ebook img

Continued fraction representation of quantum mechanical Green's operators PDF

95 Pages·0.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Continued fraction representation of quantum mechanical Green's operators

DEBRECENI EGYETEM 1 0 0 2 TERMÉSZETTUDOMÁNYI KAR n a J 0 1 1 v Continued fra tion representation of 0 quantum me hani al Green's operators 4 0 1 0 1 0 / h Ph.D. thesis p - t n by a u q Balázs Kónya : v i X r a University of Debre en Fa ulty of S ien es Debre en, 2000 Continued fra tion representation of quantum me hani al Green's operators Értekezés a doktori (Ph.D.)fokozat megszerzése érdekében a (cid:28)zika tudományában. Írta: Kónya Balázs okleveles (cid:28)zikus. Készült a Debre eniEgyetem TermészettudományiKarának (cid:28)zika doktori programja (mag(cid:28)zika alprogramja) keretében. Témavezet®: Dr. ................................... Elfogadásra javaslom: 2000 ........................ ...... Azértekezést bírálóként elfogadásra javaslom: Dr. ................................... ................... Dr. ................................... ................... Dr. ................................... ................... Jelölt az értekezést 2000 ........................ ......-n sikeresen megvédte: A bírálóbizotság elnöke: Dr. ................................... ................... A bírálóbizotság tagjai: Dr. ................................... ................... Dr. ................................... ................... Dr. ................................... ................... Dr. ................................... ................... Debre en(cid:21) 2000 EzadolgozataMagyarTudományosAkadémiaAtommagkutatóIntézeteElméletiFizika Osztályánkészült2000-ben. Adolgozatalapjául szolgáló eredményekilletve tudományos közleményeka MTA ATOMKIElméleti Fizika Osztályánés a Karl(cid:21)FranzensUniversität Graz Elméleti Fizika Intézetébenszülettek1997. és 2000. között. Ezen értekezést a Debre eni Egyetem (cid:28)zika doktori program mag(cid:28)zika alprogramja keretébenkészítettem1997. és 2000. közöttés ezútonbenyújtoma Debre eniEgyetem doktori Ph.D.fokozatának elnyerése éljából. Debre en,2000. április 20. Kónya Balázs Tanúsítom, hogy Kónya Balázs doktorjelölt 1997. és 2000. között a fent megnevezett doktorialprogramkeretébenirányításommalvégeztemunkáját. Azértekezésbenfoglal- takajelöltönállómunkájánalapulnak,azeredményekhezönállóalkotótevékenységével meghatározóan hozzájárult. Az értekezéstelfogadásra javaslom. Debre en,2000. április 20. Dr. Papp Zoltán témavezet® Debre en(cid:21) 2000 Prefa e This thesis ontains the summary of my resear hwork arriedout as a Ph.D. stu- dentattheTheoreti alPhysi sDepartmentoftheInstituteofNu learResear hof theHungarianA ademyofS ien esDebre en,HungaryandpartlyattheTheoret- i al Physi s Institute of the Karl-FranzensUniversität Graz within the framework ofthefruitful ollaborationbetweenthefew-bodyresear hgroupsofDebre enand Graz. The new results underlying this thesis have already been presented at in- ternationals ienti(cid:28) meetings andpublished in fourpapersappearedin Journalof Mathemati al Physi s and Physi al Review C. [31, 32, 33, 34℄. As the title (cid:16)Continued fra tionrepresentationof quantum me hani al Green's operators(cid:17) implies my resear hwork is on erned with one of the entral on epts of quantum me hani al few-body problems. The exploitation of the ri hness of the mathemati al theory of ontinued fra tions has enabled us to develop a rather general method for evaluating an analyti and readily omputable representation of Green's operators. This e(cid:27)e tive representation fa ilitates the solution of fun- damental few-body integral equations. Being a theoreti al physi ist I have always been interested in mathemati s. Therefore as a se ond year undergraduate physi s student I was enthusiasti to a ept the resear h task on two-point Padé approximants o(cid:27)ered by my present supervisor. Later under his supervision I (cid:28)nished my diploma work on the se ond orderDira equation. BythetimeofmyPhDstudiesIgot ompletelyinfe tedwith mathemati al physi s and my attention was attra ted to the topi of ontinued fra tions