ebook img

Continuity of volumes on arithmetic varieties PDF

0.39 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Continuity of volumes on arithmetic varieties

CONTINUITY OF VOLUMES ON ARITHMETIC VARIETIES 7 ATSUSHIMORIWAKI 0 0 2 ABSTRACT. WeintroducethevolumefunctionforC∞-hermitianinvertiblesheaveson n anarithmeticvarietyasananalogueofthegeometricvolumefunction.Themainresultof a thispaperisthecontinuityofthearithmeticvolumefunction. Asaconsequence,wehave J thearithmeticHilbert-SamuelformulaforanefC∞-hermitianinvertiblesheaf. Wealso giveanotherapplications,forexample,ageneralizedHodgeindextheorem,anarithmetic 6 Bogomolov-Gieseker’sinequality,etc. ] T N . h INTRODUCTION t a Let X be a d-dimensionalprojectivearithmetic variety and Pic(X) the group of iso- m morphismclassesofC∞-hermitianinvertiblesheavesonX.ForL Pic(X),thevolume [ ∈ vol(L)ofLisdefinedby c 2 c v log# s H0(X,mL) s 1 9 c vol(L)=limsup { ∈ |k ksup ≤ }. md/d! 6 m→∞ 2 For example, ifcL is ample, then vol(L) = deg(c(L)·d) (cf. Lemma 3.1). This is an 2 1 arithmeticanalogueof the volumefunctionfor invertiblesheaves on a projectivevariety 6 overafield.Thegeometricvolumefcunctionpladysabcrucialroleforthebirationalgeometry 0 viabiginvertiblesheaves. Inthissense,tointroducethearithmeticanalogueofitisvery / h significant. t ThefirstimportantpropertyofthevolumefunctionisthecharacterizationofabigC∞- a m hermitianinvertiblesheaf by the positivity of its volume(cf. Theorem4.5). The second oneisthehomogeneityofthevolumefunction,namely,vol(nL)= ndvol(L)forallnon- : v negativeintegersn(cf. Proposition4.7). Bythisproperty,itcanbeextendedtoPic(X) i ⊗ X Q. Fromviewpointofarithmeticanalogue,themostimpcortantandfuncdamentalquestion r isthecontinuityof c a vol:Pic(X) Q R, ⊗ → thatis,thevalidityoftheformula: c c lim vol(L+ǫ A + +ǫ A )=vol(L) 1 1 n n ǫ1,...,ǫn∈Q ··· ǫ1→0,...,ǫn→0 c c for any L,A ,...,A Pic(X) Q. The main purpose of this paper is to give an 1 n ∈ ⊗ affirmativeanswerfortheabovequestion(cf. Theorem5.4). Asaconsequence,wehave thefollowingarithmeticHilcbert-SamuelformulaforanefC∞-hermitianinvertiblesheaf: Date:5/January/2007,17:30(JP),(Version2.0). 1991MathematicsSubjectClassification. 14G40,11G50. 1 2 ATSUSHIMORIWAKI TheoremA(cf. Corollary5.5). LetLandN beC∞-hermitianinvertiblesheavesonX. IfLisnef,then deg(c (L)·d) log# s H0(X,mL+N) s 1 = 1 md+o(md) (m 1). sup { ∈ |k k ≤ } d! ≫ Inparticular,vol(L)=deg(c (L)·d),andLisbidgifabndonlyifdeg(c (L)·d)>0. 1 1 Inamoregeneralsetting,wehavethefollowinggeneralizedHodgeindextheorem: c d b d b Theorem B (cf. Theorem 6.2). Let L be a C∞-hermitian invertible sheaf on X. We assumethefollowing: (i) L isnefonX . Q Q (ii) c (L)issemipositiveonX(C). 