ebook img

Continuity Theory PDF

472 Pages·2016·7.084 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Continuity Theory

Louis Nel Continuity Theory Continuity Theory Louis Nel Continuity Theory 123 LouisNel SchoolofMathematicsandStatistics CarletonUniversity Ottawa,ON,Canada ISBN978-3-319-31158-6 ISBN978-3-319-31159-3 (eBook) DOI10.1007/978-3-319-31159-3 LibraryofCongressControlNumber:2016936373 Mathematics Subject Classification: Primary: 46-01 Secondary: 46A19, 46B10, 46K99, 46M99, 54-01,54A05,54B30,18-01 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland toLaura Preface Continuitytheoryhaslongbeenstudiedinthesettingoftopologicalspaces.In1966 anenrichmentofthissettingwasdiscovered:onethathaspowerspaces.Researchers workinginthisexpandedsettinghaveproducedremarkableresults,notobtainable in the old setting. Untilnowtheir impressivework hasappearedonlyin research- orientedpublications.Studentsgenerallyremainunawarethatitevenexists. Thisbookmakesthisevolvingenrichedcontinuitytheoryaccessibletostudents as soon as they are ready to advance beyond metric spaces. Topological theory is fully embedded in the enriched version. So this book can be a substitute for introductory books on classical general topology. It also provides a foundation for enriched functional analysis, into which classical functional analysis is fully embedded. The overviewof Chap.1 elaboratesonthe aboveremarks.Itoutlineswhatlies aheadandindicateshowcontinuitytheorybecomesstrengthenedbytheenrichment. I am grateful to Carleton University for a congenial work environment over severaldecadesandto theNationalScience andEngineeringResearchCouncilof Canadafortheresearchfunding. [email protected] LouisNel January2016 vii Contents 1 Overview..................................................................... 1 1.1 WaystoExpressContinuity ......................................... 1 1.2 CategoricalConcepts................................................. 4 1.3 EnrichedFunctionalAnalysis ....................................... 11 2 GeneralPreparation ....................................................... 17 2.1 AboutSets............................................................ 17 2.1.1 AxiomsforSets............................................. 18 2.1.2 SetBuilding................................................. 19 2.2 Functions ............................................................. 20 2.2.1 AnatomyofFunctions...................................... 20 2.2.2 FunctionRelatedConcepts................................. 21 2.3 IndexedSetBuilding................................................. 24 2.3.1 ConstructionswithIndexedFamiliesofSets.............. 24 2.3.2 ImagesandPreimagesofFamilies......................... 26 2.4 Relations.............................................................. 27 2.4.1 RelationConcept ........................................... 27 2.4.2 OrderedandPreorderedSets............................... 27 2.4.3 OrdinalsandTransfiniteInduction......................... 29 2.5 TheClassofAllSets................................................. 31 2.5.1 GettingAroundRussell’sParadox......................... 31 2.5.2 TheClassSofFunctionsBetweenSets................... 32 2.5.3 FactorizationsofFunctions ................................ 34 2.6 BasicAlgebraicStructures........................................... 36 2.6.1 MonoidRelatedStructures................................. 36 2.6.2 NumberFields.............................................. 39 2.7 VectorSpacesandLinearMappings ................................ 41 2.7.1 VectorSpaceConcept...................................... 41 2.7.2 LinearMappingConcept................................... 45 2.7.3 FactorizationofLinearMappings ......................... 46 2.7.4 QuotientVectorSpaces..................................... 46 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.