and quantum me hani s. During my work I bene(cid:28)tted a lot from my supervisor'sknowledgeandexperien e,andI ouldidentifymyselfwithmanyofhis thoughts. He showed me how mathemati s ould be used in pra ti e approa hing real physi al problems. I hope my thesis may serveas an example for how physi s i ii has alwayspro(cid:28)ted from mathemati s. Here I would like to take the o asion and thank to everybody who helped me during the time I did my resear hand wrote my thesis. Spe ial thanks go to Prof. Zoltán Papp my PhD supervisor for his guidan e andusefuladvisesandfortheex ellentatmosphereinwhi hwehavebeenworking together. Someofthework overedbythisthesiswasdoneandtheresultswerepublished togetherwith Dr. G. Lévai. I thank him forthe e(cid:27)orts he invested in our ommon topi . This ollaboration was a very instru tive experien e for me, I ould learn from him how one ould alwaysbe optimisti even in the most hopeless moments. IamgratefultotheTheoreti alPhysi sDepartmentofATOMKIforproviding meapea efulandpleasantworkingenvironment. IthankProf. BorbálaGyarmati, who read the manus ript and made numerous helpful suggestions. I am indebted to Prof. R. G. Lovas who made the ompletion of my thesis possible by o(cid:27)ering a young resear hfellow s holarship. Iamalsogratefulto thefew-bodygroupofthe Theoreti alPhysi sInstituteof the Karl-Franzens Universität Graz, espe ially to Prof. W. Plessas, for the vivid s ienti(cid:28) atmosphere. LastbutnotleastIwishtothankalltheProfessorsoftheTuesdayandThursday 4PM open-air seminars for their brilliant le tures on ta ti s, sport diploma y and football. Contents Prefa e i 1 Introdu tion 1 2 The quantum me hani al Green's operator 6 2.1 De(cid:28)nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Basi properties of Green's operator . . . . . . . . . . . . . . . . . . 7 2.3 The Green's operator in s attering theory . . . . . . . . . . . . . . . 9 2.4 Dunford(cid:21)Taylor integrals of Green's operators . . . . . . . . . . . . . 14 3 Tridiagonal matri es, re urren erelations and ontinued fra tions 17 3.1 In(cid:28)nite tridiagonal matri es . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Three-term re urren e relations . . . . . . . . . . . . . . . . . . . . . 20 3.3 Continued fra tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.1 Analyti ontinuation of ontinued fra tions . . . . . . . . . . 25 3.3.2 Pin herle's theorem . . . . . . . . . . . . . . . . . . . . . . . 26 ... 4 Continued fra tion representation of 28 4.1 The method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 D-dimensional Coulomb Green's operator . . . . . . . . . . . . . . . 34 4.2.1 Convergen e of the ontinued fra tion . . . . . . . . . . . . . 37 4.2.2 Numeri al test . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3 Relativisti Coulomb Green's operators . . . . . . . . . . . . . . . . 41 4.3.1 Relativisti energy spe trum . . . . . . . . . . . . . . . . . . 45 4.4 D-dimensional harmoni os illator . . . . . . . . . . . . . . . . . . . 45 iii iv CONTENTS 4.5 The generalized Coulomb potential . . . . . . . . . . . . . . . . . . . 47 4.5.1 The potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.5.2 The matrix elements of the Green's operator . . . . . . . . . 52 5 Appli ations 54 5.1 Model nu lear potential al ulation . . . . . . . . . . . . . . . . . . . 55 5.1.1 Bound states . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.1.2 Resonan e states . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.1.3 S attering states . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.1.4 Con lusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 An atomi three-body problem . . . . . . . . . . . . . . . . . . . . . 65 5.2.1 Faddeev(cid:21)Merkurievintegral equations . . . . . . . . . . . . . 67 5.2.2 Solution in Coulomb(cid:21)Sturmian spa e representation . . . . . 