1 (iii) Lhasmoderategrowthofpositiveevencohomologies,thatis,thereareageneric resolutionofsingularitiesµ:Y X andanampleinvertiblesheafAonY such → that,foranypositiveintegern,thereisapositiveintegerm suchthat 0 log#(H2i(Y,m(nµ∗(L)+A)))=o(md) forallm m andforalli>0. 0 ≥ Thenwehaveaninequalityvol(L) deg(c (L)·d). 1 ≥ TheoremB impliesthatif L is nefoneverygeometricfiberof X Spec(Z), c (L) 1 issemipositiveonX(C),andcdeg(c (Ld)·d)b> 0,thenLisbig(cf. Cor→ollary6.4). Thisis 1 ageneralizationof[17,Corollary(1.9)].MoreoverwecanseethearithmeticBogomolov- Gieseker’sinequalityasanappdlicatbionofTheoremB(cf. Corollary6.5). In the geometric case, the above Theorem A can be proved by using the Riemann- Roch formulaand Fujita’s vanishingtheorem. In the arithmetic case, the proof in terms ofthearithmeticRiemann-Rochtheoremseemstobedifficult. Insteadofit,weprovethe continuityofthevolumefunctionbydirectestimates. Forthispurpose,thetechnicalcore isthefollowingtheorem,whichwasinspiredbyYuan’spaper[16]. TheoremC(cf. Theorem3.4). LetX beaprojectiveandgenericallysmootharithmetic varietyofdimensiond 2. LetLandAbeC∞-hermitianinvertiblesheavesonX. We ≥ assumethefollowing: (i) AandL+AareveryampleoverQ. (ii) ThefirstChernformsc (A)andc (L+A)onX(C)arepositive. 1 1 (iii) There is a non-zero section s H0(X,A) such that the vertical component of ∈ div(s) iscontainedin theregularlocusofX andthatthe horizontalcomponent ofdiv(s)issmoothoverQ. Thentherearepositiveconstantsa ,C andDdependingonlyonX,LandAsuchthat 0 log# s H0(X,aL+(b c)A) s 1 sup { ∈ − |k k ≤ } log# s H0(X,aL cA) s 1 sup ≤ { ∈ − |k k ≤ } +Cbad−1+Dad−1log(a) forallintegersa,b,cwitha b c 0anda a . 0 ≥ ≥ ≥ ≥ Inordertoexplainthetechnicalaspectsoftheabovetheorem,letusconsideritinthe geometriccase,namely,weassumethatX isaprojectivesmoothvarietyoverC,andwe trytoestimate ∆=h0(X,aL+(b c)A) h0(X,aL cA). − − − CONTINUITYOFVOLUMESONARITHMETICVARIETIES 3 The first elegantway: Let us choose an infinite sequence Y ∞ of distinct smooth { i}i=1 membersof A suchthat | | h0(Y ,nL+mA )=h0(Y ,nL+mA ) i |Yi j |Yj foralli,jandallintegersn,m. Thenanexactsequence b 0 H0(X,aL cA) H0(X,aL+(b c)A) H0(Y ,aL+(b c)A ) → − → − → i − |Yi i=1 M givesriseto∆ b h0(Y ,a(L+A) ). Thisargumentdoesnotworkinthearithmetic ≤ · 1 |Y1 situation. Thesecondway: Inthepaper[16],forafixedsmoothmemberY A,Yuanconsid- ∈ | | eredanexactsequence 0 aL+(k 1 c)A aL+(k c)A aL+(k c)A 0 → − − → − → − |Y → foreach1 k b,whichyields ≤ ≤ b ∆ h0(Y,aL+(k c)A ) b h0(Y,a(L+A) ). ≤ − |Y ≤ · |Y k=1 X This second way works if we consider the arithmetic χˆ instead of the number