Louis Nel Continuity Theory Continuity Theory Louis Nel Continuity Theory 123 LouisNel SchoolofMathematicsandStatistics CarletonUniversity Ottawa,ON,Canada ISBN978-3-319-31158-6 ISBN978-3-319-31159-3 (eBook) DOI10.1007/978-3-319-31159-3 LibraryofCongressControlNumber:2016936373 Mathematics Subject Classification: Primary: 46-01 Secondary: 46A19, 46B10, 46K99, 46M99, 54-01,54A05,54B30,18-01 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland toLaura Preface Continuitytheoryhaslongbeenstudiedinthesettingoftopologicalspaces.In1966 anenrichmentofthissettingwasdiscovered:onethathaspowerspaces.Researchers workinginthisexpandedsettinghaveproducedremarkableresults,notobtainable in the old setting. Untilnowtheir impressivework hasappearedonlyin research- orientedpublications.Studentsgenerallyremainunawarethatitevenexists. Thisbookmakesthisevolvingenrichedcontinuitytheoryaccessibletostudents as soon as they are ready to advance beyond metric spaces. Topological theory is fully embedded in the enriched version. So this book can be a substitute for introductory books on classical general topology. It also provides a foundation for enriched functional analysis, into which classical functional analysis is fully embedded. The overviewof Chap.1 elaboratesonthe aboveremarks.Itoutlineswhatlies aheadandindicateshowcontinuitytheorybecomesstrengthenedbytheenrichment. I am grateful to Carleton University for a congenial work environment over severaldecadesandto theNationalScience andEngineeringResearchCouncilof Canadafortheresearchfunding. [email protected] LouisNel January2016 vii Contents 1 Overview..................................................................... 1 1.1 WaystoExpressContinuity ......................................... 1 1.2 CategoricalConcepts................................................. 4 1.3 EnrichedFunctionalAnalysis ....................................... 11 2 GeneralPreparation ....................................................... 17 2.1 AboutSets............................................................ 17 2.1.1 AxiomsforSets............................................. 18 2.1.2 SetBuilding................................................. 19 2.2 Functions ............................................................. 20 2.2.1 AnatomyofFunctions...................................... 20 2.2.2 FunctionRelatedConcepts................................. 21 2.3 IndexedSetBuilding................................................. 24 2.3.1 ConstructionswithIndexedFamiliesofSets.............. 24 2.3.2 ImagesandPreimagesofFamilies......................... 26 2.4 Relations.............................................................. 27 2.4.1 RelationConcept ........................................... 27 2.4.2 OrderedandPreorderedSets............................... 27 2.4.3 OrdinalsandTransfiniteInduction......................... 29 2.5 TheClassofAllSets................................................. 31 2.5.1 GettingAroundRussell’sParadox......................... 31 2.5.2 TheClassSofFunctionsBetweenSets................... 32 2.5.3 FactorizationsofFunctions ................................ 34 2.6 BasicAlgebraicStructures........................................... 36 2.6.1 MonoidRelatedStructures................................. 36 2.6.2 NumberFields.............................................. 39 2.7 VectorSpacesandLinearMappings ................................ 41 2.7.1 VectorSpaceConcept...................................... 41 2.7.2 LinearMappingConcept................................... 45 2.7.3 FactorizationofLinearMappings ......................... 46 2.7.4 QuotientVectorSpaces..................................... 46 ix