70 Summary 76 Összefoglalás 78 Bibliography 82 Chapter 1 Introdu tion The theoreti al des ription of the mi ros opi world an be approa hed following two(cid:16)orthogonal(cid:17) paths. A ordingto the many-body or(cid:28)eld theoreti al approa h the mi ros opi world is onsidered as an assembly of many or in(cid:28)nitely many intera ting obje ts, where (cid:28)eld theoreti al or statisti al methods an be applied in order to des ribe the system [1, 2, 3℄. On the ontrary, few-body physi ist ta kle physi al systems possessing only few degrees of freedom being onsisted of a ouple of intera ting parti les and intend to provide a physi ally omplete and mathemati ally well formulated des ription. Few-body systems have played a ru ial role in the development of our under- standing of mi ros opi world: atomi , nu lear and parti le physi s heavily rely on few-body models. Nowadays however, few-body problem has an ambiguous reputation of being a jungle where non-experts are qui kly dis ouraged and spe- ialist enjoy endless debates on te hni al improvements on erning equations and mathemati al physi s issues. Furthermore mu h attention has been paid only to omputational onsequen esand little on ern about the underlying physi s. This is of ourse a false impression whi h originates from the non-trivial nature of the problems studied. The goal of the few-body physi s ommunity, namely giving a ompleteandmathemati ally orre tdes riptionoffew-bodysystems,automati ly requires the onsideration of mathemati al issues, hen e this (cid:28)eld o(cid:27)ers an ex el- lent playground for mathemati al physi s. This thesis, following the above ideas, hopes to ontribute to the magni(cid:28) entresults a hieved by the few-body approa h. 1 2 CHAPTER1. INTRODUCTION Mi ros opi few-body physi s ertainly was born together with quantum me- hani s in the pioneering work of Bohr, Heisenberg and S hrödinger trying to de- s ribe simple quantum systems, like the Hydrogen atom. The (cid:28)eld initially de- veloped as a part of nu lear physi s as the title of the (cid:28)rst few-body onferen e (Nu lear for es and the few-nu leon problem [4℄ held in London 1959) suggests. Sin e then few-body physi s has expanded to in orporate atomi , mole ular and quark systems. For example, the two-ele tron atom had already been atta ked by Hylleraas [5℄ in 1929 and onquered by Pekeris [6℄ only in 1959. The theoret- i al foundations of few-body quantum physi s were laid down by Lippmann and S hwinger[7℄,Gell-mannandGoldberger[8℄bydevelopingformals atteringtheory of two-parti le systems. The (cid:28)rst attempts to extend the results to multi hannel pro essesandmorethantwoparti lesledtounsoundmathemati alformalismand non-unique solutions. The rigorous theory of few-body systems was given by Fad- deev [9℄ who proposed a set of oupled integral equations whi h have a unique so- lutionforthethree-bodyproblem. Havingthe orre tfew-bodytheorymu he(cid:27)ort hasbeen investedinto the developmentofnumeri almethods. The (cid:28)rst numeri al solutionofthe Faddeev equationsfor threespinless parti lesintera ting with lo al potentials was a hieved by Humberston at al. [10℄ in 1968. Sin e then a lot has been a hieved due to the unbelievable development in omputational power and theseveralextremelye(cid:27)e tivenewmethodshavingbeendeveloped. Amongothers, on(cid:28)guration and momentum spa e Faddeev al ulations [11, 12, 13℄, the hyper- spheri al harmoni s expansion method [14℄, the quantum Monte Carlo method [15℄,theCoulomb(cid:21)Sturmiandis retespa eFaddeevapproa h[16℄andthesto has- ti variationalmethod [17℄ havebeen usedtostudy few-bodybound, resonantand s attering phenomena with great su ess. The fundamental equations governing the dynami s of few-body physi al sys- tems, like the Lippmann(cid:21)S hwinger equation and the Faddeev equations, are for- mulated in terms of integral equations. Integral equation formalism has a great advantageoverthe equivalenttraditionaldi(cid:27)erentialequationsbe auseofthe few- body boundary onditions are automati ally in orporated into the integral equa- tions. Thisisthereasonwhyintegralequationmethodsareinfavourwhens atter- ing problems with ompli ated asymptoti behaviour are onsidered. Nevertheless for ases, where the asymptoti s of the wave fun tion is well known, di(cid:27)erential equation approa h an perform outstandingly (see i.e. the sto hasti variational

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.