of small sections. In this way, Yuan [16] obtained an arithmetic analogue of a theorem of Siu. However,ifweestimatethenumberofsmallsectionsbyusingtheaboveway,thegrowth ofthecontributionfromerrortermsislargerthanthemainterm. Thethirdway:Anexactsequence 0 aL cA aL+(b c)A aL+(b c)A 0 → − → − → − |bY → givesriseto ∆ h0(bY,aL+(b c)A ). ≤ − |bY Ontheotherhand,usingexactsequences 0 aL+(b c k)A aL+(b c)A aL+(b c)A 0, → − − |Y → − |(k+1)Y → − |kY → wehave b−1 h0(bY,aL+(b c)A ) h0(Y,aL+(b c k)A ) − |bY ≤ − − |Y k=0 X b h0(Y,a(L+A) ). ≤ · |Y Inthearithmeticcontext,thebehavioroftheerrortermsbythiswayisbetterthanthesec- ondway,sothatwecouldgetthedesiredestimate. Ofcourse,thiswayisverycomplicated becauseitinvolvesnon-reducedschemes. Thepaperisorganizedasfollows: InSection1,weprepareseveralestimatesofnorms oncomplexmanifolds. InSection2,manyformulaeconcerningthenumberofsmallsec- tionsarediscussed.ThroughSection3,wegivetheproofofthemaintechnicalestimateof thenumberofsmallsections. InSection4,weintroducethevolumefunctiononanarith- meticvarietyandconsiderseveralbasicproperties. InSection5,weprovethecontinuity ofthevolumefunctionandthearithmeticHilbert-SamuelformulaforanefC∞-hermitian invertiblesheaf. Finally, inSection6, we considerthegeneralizedHodgeindextheorem andthearithmeticBogomolov-Gieseker’sinequality. FinallywewouldliketothankProf. Mochizukiforvaluablecorrespondences. 4 ATSUSHIMORIWAKI Conventionsandterminology. Wefixseveralconventionsandterminologyofthispaper. 1. For a real numberx R, the round-up x , the round-down x and the fractional ∈ ⌈ ⌉ ⌊ ⌋ part x aredefinedby { } x :=min k Z x k , x :=max k Z k x and x =x x . ⌈ ⌉ { ∈ | ≤ } ⌊ ⌋ { ∈ | ≤ } { } −⌊ ⌋ 2. Foracomplexvectorz =(z ,...,z ) Cn,twonorms z and z ′aredefinedby 1 n ∈ | | | | z = z 2+ + z 2 and z ′ = z + + z . 1 n 1 n | | | | ··· | | | | | | ··· | | Notethat z z ′ p√nz forallz Cn. | |≤| | ≤ | | ∈ 3. Let(V,σ)beafinitedimensionalnormedvectorspaceoverR. Thenormσ issome- timesdenotedby . Letf : W V beaninjectivehomomorphismofvectorspaces k·k → overR. Thenthenormσ onV yieldsanormσ′ onW givenbyσ′(x) = σ(f(x)). This norm σ′ is denoted by σ and is called the subnorm of σ. Let g : V Q be a W֒→V → surjectivehomomorphismofvectorspacesoverR. Thenanormσ′′ onQisdefinedby σ′′(y)=inf σ(x) x g−1(y) . { | ∈ } Thisnormσ′′ isdenotedbyσV։Qandiscalledthequotientnormofσ. Let 0 V′ V V′′ 0 → → → → beanexactsequenceoffinitedimensionalvectorspacesoverR. Letσ′,σandσ′′benorms ofV′,V andV′′ respectively.Wesay 0 (V′,σ′) (V,σ) (V′′,σ′′) 0 → → → → isanexactsequenceofnormedvectorspacesifσ′ = σV′֒→V andσ′′ = σV։V′′. LetV∨ bethedualspaceofV,thatis,V∨ =Hom (V,R). Thedualnormσ∨ ofV∨ isgivenby R σ∨(φ)=sup φ(x) x V andσ(x) 1 . {| || ∈ ≤ } 4. LetX be eithera scheme ora complexspace. LetL ,...,L be invertiblesheaves 1 n onX andm1,...,mn integers. Inthis paper,the tensorproductL⊗1m1 ⊗···⊗Lmnn of invertiblesheavesisusuallydenotedby m L + +m L 1 1 n n ··· intheadditivewaylikedivisors. 5. LetX beacompactcomplexmanifoldandΩavolumeformonX.LetL=(L, ) L |·| be a C∞-hermitian invertible sheaf on X. Then the natural L2-norm L and the k·kL2,Ω sup-norm L onH0(X,L)aredefinedby k·ksup 1/2 s L = s2Ω and s L =sup s (x) x X k kL2,Ω | |L k ksup {| |L | ∈ } (cid:18)ZX (cid:19) fors H0(X,L).Forsimplicity, L (resp. L )isoftendenotedby L or ∈ k·kL2,Ω k·ksup k·kL2 k·kL2 (resp ). Forarealnumberλ,aC∞-hermitianinvertiblesheaf(L,exp( λ) )is sup L k·k − |·| denotedbyLλ. LetAbeapositiveC∞-hermitianinvertiblesheafonX. Thenormalized volumeformΩ(A)associatedwithAisgivenby c (A)∧d 1 Ω(A)= , c (A)∧d X 1 wherec1(A)isthefirstChernformofAanRdd=dimX. Notethat XΩ(A)=1. R CONTINUITYOFVOLUMESONARITHMETICVARIETIES 5 6. A quasi-projective scheme over Z is called an arithmetic variety if X is an integral scheme and flat over Z. We say X is generically smooth if X is smooth over Q. By Hironaka’s resolution of singularities [9], there is a projective birational morphism µ : X′ X ofarithmeticvarietiessuchthatX′ isgenericallysmooth. Thisµ : X′ X is → → calledagenericresolutionofsingularitiesofX. 7. LetX beaprojectivearithmeticvarietyandLaC∞-hermitianinvertiblesheafonX. Accordingto[14],wedefinethreekindsofthepositivityofLasfollows: ample:LisampleifLisampleonX,thefirstChernformc (L)ispositiveonX(C) 1 • andnAisgeneratedbysectionss H0(X,nA)with s < 1forasufficientlylarge sup ∈ k k n. nef:LisnefifthefirstChernformc (L)issemipositiveanddeg(H ) 0forany • 1 Γ ≥ 1-dimensionalclosedsubschemeΓinX. (cid:12) big : L is big if LQ is big on XQ and there are a positive intdegern(cid:12)and a non-zero • sectionsofH0(X,nL)with s <1. sup k k By[17,Corollary(5.7)],ifLisample,then,forasufficientlylargeintegern,H0(X,nL) hasabasiss ,...,s asaZ-modulewith s <1foralli=1,...,N. 1 N i sup k k 8. LetX beaprojectivearithmeticvariety,andletLandM beC∞-hermitianinvertible sheaveson X. We say L is less than or equalto M, denotedby L M, if there is an ≤ injectivehomomorphismφ:L M suchthat φ () onX(C),where and C M L L → | · | ≤|·| |·| are hermitiannormsof L andM respectively. Thefollowingpropertiesare easily M |·| checked(fortheproof,seeRemark5.3): (1) L M ifandonlyif M L. ≤ ′ −′ ≤− ′ ′ (2) IfL M andL M ,thenL+L M +M . ≤ ≤ ≤ 1. SEVERALESTIMATESOF NORMS ON COMPLEX MANIFOLDS 1.1. Gromov’s inequality. In this subsection, we consider Gromov’s inequality and its variants.LetusbeginwiththelocalversionofGromov’sinequality. Lemma 1.1.1 (Local Gromov’s inequality). Let a,b,c be real numbers with a > b > c > 0. We set U = z Cn z < a , V = z Cn z < b and W = z { ∈ | | | } { ∈ | | | } { ∈ Cn z < c . Let Ω be a volume form on U, and let H ,...,H be C∞-hermitian 1 l | | | } invertiblesheavesonU. Letω ,...,ω befreebasesofH ,...,H overU respectively. 1 l 1 l Then there is a constant C dependingonly on H ,...,H , ω ,...,ω , Ω, a, b, c and n 1 l 1 l such that, for any positive real number p, all non-negative integers m ,...,m and all 1 l s H0(U,m H + +m H ), 1 1 l l ∈ ··· max sp (x) C( p )2n(m + +m +1)2n sp Ω , x∈W{| |(m1,...,ml) } ≤ ⌈ ⌉ 1 ··· l (cid:18)ZV | |(m1,...,ml) (cid:19) where isthehermitiannormofm H + +m H and p istheround-up |·|(m1,...,ml) 1 1 ··· l l ⌈ ⌉ ofp(cf. Conventionsandterminology1). Proof. Let be the hermitian norm of H and u = ω on U. Considering an i i i i i |·| | | upperboundofthepartialderivativesofu overV,wecanfindapositiveconstantK such i i that u (x) u (y) K x y ′ i i i | − |≤ | − | 6 ATSUSHIMORIWAKI forallx,y V (forthedefinitionof ′,seeConventionsandterminology2). Weset ∈ |·| K K 1 D =max max 1 ,...,max l , and R=1/D. u (x) u (x) b c (cid:26)x∈V (cid:26) 1 (cid:27) x∈V (cid:26) l (cid:27) − (cid:27) Then,forx ,x V, 0 ∈ K u (x) u (x ) K x x ′ =u (x ) 1 i x x ′ i i 0 i 0 i 0 0 ≥ − | − | − u (x )| − | (cid:18) i 0 (cid:19) u (x )(1 D x x ′). i 0 0 ≥ − | − | We set B(x ,R) = x Cn x x ′ R . Then 1 D x x ′ 0 for all 0 0 0 { ∈ | | − | ≤ } − | − | ≥ x B(x ,R). Moreover,ifx W,thenB(x ,R) V because 0 0 0 ∈ ∈ ⊆ x x x x ′ R b c. 0 0 | − |≤| − | ≤ ≤ − Hereweclaimthefollowing: Claim1.1.1.1. Foranon-negativerealnumberm, 1 1 1 m 1 x x 1 (x + +x ) dx dx . ··· 1··· n − n 1 ··· n 1··· n ≥ ( m +1)n( m +2)n Z0 Z0 (cid:18) (cid:19) ⌈ ⌉ ⌈ ⌉ First let us consider the case where m is an integer. If m = 0, then the assertion is obvious,sothatweassumem 1. Since ≥ m n m 1 1 1 (x + +x ) = (1 x ) − n 1 ··· n nm − i ! (cid:18) (cid:19) i=1 X 1 m! = (1 x )m1 (1 x )mn nm m ! m ! − 1 ··· − n 1 n mm11+≥·0·X,·.+..m,mnn=≥m0 ··· and 1 1 x(1 x)ddx= − (d+1)(d+2) Z0 foranon-negativeintegerd,theintegralI intheclaimisequalto 1 m! 1 . nm m ! m !(m +1)(m +2) (m +1)(m +2) 1 n 1 1 n n mm11+≥·0·X,·.+..m,mnn=≥m0 ··· ··· Thus 1 m! 1 I = . ≥ (m+1)n(m+2)nnm m ! m ! (m+1)n(m+2)n 1 n mm11+≥·0·X,·.