprogresspresentations. To my colleagues at Cardiff university, for patiently listening to my grumblings and the many excellent titbits of advice, suggested long after my patience with the particular measurement or piece of equipment had evaporated, I will miss you all. Thanks must go toProfPaulTaskerforaccesstomeasurementequipment,ideasandassistancenavigating thedangerousworldofnon-linearmeasurements. SpecialthankstomycolleagueDrJeff Powellforhiscontinuedcollaboration,patiencewithmymanyquestionsandremarkable layout skills, his contribution to this work has been invaluable. Special thanks also to my supervisor Prof Steve Cripps, a gold mine of novel ideas, common sense and legacy measurementequipment. Lastly I thank my wife Johanna Canning. I cannot imagine any scenario where this thesiswouldhavebeencompletedwithoutherunwaveringloveandsupport. Idedicateit toher. IV Contents 1 Motivation&Objectives XIII 1.1 ThesisObjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XVII 1.2 KeyContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XVII 2 TheoryandLiteratureReview 1 2.1 AreviewofXBandBroadbandPAs . . . . . . . . . . . . . . . . . . . . 1 2.1.1 GaAsFETDevelopment . . . . . . . . . . . . . . . . . . . . . . 2 2.1.2 DevelopmentsinSolidStateBroadbandXBandPAs . . . . . . . 3 2.2 MicrowaveTransistorsandAmplifierTheory . . . . . . . . . . . . . . . 6 2.2.1 AmplifierEfficiencyandLoading . . . . . . . . . . . . . . . . . 6 2.2.2 MicrowaveTransistorTechnology . . . . . . . . . . . . . . . . . 9 2.2.3 ParasiticsandModelling . . . . . . . . . . . . . . . . . . . . . . 13 2.2.4 AmplifierModesofOperation . . . . . . . . . . . . . . . . . . . 15 2.2.5 MatchingTechniques . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.6 AlternativeMatchingTechniques . . . . . . . . . . . . . . . . . 29 2.3 LinearMicrowaveMeasurements . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1 TwoandN-portLinearNetworkParameters . . . . . . . . . . . . 32 2.3.2 Balanced/MixedModeSparameters . . . . . . . . . . . . . . . . 33 2.4 Non-linearMicrowaveMeasurements . . . . . . . . . . . . . . . . . . . 34 2.4.1 WaveformMeasurements . . . . . . . . . . . . . . . . . . . . . . 36 2.5 BalunsandPush-PullAmplifiers . . . . . . . . . . . . . . . . . . . . . . 37 2.5.1 CoupledLine/TransmissionLineTransformerBaluns . . . . . . . 39 2.5.2 Electricalgroupings . . . . . . . . . . . . . . . . . . . . . . . . 43 2.5.3 Physicalgroupings . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.5.4 BalunsinAmplifiers(Push-Pull) . . . . . . . . . . . . . . . . . . 51 2.6 Particleswarmoptimisation(PSO) . . . . . . . . . . . . . . . . . . . . . 52 2.6.1 BasicAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.6.2 Advancedversions . . . . . . . . . . . . . . . . . . . . . . . . . 54 3 InputHarmonicShorting 55 3.1 SimulatedGateVaractorEffects . . . . . . . . . . . . . . . . . . . . . . 55 3.2 MMICTestCells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3 WaveformMeasurements . . . . . . . . . . . . . . . . . . . . . . . . . . 60 V 3.3.1 XbandClassB/JWaveforms . . . . . . . . . . . . . . . . . . . . 64 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4 ClippingContours 66 4.1 ExpandingClassB/JintoClippingContours . . . . . . . . . . . . . . . . 68 4.2 SecondHarmonicClippingContours . . . . . . . . . . . . . . . . . . . . 72 4.2.1 ClosedFormSolution . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.2 PlottingandAnalysis . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2.3 PredictingtheminimumVmax: UnityBoundaryCrossing . . . . 78 4.3 FundamentalHarmonicClippingContours . . . . . . . . . . . . . . . . . 