+..m,mnn=≥m0 ··· Ifmisnotinteger,then m ⌈m⌉ 1 1 1 (x + +x ) 1 (x + +x ) 1 n 1 n − n ··· ≥ − n ··· (cid:18) (cid:19) (cid:18) (cid:19) because0 1 1(x + +x ) 1. Thustheclaimfollows. ≤ − n 1 ··· n ≤ WechooseapositiveconstantewithΩ eΩ onV,where can ≥ n √ 1 Ω = − dz dz¯ dz dz¯ . can 1 1 n n 2 ∧ ∧···∧ ∧ (cid:18) (cid:19) CONTINUITYOFVOLUMESONARITHMETICVARIETIES 7 Let s be an element of H0(U,m H + +m H ). Then we can find a holomorphic 1 1 l l functionf overU withs=fω⊗m1 ···ω⊗ml. Wealsochoosex W suchthatthe 1 ⊗···⊗ l 0 ∈ continuousfunction s onW takesthemaximumvalueatx . Then | |(m1,...,ml) 0 sp Ω e sp Ω | |(m1,...,ml) ≥ | |(m1,...,ml) can ZV ZB(x0,R) =e f pupm1 upmlΩ | | 1 ··· l can ZB(x0,R) eu (x )pm1 u (x )pml f p(1 D x x ′)mΩ , 1 0 l 0 0 can ≥ ··· | | − | − | ZB(x0,R) wherem=p(m + +m ). Moreover,ifweset 1 l ··· x x =(r exp(√ 1θ ),...,r exp(√ 1θ )), 0 1 1 n n − − − then f p(1 D x x ′)mΩ 0 can | | − | − | ZB(x0,R) 2π 2π = f pdθ dθ r r (1 D(r + +r ))mdr dr . 1 n 1 n 1 n 1 n Zrr11≥+0··,·.+..r,rnn≤≥R0(cid:18)Z0 ···Z0 | | ··· (cid:19) ··· − ··· ··· Since f pissubharmonic,wehave | | 2π 2π f pdθ dθ (2π)n f(x )p. 1 n 0 ··· | | ··· ≥ | | Z0 Z0 Therefore,usingClaim1.1.1.1, f p(1 D x x ′)mΩ 0 can | | − | − | ZB(x0,R) (2π)n f(x )p r r (1 D(r + +r ))mdr dr 0 1 n 1 n 1 n ≥ | | r1+···+rn≤R ··· − ··· ··· Zr1≥0,...,rn≥0 (2π)n f(x )p r r (1 D(r + +r ))mdr dr 0 1 n 1 n 1 n ≥ | | ··· − ··· ··· Z[0,R/n]n (2π)n f(x )p 1 0 | | . ≥ (nD)2n ( m +1)n( m +2)n ⌈ ⌉ ⌈ ⌉ Gatheringallcalculations,ifwesetC′ =e(2π)n/(nD)2n,then C′ s(x )p sp Ω | 0 |(m1,...,ml) . | |(m1,...,ml) ≥ ( m +1)n( m +2)n ZV ⌈ ⌉ ⌈ ⌉ Further,since m p (m + +m ), 1 l ⌈ ⌉≤⌈ ⌉ ··· ( m +1)n( m +2)n ( p (m + +m )+1)n( p (m + +m )+2)n 1 l 1 l ⌈ ⌉ ⌈ ⌉ ≤ ⌈ ⌉ ··· ⌈ ⌉ ··· ( p (m + +m +1))n(2 p (m + +m +1))n 1 l 1 l ≤ ⌈ ⌉ ··· ⌈ ⌉ ··· =2n( p )2n(m + +m +1)2n. 1 l ⌈ ⌉ ··· Thuswegetthelemma. 2 Thepartialresultsofthefollowingcorollaryarefoundin[12]and[11]. 8 ATSUSHIMORIWAKI Corollary 1.1.2 (Gromov’s inequality). Let M be an n-dimensional compact complex manifold,ΩavolumeformonM,andletH ,...,H beC∞-hermitianinvertiblesheaves 1 l onM. ThenthereisaconstantC dependingonlyonH ,...,H ,ΩandM suchthat,for 1 l any positive real numberp, all integers m ,...,m with m 0,...,m 0, and all 1 l 1 l ≥ ≥ s H0(M,m H + +m H ), 1 1 l l ∈ ··· max sp (x) C( p )2n(m + +m +1)2n sp Ω . x∈M{| |(m1,...,ml) } ≤ ⌈ ⌉ 1 ··· l (cid:18)ZM| |(m1,...,ml) (cid:19) Proof. Wetakeafinitecovering U ofM withthefollowingproperties: i i=1,...,m { } (1) U is isomorphic to z Cn z < 1 by using a local coordinate z (x) = i i { ∈ | | | } (z (x),...,z (x)). WesetV = x U z (x) <1/2 andW = x U i1 in i i i i i { ∈ || | } { ∈ | z (x) <1/4 . i | | } (2) Therearelocalbasesω ,...,ω ofH ,...H overU respectively. i1 il 1 l i (3) m W =M. i=1 i ThenourcorollaryfollowsfromthelocalGromov’sinequality. 2 S Corollary1.1.3. LetMbeann-dimensionalcompactcomplexmanifold,andletH ,...,H 1 l beC∞-hermitianinvertiblesheavesonM. LetV beaclosedcomplexsubmanifoldofM. LetΩ and Ω be volumeforms onM andV respectively. Thenthere is a constantC M V suchthat C(m + +m +1)2n s2Ω s 2Ω 1 ··· l | | M ≥ | |V | V ZM ZV forallnon-negativeintegersm ,...,m andalls H0(X,m H + +m H ). 1 l 1 1 l l ∈ ··· Proof. Notethat s 2Ω s 2 s 2 V | |V | V . k ksup ≥k |V ksup ≥ Ω R V V ThusthecorollaryfollowsfromGromov’sinequality.R 2 ThefollowinglemmaisduetoTakuroMochizuki,whokindlytellusitsproof. Thisis avariantofGromov’sinequality. Lemma 1.1.4. Let X be an n-dimensionalcompact complex manifold and ω a positive (1,1)-formon X. Let H ,...,H be C∞-hermitianinvertiblesheavesonX. Then, for 1 l anopensetU ofX,therearepositiveconstantsC,C′andD′suchthat sup s (x) Cm1+···+ml sup s (x) . {| |(m1,...,ml) }≤ {| |(m1,...,ml) } x∈X x∈U and s2 ω∧n D′ C′m1+···+ml s2 ω∧n | |(m1,...,ml) ≤ · | |(m1,...,ml) ZX ZU forallnon-negativeintegersm ,...,m andalls H0(X,m H + +m H ),where 1 l 1 1 l l ∈ ··· isthehermitiannormofm H + +m H . |·|(m1,...,ml) 1 1 ··· l l Proof. ShrinkingU ifnecessarily,wemayidentifyU with x Cn x < 1 . We setW = x Cn x <1/2 .Inthisproof,wedefineaLaplac{ian∈(cid:3) by| |the| form}ula: ω { ∈ || | } √ 1 − ∂∂¯(g) ω∧(n−1) =(cid:3) (g)ω∧n. ω − 2π ∧ CONTINUITYOFVOLUMESONARITHMETICVARIETIES 9 Leta beaC∞-functiongivenbyc (H ) ω∧(n−1) = a ω∧n,wherec (H )isthefirst i 1 i i 1 i ∧ ChernformofH . WechooseaC∞-functionφ onX suchthat i i a ω∧n = φ ω∧n i i ZX ZX and that φ is identically zero on X W. Thus we can find a C∞-function F with i i (cid:3) (F )=a φ . Notethat(cid:3) (F )=\ a onX W. ω i i i ω i i − \ Lets H0(X,m H + +m H )andweset 1 1 l l ∈ ··· f = s2 exp( (m F + +m F )). | |(m1,...,ml) − 1 1 ··· l l Claim1.1.4.1. max f(x) =max f(x) . x∈X\W x∈∂(W) { } { } Iff isaconstantoverX W,thenourassertionisobvious,sothatweassumethatf is \ notaconstantoverX W. Inparticular,s=0. Since \ 6 √ 1 − ∂∂¯(log(s2 ))=c (m H + +m H )=m c (H )+ +m c (H ), − 2π | |(m1,...,ml) 1 1 1 ··· l l 1 1 1 ··· l 1 l wehave(cid:3) (log(f)) = 0onX (W Supp(div(s))). Letuschoosex X W such ω 0 \ ∪ ∈ \ thattheC∞-functionf overX W takesthemaximumvalueatx . Notethat 0 \ x X (W Supp(div(s))). 0 ∈ \ ∪ For,ifSupp(div(s)) = ,thenourassertionisobvious. Otherwise,f iszeroatanypoint ∅ ofSupp(div(s)). Since log(f) is harmonicover X (W Supp(div(s))), log(f) takes the maximum \ ∪ valueatx andlog(f)isnotaconstant,wehavex ∂(W)byvirtueofthemaximum 0 0 ∈ principleofharmonicfunctions.Thustheclaimfollows. Weset d = min exp( F ) , D = max exp( F ) and C = max D /d . i i i i i i x∈X\W{ − } x∈∂(W){ − } i=1,...,l{ } Then dm1 dml s2 f 1 ··· l | |(m1,...,ml) ≤ overX W and \ f Dm1 Dml