79 4.3.1 ClosedFormSolutiontoFundamentalHarmonicClippingContours 80 4.3.2 PlottingAndAnalysis . . . . . . . . . . . . . . . . . . . . . . . 81 4.4 CurrentWaveformInfluenceonClippingContours . . . . . . . . . . . . 84 4.4.1 ClippedHalfWaveArbitrarilyRectifiedSinusoid . . . . . . . . . 85 4.4.2 EvenModeMaximallyFlatWaveform . . . . . . . . . . . . . . . 90 4.5 WaveformMeasurementVerification . . . . . . . . . . . . . . . . . . . . 92 4.6 10WS-BandGaNDemonstrators . . . . . . . . . . . . . . . . . . . . . 93 4.6.1 TopologyChoice . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.6.2 DemonstratorA:De-embeddingandOptimumNetworkDesign . 95 4.6.3 DemonstratorA:MeasuredResults . . . . . . . . . . . . . . . . 99 4.6.4 DemonstratorB:ViolatingtheClippingContour . . . . . . . . . 102 4.7 ThirdHarmonic(ClassF/J)ClippingContours . . . . . . . . . . . . . . . 102 4.7.1 LoadPullVerification . . . . . . . . . . . . . . . . . . . . . . . 108 4.8 ConclusionsandFutureWork . . . . . . . . . . . . . . . . . . . . . . . . 111 5 PlanarBalunsforPush-PullAmplifiers 113 5.1 ModellingPlanarBaluns . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.1.1 CompensatingforZinner . . . . . . . . . . . . . . . . . . . . . . 116 5.2 AluminaBalunTopologyStudy . . . . . . . . . . . . . . . . . . . . . . 120 5.2.1 “Zhang”Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.2.2 LangeCouplerBalun . . . . . . . . . . . . . . . . . . . . . . . . 122 5.2.3 “Via”Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.2.4 Basic3-wireBalun . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2.5 FullMarchandBalun . . . . . . . . . . . . . . . . . . . . . . . . 127 5.2.6 MarchandLiteBalun . . . . . . . . . . . . . . . . . . . . . . . . 129 5.3 OptimalAluminaBalun . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.4 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 VI 5.4.1 MMICBalun . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.4.2 2.5DBaluns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6 Push-PullAmplifiers 142 6.1 GaAsAluminaAmplifier(MLiteBalun) . . . . . . . . . . . . . . . . . . 142 6.1.1 GaAsTransistors . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.1.2 AmplifierBalun . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.1.3 Amplifiersimulationsandmeasurements . . . . . . . . . . . . . 145 6.2 GaNAluminaAmplifier(5FBalun) . . . . . . . . . . . . . . . . . . . . 152 6.2.1 GaNTransistors . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.2.2 AmplifierBalun . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.2.3 Amplifiersimulationsandmeasurements . . . . . . . . . . . . . 155 6.3 GaAsMMICMediumBandwidth . . . . . . . . . . . . . . . . . . . . . 161 6.3.1 GaAsMMICTransistors . . . . . . . . . . . . . . . . . . . . . . 162 6.3.2 AmplifierBalun . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.3.3 Amplifiersimulationsandmeasurements . . . . . . . . . . . . . 165 6.3.4 Redesignwithoptimalbalun . . . . . . . . . . . . . . . . . . . . 170 6.4 ConclusionsandFutureWork . . . . . . . . . . . . . . . . . . . . . . . . 172 7 Conclusionsandfuturework 175 Appendices 179 A MicrowaveOfficeClippingContoursDemo . . . . . . . . . . . . . . . . 179 B CreeCGH40010Fdeembeddingnetwork . . . . . . . . . . . . . . . . . 