s2 ≤ 1 ··· l | |(m1,...,ml) over∂(W). Hence max s2 Cm1+···+ml max s2 x∈X\W{| |(m1,...,ml)}≤ x∈∂(W){| |(m1,...,ml)} Cm1+···+mlmax s2 . ≤ {| |(m1,...,ml)} x∈W whichimpliesthat max s2 Cm1+···+mlmax s2 . x∈X{| |(m1,...,ml)}≤ x∈W{| |(m1,...,ml)} Thisis the first partof the lemma. Note that ex x+1 forx 0. Thus, by the local ≥ ≥ Gromov’sinequality(cf. Lemma1.1.1),thereareconstantsC andD suchthat 1 1 max s2 D Cm1+···+ml s2 Ω {| |(m1,...,ml)}≤ 1· 1 | |(m1,...,ml) x∈W ZU forallnon-negativeintegersm ,...,m andalls H0(X,m H + +m H ). There- 1 l 1 1 l l forethesecondassertionfollows. ∈ ··· 2 10 ATSUSHIMORIWAKI 1.2. Distorsionfunctions. LetX beann-dimensionalprojectivecomplexmanifoldand Ω a volume form of X with Ω = 1. Let H = (H,h) be a C∞-hermitian invertible X sheafonX. Fors,s′ H0(X,H),weset ∈ R s,s′ = h(s,s′)Ω. h iH,Ω ZX Lets ,...,s beanorthonormalbasisofH0(X,H)withrespectto , . Wedefine 1 N h iH,Ω N dist(H,Ω)(x)= h(s ,s )(x). i i i=1 X Notethatdist(H,Ω)doesnotdependonthechoiceofanorthonormalbasis. Inthecase of H0(X,H) = 0 , dist(H,Ω) is defined to be the constantfunction 0. The function { } dist(H,Ω)iscalledthedistorsionfunctionofH withrespecttoΩ. LetAbeapositiveC∞-hermitianinvertiblesheafonX. DuetoBouche[3]andTian [15],weknowthat dist(aA,Ω(A))(x) sup 1 =O(1/a) dimH0(aA) − x∈X(cid:12) (cid:12) (cid:12) (cid:12) fora 1,whereΩ(A)isthe(cid:12)normalizedvolumeform(cid:12)associatedwithA(cf.Conventions ≫ (cid:12) (cid:12) andterminology5). Usingthisresult,Yuan[16,Theorem3.3]provedthefollowing: Theorem1.2.1. LetA= (A,h )andB =(B,h )bepositiveC∞-hermitianinvertible A B sheavesonX. ThentherearepositiveconstantsC andC suchthat 1 2 2C 3C dist(aA bB,Ω(A))(x) dimH0(aA) 1+ 1 + 2 − ≤ a b (cid:18) (cid:19) forallx X,a 1andb 3C . 2 ∈ ≥ ≥ Proof. Forreader’sconvenience,wereproveithere.ByBouche-Tian’stheorem,there areconstantsC andC suchthat 1 2 C C dimH0(aA) 1 1 dist(aA,Ω(A))(z) dimH0(aA) 1+ 1 − a ≤ ≤ a (cid:18) (cid:19) (cid:18) (cid:19) and C C dimH0(bB) 1 2 dist(bB,Ω(B))(z) dimH0(bB) 1+ 2 − b ≤ ≤ b (cid:18) (cid:19) (cid:18) (cid:19) for all z X, a 1 and b 1. By taking larger C and C if necessarily, we may 1 2 ∈ ≫ ≫ assumethattheaboveinequalitiesholdforallz X andalla,b 1. ∈ ≥ Let us fix an arbitrary x X. Let us choose an orthonormalbasis of H0(bB) with ∈ respectto , suchthatonlyonesectionisnon-zeroatx. Wedenotethissection h ibB,Ω(B) bys(b). Then h (s(b),s(b))(x)=dist(bB,Ω(B))(x) dimH0(bB)(1 C /b). bB ≥ − 2 Ontheotherhand, s(b) 2 supdist(bB,Ω(B))(z) dimH0(bB)(1+C /b). k ksup ≤ ≤ 2 z∈X Therefore h (s(b),s(b))(x) 1 C /b bB − 2 . s(b) 2 ≥ 1+C /b k ksup 2

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.