181 C Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 VII List of Abbreviations j Thecomplexoperatorj = √ 1 − RF RadioFrequency OC OpenCircuit SC ShortCircuit OCSS OpenCircuitShuntStub SCSS ShortCircuitShuntStub PA/RFPA PowerAmplifier/RFPowerAmplifier LNA Low Noise Amplifier - An amplifier with high gain and a low noise figure that usually amplifies very low amplitude signals fromdetectiondevicessuchasantennas VNA Vector Network Analyser. Used primarily to measure S parameters. LO LocalOscillator. Balun Balanced to unbalanced transformer. Converts a single ended signaltoabalancedsignal. DLL Dynamic load line. The dynamic current and voltage trajectory, typically plotted drain current versus drain voltage, ataspecifiedfrequency. DCIV DirectCurrent,CurrentandVoltagepropertiesofatransistor. DUT Device under test. Refers to the circuit or component under testinthecurrentmeasurement. MMIC MonolithicMicrowaveIntegratedCircuit. VIII LCP Liquid Crystal Polymer. Plastic substrate material which can be used to fabricate low cost, 2.5D “stacked” microwave circuits. Z Impedance at the Xth harmonic, where 0-DC, 1-Fundamental XF0 etc. 1 Γ Reflection coefficient at the Xth harmonic, where 0-DC, XF0 1-Fundamentaletc. V Fourier Voltage component of a waveform at the Xth XF0 harmonic,where0-DC,1-Fundamentaletc. I Fourier Current component of a waveform at the Xth XF0 harmonic,where0-DC,1-Fundamentaletc. P PowerofaharmonicpowersourceattheXthharmonic,where XF0 0-DC,1-Fundamentaletc. dB Decibels. A logarithmic scale used to compare two figures, dB = 10log(A/B). 3dB is a ratio of 1/2, 6dB a ratio of 1/4 andsoon. dBm Decibels referenced to 1mW - A logarithmic measure of power,referencedto1mW MAG Maximum Available Gain. The ratio of available power from theDUTtothepowerinputtotheDUT. PowerGain The ratio of the power delivered to the load over the power inputtotheDUT. S21 The scattering parameter often associated with gain (where 1 is the input port). Typically defined as b2/a1, where all other portsarepassivelyterminated. η Drain Efficiency. The ratio of DC power successfully converted to RF power at the DUT output (P /P ), RFout DC usuallydisplayedasapercentage. 1Wherenonumberisgiven,1isoftenassumedfortheseharmonicmetrics. IX PAE Power Added Efficiency. The proportion of DC power successfully converted to the additional RF power generated at the DUT output, i.e. minus the required drive power ((P P )/P ). Differs to η in that it requires high RFout RFin DC − gainaswellasgoodconversionefficiency. f Unity current gain frequency. The frequency at which the t currentgainofthetransistorreachesunity. f Unitypowergainfrequency. Thefrequencyatwhichthepower max gainofthetransistorreachesunity,orthemaximumfrequency atwhichthetransistorwilloscillate. Typicallylowerthanf . t P1dB Point of 1dB compression. The output power at which the gainoftheamplifieris1dB belowitsextrapolatedsmallsignal response. IMx Intermodulation product. The Xth order product produced by the mixing of an amplifiers harmonics. Usually only the odd numbered harmonics are of interest (3,5,7,9,..) as these reside very close to the fundamental frequency and are very difficult tofilterout. IPx Intermodulation Point. The power at which the magnitude of the Xth order intermodulation product would equal the power of the fundamental tone at the output, assuming neither signal enteredcompression. PUF PowerUtilisationFactor. Theamountofpowergeneratedbya setofvoltageandcurrentwaveforms,ascomparedtotheClass Acondition(sinusoidalvoltageandcurrent). ACPR Adjacent Channel Power. A measure of the power leaked into anadjacentchannel,relativetothecarrierpower(dBc). Igen Current generator. Typically used to refer to the theoretical intrinsic output current in transistors which can be accessed usingde-embeddingtechniques. Vmin/Imin Waveform minimum voltage/current. The global minimum valueforagivenwaveform. X
Description: